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Ordered phases and phase transitions in the fully frustrated XY model on a honeycomb lattice
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The phase diagram of the fully frustrated XY model on a honeycomb lattice is shown to incorporate three
different ordered phases. In the most unusual of them, a long-range order is related not to the dominance of
a particular periodic vortex pattern but to the orientation of the zero-energy domain walls separating domains
with different orientations of vortex stripes. The phase transition leading to the destruction of this phase can be
associated with the appearance of free fractional vortices and is of the first order. The stabilization of the two
other ordered phases (existing at lower temperatures) relies on a positive contribution to the domain-wall free
energy induced by the presence of spin waves. This effect has a substantial numerical smallness, in accordance
with which these two phases can be observed only in the systems of really macroscopic sizes. In physical systems
(like magnetically frustrated Josephson junction arrays and superconducting wire networks), the presence of
additional interactions must lead to a better stabilization of a phase with a long-range order in terms of vortex
pattern and improve the possibilities of its observation.
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I. INTRODUCTION

A uniformly frustrated XY model can be defined by the
Hamiltonian

H =
∑
(jj ′)

V (ϕj ′ − ϕj