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Effective 3He interactions in dilute 3He-4He mixtures
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The effective interaction between 3He quasiparticles in dilute liquid 3He-4He mixtures affects many of its
physical properties. The interaction potential is determined here from the saturation solubility and osmotic
pressure data reported recently. The interactions are examined consistently over the entire pressure range of
liquid-helium mixtures at very low temperatures, that is, from 0 to 25.6 bar, where the solid phase appears. To
reproduce all experimental data, it was necessary to include a concentration dependence in the potential. This
dependence, however, turned out to be almost the opposite to what has been proposed earlier. The deduced
potential can be used to calculate, among other things, an estimate for the superfluid transition temperature of
3He-4He mixtures. In addition, we also find values for some less well-established parameters for helium mixtures,
such as the binding energy of a 3He atom in superfluid 4He.
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I. INTRODUCTION

Liquid mixture of the two stable isotopes of helium, 3He and
4He, forms an interesting quantum system, the fermion density
of which can be varied between zero and what is allowed
by the maximum solubility of 3He in 4He. Thus, the Fermi
temperature and interaction energy of the 3He system can also
be changed continuously.

Certain properties of helium mixtures are governed by the
mutual interactions between the fermionic 3He particles in the
liquid. The most interesting, perhaps, is the possible superfluid
transition of the 3He component. Since the early studies of
helium mixtures, it has been obvious that the interaction among
3He is attractive. According to the BCS theory, this guarantees
a superfluid state at some low enough temperature. Mixtures
have been cooled down to about 100 μK without detecting
superfluidity in the 3He component. This is practically about
the lowest temperature that can be achieved by external cooling
due to rapidly growing thermal boundary resistance. Another
experimental scheme has been proposed, in which internal
cooling of mixtures is produced by adiabatic melting of a 4He
crystal in superfluid 3He.1 The working pressure in such an
experiment is the melting pressure, about 25 bar. To calculate
any properties of the system there, one needs to know about
the interactions under this particular condition. None of the
previous studies have been extended to this range of pressures.

No satisfactory first-principles description of the inter-
actions exists, so that we are restricted to using a phe-
nomenological approach. In other words, we choose a suitably
parametrized functional form for the interaction and iterate the
set of its variables to reproduce the measured data. The char-
acteristics of the interaction potential can be probed through
measurements of various macroscopic properties of helium
mixtures. In this paper, we use recently measured solubility2

and osmotic pressure3 data to determine a phenomenological
interaction potential between two 3He quasiparticles at any
pressure of liquid mixtures. For simplicity, we use a mean-field
approximation (Hartree-Fock).

Similar studies have previously been performed mostly at
zero pressure.4,5 Yorozu et al. measured the phase separation
curve at low temperatures and at some pressures between 0
and 20 bar. They used those data to determine the interaction

potential at five discrete pressures.6 We have used our newly
retrieved interaction potential to calculate various mixture
properties, some of which have already been published.3,7

II. QUASIPARTICLE INTERACTIONS

The task of finding the proper interaction potential is chal-
lenging. There is inevitably some scatter in the experimental
data required in the analysis. We must allow some of the
less certain quantities to vary slightly from the measured
values, increasing the number of fit parameters. Sometimes,
small variation of observable quantities may introduce unac-
ceptably large deviations to the computed potential. Many
macroscopic quantities are not very sensitive to the exact
shape of the potential but to some integrated values, which
creates some degree of “degeneracy” in the problem: several
slightly different potentials can reproduce any single measured
quantity. To reach an acceptable level of confidence, we used
several sets of data and required the chosen potential to be
valid at any pressure with some suitably selected smoothly
pressure-dependent parameters.

It is useful to consider the mutual interactions between
quasiparticles in momentum space, i.e., the Fourier transform
of the potential

V (k) =
∫

d3r e−ik·rV (r). (1)

Here, the potential is written in terms of the wave vector
k = p/h̄. The quasiparticle energy can now be written in the
Hartree-Fock approximation as

ε(k) = −E3 + (h̄k)2

2m
(1 + γ k2) + n3V (0)

−
∫

d3k′

(2π )3
V (k − k′)f (k′), (2)

where E3 is the binding energy of a single 3He atom in
superfluid 4He, m is the effective mass of a 3He quasiparticle in
the zero concentration limit, the γ k2 term is a small correction
to the basic effective mass model of Landau Fermi-liquid
theory, and n3 is the 3He particle density. Of the interaction
terms, n3V (0) is the direct Hartree interaction energy. As can
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be seen from the Fourier transform [Eq. (1)], V (0) represents a
spatial average of the interaction. The second interaction term
in Eq. (2) is the exchange energy due to interaction between
particles with parallel spin. For γ , we used the experimental
value8 γ = −0.076 Å2 and for the effective mass, we used the
values determined in Ref. 3. In the above dispersion relation,
f (k) is the Fermi-Dirac distribution function

f (k) = 1

eβ(ε(k)−μ) + 1
, (3)

where β = 1/(kBT ), as usual.
Bardeen, Baym, and Pines (BBP) showed that in the zero-

concentration limit, the form of the interaction potential at zero
momentum transfer is4

V (0) = −α2 m4c
2
40

n40
, (4)

where m4 is the mass of 4He, c40 the speed of sound, and n40 the
particle density in pure 4He. The factor α is the BBP parameter,
defined as the “excess volume occupied by 3He atoms.” It
has weak concentration and temperature dependencies but
somewhat stronger pressure dependence, being approximately
0.28 at zero pressure and 0.17 at 25 bar. The interaction
presented by BBP results from the larger zero-point energy of
3He compared to 4He, which is a consequence of the smaller
mass of 3He. When dissolved into liquid 4He, the 3He atoms
effectively form “bubbles,” which tend to combine.

The result of BBP at elevated pressures was questioned
by Eckstein et al.9 They argued that V (0) should in fact
become positive at high pressures. Baym responded to this
by calculating a perturbation theory correction to second order
in 3He-4He mass difference.10 He found the correction to be
surprisingly small, and the original result of BBP to be valid
to good accuracy.

According to the definition of α, the molar volume of helium
mixture with concentration x can be written as

vm = v40(1 + αx), (5)

where v40 is the molar volume of pure 4He at the given pressure.
The pure value has been determined experimentally with good
accuracy. We used the data of Tanaka et al.11 and Watson
et al.12 The temperature and concentration dependencies of α

were calculated by following the theory presented in Refs. 13
and 14. For α itself, we used the measurements of the former.
The average concentration of 3He in their experiment was 8%;
the zero-concentration values were calculated on that basis.

We can now examine the pressure dependence of E3. By
starting with the Gibbs-Duhem equation and using Maxwell
relations to express derivatives of chemical potentials with
molar volumes, we arrive at

−E3(P ) = −E0 + 1

NA

∫ P

0
v40(1 + α)dP ′. (6)

Here, α is evaluated at zero concentration and zero tempera-
ture.

III. CHEMICAL POTENTIAL

The chemical potential is extremely useful in connecting
the interaction potential to many measurable quantities. The

value of the chemical potential is fixed by the condition

n3 = 2
∫

d3p

(2πh̄)3
f (p). (7)

In general, the chemical potential is obtained by a numerical
solution to Eq. (7). This is, however, computationally some-
what time consuming. At temperatures well below the Fermi
temperature, T � TF , one may use a low-temperature series
expansion of the chemical potential, which is much quicker
than to determine the “exact” chemical potential. This makes
the fitting procedure more efficient since the chemical potential
is required many times at every fit cycle. The derivation of this
low-temperature expansion is discussed in the Appendix. To
maintain a congruent notation with previous works, we write
the chemical potential in the low-temperature limit as

μ3 = −E3 + EF

[
1 − π2

12

(
T

TF

)2
]

+ n3V (0)

− 1

2
n3|V (0)|

[
F + G

π2

12

(
T

TF

)2
]

, (8)

where

F = 3

2

∫ 2kF

0

k2

k3
F

(
1 − k

2kF

)
V (k)

|V (0)|dk (9)

and

G = 3

(
V (2kF )

|V (0)| − 1

4

∫ 2kF

0

k3

k4
F

V (k)

|V (0)|dk

)
. (10)

Here, EF is the Fermi energy of a noninteracting sys-
tem with particle number density n3. In our case, EF =
(h̄kF )2(1 + γ k2

F )/(2m). Similarly, TF is the Fermi temperature
of the corresponding noninteracting system, i.e., TF = EF /kB .
The validity of this expansion was verified by comparing it to
the numerical solution to Eq. (7).

The saturation solubility is obtained by simply setting the
chemical potential of 3He in the mixture equal to that in pure
3He. That is, μ3 = μ30. To be exact, the comparison should
be made between the dilute and rich phases of the phase-
separated liquid, but at temperatures below a few hundred
millikelvins, the 3He-rich phase is indeed practically pure
3He.7,15 The chemical potential of pure 3He is determined
from the Gibbs-Duhem equation resulting in

μ30 = −L30 −
∫ T

0
s30dT ′ + 1

NA

∫ P

0
v30dP ′, (11)

where we denote the latent heat of evaporation by L30, entropy
per 3He atom by s30, and the molar volume of pure 3He by v30.
Due to the chosen path of integration, s30 = s30(T ,P ) and
v30 = v30(T = 0,P ) in the above equation. We calculated the
entropy from the heat-capacity data of Greywall16 and used
the molar volume data of Greywall17 and Abraham et al.18,19

The connection between the chemical potential (interaction
potential) and osmotic pressure is discussed in Ref 3.

IV. FIT PROCEDURE

As our approach is phenomenological, some decisions
about the functional form of the potential and the fit parameters
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have to be made. Also, some sensitive quantities, which have
not been measured with good enough accuracy, are allowed to
vary slightly. The fit procedure itself is straightforward. With
the choice of fit parameters, a least-squares fitting is performed
using the experimental data. Slightly different weights are
given to different data sets.

A. Experimental data

As mentioned, we used the saturation solubility of Ref. 2
and osmotic pressure of Ref. 3 to find the interaction potential.
The saturation concentration at low temperatures is usually
written as

xs = x0(1 + βT 2), (12)

where both x0 and β depend on pressure. The data of Ref. 2
give these two quantities over the whole pressure range of
liquid mixtures. Due to the scheme of measurements, the
relative accuracy of x0 over pressure is very good, but the
absolute value is chosen somewhat arbitrarily to match
the “canonical value” x0 = 6.65% at zero pressure. There
is quite a lot of scatter in the data of β, and the values
by different authors differ to some extent. While β is not
known accurately, it is still rather sensitive to the potential.
Because of this, somewhat less weight was given to β during
the fitting process. To simulate the experimental conditions,
β was calculated between 0 K and 40 mK (while using the
low-temperature expansion for μ3). Even at temperature as
low as 40 mK, the quadratic approximation for the chemical
potential is not completely valid anymore. A small constant
correction of 0.3 K−2 (less than 10%) in the value of the
calculated β was added during fitting to compensate for the
quadratic approximation of μ3. This particular value was
chosen after comparing the results of the exact calculation to
those using the quadratic approximation. After the fitting, the
β factor was calculated over the entire pressure range using the
exact method, and a consistency check with the experimental
values was performed. We used only the zero-temperature
osmotic pressure in the fitting, as the interaction does not
contribute significantly to its temperature dependence at low
temperatures. This is discussed further in Ref. 3.

B. Form of the potential

The experimental data (saturation solubility) covers the
entire pressure range of liquid-helium mixtures. Therefore,
we also wanted to find a potential, which is determined at any
given pressure in this range. In order to keep the number of
fit parameters as small as possible, we decided to treat the
BBP result for V (0) as exact. For the functional form of the
potential, we used three Gaussian functions added together.
That is,

V (k) = V (0)
3∑

i=1

Aie
−Ci [k/(2k0)]2

, (13)

where the arbitrary factor k0 was chosen to be 0.3482 Å−1,
which is the Fermi wave vector kF at zero pressure and
concentration x = 6.65%. Many previous analyses of the
interaction potential have used polynomial series in powers
of k, which, of course, do not allow one to use the potential

at large values of momenta (high temperatures). The Gaussian
functions also have the added value that they can be inverse
Fourier transformed back to real space if one wishes to perform
such calculations.

To see what kind of pressure dependence, in addition to
the inherent pressure dependence of V (0), is required for
the parameters to account for the measured data, the fitting
procedure was first performed separately at a few distinct
pressures. It was noticed that a potential composed of just
two Gaussians was adequate to reproduce the appropriate
values at a given pressure, but would have required a rather
complicated pressure dependence for its parameters. The three
Gaussians, however, only required linear dependence in some
of the parameters.

The pressure dependence was chosen quite arbitrarily so
that A1, A2, C1, and C2 were of the form

X(P ) = X0 + X1P. (14)

Furthermore, A3 = 1 − A1 − A2 holds, while C3 is a constant.

C. Concentration dependence

By estimating the lowest-order corrections caused by
screening of the interaction by other quasiparticles, it is
rather straightforward to show that the interaction should
become stronger (more negative) at zero momentum transfer.
Furthermore, the correction is proportional to the second
power of the zero-concentration, or bare, interaction. This was
indeed the result of the considerations of Fu and Pethick.20

They assumed that the bare interaction remains unchanged as
concentration is increased and then determined all correction
terms of order x1/3.

The concentration dependence due to Fu and Pethick did not
yield exceptionally good agreement with measurements. One
should note that already Fu and Pethick did have a problem
using their concentration dependence and Baym’s result for
V (0). This may indicate a fault either in their analysis, or that
of BBP.

Ignoring all concentration dependencies did not yield good
results either. The most difficult quantity to reproduce was the
temperature coefficient β, and especially its increase at higher
pressures. If we forced β to match as well as possible by giving
it extra weight in the fitting, the correspondence in osmotic
pressure became poor. Even in this case, the calculated values
of β did not fit the measured ones especially well. Relieving
the BBP result for V (0) did not change these observations.
Yorozu et al. were able to fit their measured xs and β quite well
using concentration-independent potentials. This is possible
presumably because they fitted L3 − E0 separately at every
pressure, even though this quantity is constant by definition.
Their fitted value of |L3 − E0| at 20 bar was over 40% smaller
than at 0 bar. At 0 bar, it was 0.2884 K, which is yet 10%
smaller than what is suggested by measurements. They also
did not need to concern themselves so much with the apparent
increase of β at the highest pressures.

To obtain a candidate for the proper concentration depen-
dence, consistent with the experimental results, we first fitted
the data at 25.3 bar pressure, where we had the most data, and
used a polynomial form for the concentration dependence.
It was noticed that the x dependence fitted in this way was
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surprisingly close to being proportional to the second power
of the potential. In order to deal with the pressure dependence
of the x dependence, and limiting the number of fit parameters,
we decided to use the following form:

V (k,x) = V (0)

[
V (k)

V (0)
+ axb

(
V (k)

V (0)

)2
]

, (15)

where a and b were to be found by fitting. Since we wanted
to incorporate all concentration dependence in this one term,
we used the BBP result at zero concentration. That is, the
parameters α, c4, and n4 appearing in V (0) were all evaluated
at x = 0.

Some of the concentration correction terms, as discussed by
Fu and Pethick, also depend on the angle between the quasi-
particle momenta. Since these complicate all calculations to
some extent, and are hard to account for in a phenomenological
approach, such effects are not included here.

D. Additional fit parameters

Connecting the interaction potential to the measured data
requires knowledge of some other quantities. One of the central
factors is the BBP parameter α, which appears both directly
in the interaction potential and also in the molar volume (and
thus, for example, in the Fermi momentum) of mixtures. There
are some conflicting data about the pressure dependence of α.
As stated above, we decided to use the data of Watson et al. as
the starting point. Hatakeyama et al. measured α as a function
of temperature, pressure, and concentration.14 Unfortunately,
their data only extend to 10 bar. At this pressure, their value
is 3% larger that that of Watson et al. Unpublished data of
Abraham, Brandt, and Eckstein suggest that α might in fact be
smaller than Watson’s by approximately the same amount.21

Boghosian and Meyer measured the BBP parameter between
0 and 20 bar, and at 20 bar obtained a value, which is 15%
smaller than that of Watson et al.22 Considering the spread in
the measured data, it is clear that some degree of freedom for
α is justified. We decided to adjust the data of Watson et al.,
α0, in the following manner:

α = (a1 + a2P )α0, (16)

which allows the tuning of the zero-pressure value as well as
the slope. Another quantity, which is not perfectly well known,
is the binding energy of 3He. We fitted (L3 − E0) as a constant
over the entire pressure range.

V. RESULTS

The obtained values for all fit parameters of the potential
are shown in Table I.

The fitted “binding energy difference” is (L3 − E0)/kB =
−0.311 K. This is in excellent agreement with the experimental
value of −0.312 ± 0.007 K.23 The adjustment parameters of
α, as defined in Eq. (16), are a1 = 0.971 and a2 = 0.038
1/25 bar−1. Thus, the corrections to the experimental values
(Watson et al.) of the BBP parameter are at most 3%.

The zero-concentration interaction potentials at various
pressures are plotted in Fig. 1. The shape of the potential seems
reasonable. The zero-k value remains negative at all pressures,
as is expected due to treating the BBP result for V (0) as

TABLE I. Fitted parameters for the interaction potential. The
various parameters are defined through Eqs. (13), (14), and (15).
The pressure factors are in units 1/(25 bar).

X X0 X1 (1/25 bar−1)

A1 − 5.8553 − 1.9882
A2 − 9.9140 − 4.6585
C1 0.395 − 0.301
C2 0.149 0.270
C3 0.383
a − 2.6064
b 1.0071

exact. At low momenta, the potential increases approximately
quadratically, as was already reasoned by BBP.4 Our V (k)
becomes positive at around k = 1.4k0, about the same value
as the potentials obtained by other authors. The increase
of V (k) then continues almost linearly, which differs from
some previous considerations. If we inverse Fourier transform
the potential to real space, the form of V (r) resembles that
of the Lennard-Jones potential, as one might expect. The
exact form of V (r), however, can not be deduced from these
considerations alone, as we have not pinpointed the behavior
of the potential at high momentum transfers p � 2pF .

The concentration dependence of the potential is illustrated
in Fig. 2, where the P = 0 potential is plotted at concentrations
x = 0 and x = 6.65%. The potential of Yorozu et al. at P = 0
is shown for comparison. Since the concentration dependence
is proportional to the second power of the potential and
the correction term is positive, the value of V (k,x �= 0) is
larger than V (k,0) at small and large momenta. We see that
the potential of Yorozu et al. has a clearly smaller slope at
high momentum transfers. Even our best-fitting concentration-
independent potential, which is also shown in Fig. 2, has a
clearly larger slope. This seems to be required by β, as it was
not well fitted for a potential shaped like that of Yorozu et al.
Again, we believe they were able to obtain good consistency

V(
k)

/|V
0(

0)
|

-1.0

-0.5

0

0.5

1.0

1.5

0 0.2 0.4 0.6 0.8 1.0 1.2
k/(2k0)

0 bar
5 bar
10 bar
15 bar
20 bar
25 bar

FIG. 1. Fitted interaction potential V (k) at zero concentration
and six different pressures. The potentials are normalized by the
zero-pressure value of V (0).
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0 0.2 0.4 0.6 0.8 1.0 1.2
k/(2k0)

V(k,6.65 %)
V(k,0)

V(k)
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FIG. 2. Fitted interaction potential V (k,x) at zero pressure and
concentrations x = 0 and x = 6.65%. The zero-pressure potential of
Yorozu et al. (Ref. 6) VY (k) is shown for comparison. Also shown
is the potential we obtained when no concentration dependence is
assumed. The potentials are normalized by the (P = 0, x = 0) value
of V (0).

with experimental data because they used a smaller value of
|L3 − E0|.

All β data could be fitted quite well without a concentration
dependence if the potential was allowed to make an unrealistic
turn to even larger slope at large k (some of the exponents
becoming positive). The shape of this kind of potential was
suspicious and increased exponentially at large k. Therefore,
we neglected such potentials, and limited the exponents to
negative values.

The measured and calculated saturation solubility are
shown in Fig. 3, illustrating the excellent correspondence
between the two. Throughout the fitting process, it was clear
that the solubility was “the easiest” to fit. By this we mean
that the solubility was almost always well reproduced early
on during the fitting process, regardless of the concentration

0 5 10 15 20 25

6.5

7.0

7.5

8.0

8.5

9.0

9.5

x 
(%

)

P (bar)

FIG. 3. Measured and calculated zero-temperature saturation
solubility over the entire pressure range of liquid mixtures. The
experimental data are from Ref. 2.

Pentti (temperature sweeps)
Pentti (pressure sweeps)
Pentti (melting pressure)
Yorozu
Watson
Edwards

0 5 10 15 20 25

3

4

5
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8

9

10

11

12

13

P (bar)

β 
(K

-2
)

FIG. 4. Measured and calculated temperature coefficient β of
saturation solubility over the entire pressure range of liquid mixtures.
It has been calculated using the “exact” chemical potential and is
evaluated at temperatures between 20 and 40 mK. The experimental
data are from Pentti et al. (Ref. 2) (the melting pressure data point
is different from that given in Ref. 2, as this is due to reanalysis
performed after the publication of Ref. 2), Yorozu et al. (Ref. 6),
Edwards et al. (Ref. 24), and Watson et al. (Ref. 12).

dependence, etc. This was possibly due to the ability of
L3 − E0 to adjust the solubility accordingly. This was not
so with β, which is shown in Fig. 4. The general features of
the calculated β correspond to experimental values fairly well,
especially considering the apparent uncertainty in the data.
One should note that Edwards et al. and Watson et al. found
their values of β at temperatures somewhat high, between
25 and 150 mK. This causes β to appear larger than in the
zero-temperature limit, as the quadratic temperature expansion
of the solubility is no longer valid. A comparison between
the measured and calculated osmotic pressure is shown and
discussed in Ref. 3.

The fit parameters obtained, when no concentration de-
pendence is assumed, are listed in Table II. In this case
again, the binding-energy difference comes close to the
expected value (L3 − E0)/kB = −0.309 K. The α param-
eters were a1 = 0.985 and a2 = 0.002. The concentration-
independent potential at zero pressure is also plotted in
Fig. 2. Generally, concentration-independent potential seemed
to require V (k) to have its zero at larger values of k than the

TABLE II. Fitted parameters for the interaction potential when
no concentration dependence is assumed. The various parameters are
defined through Eqs. (13) and (14). The pressure factors are in units
1/(25 bar).

X X0 X1 (1/25 bar−1)

A1 − 9.5533 0.3575
A2 − 6.5724 − 3.1747
C1 0.268 − 0.163
C2 0.158 0.242
C3 0.312
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concentration-dependent potentials or those by other authors.
The zero-temperature solubility and osmotic pressure data
were fitted well also with the concentration-independent
potential. The values of β, on the other hand, were considerably
smaller than the experimental data. At 25 bar, the calculated
value in this case was β ≈ 3.

VI. SUPERFLUID TRANSITION

One of the most interesting predictions, which can be
obtained from the potential, is the superfluid transition tem-
perature of the 3He component. Unfortunately, this is also
perhaps the most unreliable result as it has an exponential
dependence on the potential. According to the BCS theory,
any fermion system with an attractive interaction between
the particles will form Cooper pairs and condense into its
ground state at sufficiently low temperature. As the interaction
between 3He atoms has turned out to be attractive, a dual
superfluid phase of helium mixtures must exist. This phase has
not yet been detected experimentally. It would be an interesting
intermingled liquid Fermi-Bose superfluid, the first of its kind
to be observed. Preparations for an experiment to find this state
are on the way.

The transition temperature depends, of course, on the details
of the interaction between the fermions. Using the generalized
BCS theory, the transition temperature can be calculated
approximately from

Tc � TF eN(0)Vl , (17)

where N (0) is the density of states at the Fermi level and
Vl is the interaction component with angular momentum l.
In the above equation, TF is the true Fermi temperature, i.e.,
with the concentration-dependent effective mass. In 3He-4He
mixtures, two ways of pairing are possible, namely, l = 0 and
1, called the s-wave and p-wave pairing, respectively. Pairing
states of larger values of angular momentum have vanishingly
small Tc. In general, the s-wave pairing is favorable at low
concentrations, while the p-wave pairing overcomes this when
the concentration increases, which is illustrated in Fig. 5. One
should note that, due to the exponential dependence on the

0 1 2 3 4 5 6 7
x (%)

10-9

10-8

10-7

10-6

10-5

10-4

T c
 (K

)

p-waves-wave

0 bar
5 bar
10 bar
15 bar
25 bar

FIG. 5. Predicted superfluid transition temperature at five differ-
ent pressures.

interaction strength, the quantitative result is quite sensitive
to the precise form of the potential. Since the solubility and
osmotic pressure are not that sensitive to the detailed form of
V (k), we must admit at least an order of magnitude uncertainty
in the calculated Tc. The numerical values are deduced as
follows.

The exponents in Eq. (17) can be determined from the
Landau parameters F

a,s
l as

N (0)V0 = −1/F a
0 , (18)

N (0)V1 = −3/F s
1 . (19)

To preserve antisymmetry of the total wave function of Cooper
pairs, we must choose the antisymmetric Landau parameter Fa

l

for l = 0 and the symmetric F s
l for l = 1. Thus, the critical

temperatures for the s-wave (s) and p-wave (p) are

T s
c ≈ TF e−1/F a

0 , (20)

T p
c ≈ TF e−3/F s

1 , (21)

respectively. The Landau parameters are related to the potential
in the Hartree-Fock approximation as

Fa
0 = −N (0)

2k2
F

∫ 2kF

0
kV (k)dk, (22)

F s
1 = −3N (0)

2k2
F

∫ 2kF

0
k

(
1 − k2

2k2
F

)
V (k)dk, (23)

where the density of states at the Fermi level is

N (0) = m∗pF

2π2h̄3 . (24)

The calculated transition temperatures at several pres-
sures as a function of 3He concentration are presented
in Fig. 5. The general shapes of the curves are similar to
many previous estimates. The s-wave pairing dominates at low
concentrations, but is heavily suppressed beyond x ≈ 3%. At
higher concentrations, the p-wave pairing becomes preferable,
and yields the maximum Tc. The highest transition temperature
obtained with our potential is almost 200 μK and is such high
at pressures between 5 and 10 bar at the saturation solubility.
Mixtures have been cooled to temperatures in this range. Oh
et al. cooled a helium mixture at 10 bar pressure down to
100 μK without observing the superfluid transition.25 The
concentration in their experiment, however, was not quite the
maximum at this pressure. Rather, it was 9% instead of 9.5%.
Our calculated estimate for the Tc under these conditions is
approximately the same 100 μK. The predicted maximum
Tc for the s-wave pairing is a few microkelvins, and seems
to be out of reach by experiments. The highest Tc at 25.3
bar, the “natural pressure” of the upcoming adiabatic-melting
experiment,26 is 40 μK. This is within the range of plausible
experimental temperatures.

VII. CONCLUSIONS

We estimated the effective interaction potential between
3He quasiparticles in helium mixtures by fitting simulta-
neously the experimental solubility and osmotic pressure
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data covering wide ranges in concentration, pressure, and
temperature. The simultaneous fitting was done in order to
reduce “the degeneracy” in the problem. Indeed, it was found
that any single experimental value could be reproduced well in
more than one way, if considered separately, emphasizing the
need for fitting several quantities simultaneously. Demanding
consistent variation of the parameters over concentration and
pressure supports reliability of the method by effectively
averaging the data.

The interaction potential may be even more sensitive to
transport properties, such as spin diffusion and viscosity, but
we did not have means to retrieve such data in our experiments.
Measurements by other groups at various pressures and
concentrations are available, but it is difficult to ensure full
consistency between data sets. Also, in the light of the
upcoming melting pressure experiment, we are particularly
interested in the interaction potential at the melting pressure,
where other measurements have not been performed.

We were able to fit all data satisfactorily only by assuming
a concentration dependence in the interaction potential. The
unexpected sign of this contribution does raise some concern
over its validity. This result to be correct requires the
existence of an effect, which has a stronger concentration
dependence than the screening by other quasiparticles and
becomes significant only at larger concentrations. Here, we
can only speculate the origin of such an effect, one pos-
sibility being the interactions giving rise to superfluidity in
pure 3He.

It is plausible, of course, that the measured data are still
too inaccurate to yield reliable detailed solutions, especially
relating to the temperature coefficient β of solubility. One
may also question if the Hartree-Fock approximation is
a sufficient description for this system. It is difficult to
judge whether the suggested concentration dependence is
realistic or not because no valid microscopic theory exists.
The proposed concentration dependence may only be a
crude approximation to the full complexity of the actual
situation.

Our estimate for the maximum superfluid transition temper-
ature Tc ≈ 200 μK is optimistic in the sense that it is around
the upper limit of the Tc set by experiments. Estimates by some
authors have yielded values many orders of magnitude lower.
If the calculated Tc is on the right scale, it is in the realm of
the planned experiments on helium mixtures.
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APPENDIX: LOW TEMPERATURE
CHEMICAL POTENTIAL

We outline here the derivation of the low-temperature series
expansion of the chemical potential [Eq. (8)] as we have not
come across it in the literature. The expression for G was only
mentioned by Yorozu et al. This expansion is applicable also

more generally to systems of weakly interacting fermions at
low temperatures in the Hartree-Fock approximation. Let us
first evaluate the exchange term at zero temperature. That is,
we want to calculate

−
∫

d3k′

(2π )3
V (k − k′)f (k′) (A1)

in the case where the Fermi function is a step function, and
thus the integration should be performed in the range k′ � kF .
It is convenient to make a change of variables q = k − k′.
We perform the integration in spherical coordinates and divide
the integral into two intervals: q ∈ (0,kF − k) and q ∈ (kF −
k,kF + k). For the former, the angular integrations are trivial,
but for the latter, we must take some care of the integration
limits as the azimuthal angle depends on the momenta. After
the integration, the exchange term becomes

− 1

4π2

(
2
∫ kF −k

0
q2V (q)dq

+
∫ kF +k

kF −k

q2

[
1 + k2

F − q2 − k2

2kq

]
V (q)dq

)
. (A2)

From this, we readily obtain the zero-temperature term
−1/2n3|V (0)|F in Eq. (8) by setting k = kF .

Next, we consider the lowest-order temperature term G.
We could make a low-temperature series expansion in Eq. (7)
and invert the series to obtain an expression for the chemical
potential. Instead of this rather involved calculation, we present
perhaps a slightly more transparent way of obtaining G.
We consider the lowest-order temperature correction to the
free energy and obtain the chemical potential from μ3 =
(∂F/∂N3)T ,V . Most of this calculation has already been done,
for example, by Baym and Pethick27 and need not be repeated
here. They calculated a low-temperature correction of the form

μ(T ) = μ(0) − π2

2

(
m∗

3
+ n

∂m∗

∂n

)
(kBT )2

(h̄kF )2
, (A3)

where n is the particle density and the effective mass is now
defined as

m∗ ≡ pF

(
∂ε

∂p

)−1

|p=pF

. (A4)

By using Eq. (A2) in Eq. (2), taking the derivative, expanding
the denominator in powers of the interaction potential, and
retaining only first-order terms in V , we obtain

m∗ = m − m2

4h̄2π2kF

∫ 2kF

0
k

(
1 − k2

2k2
F

)
V (k)dk. (A5)

Here, we have set γ = 0 in the dispersion relation. Equation
(A5) is the well-known relation between the interaction
potential and the concentration-dependent effective mass. The
expression for G is obtained by simply substituting this into
Eq. (A3) and collecting all terms involving V .
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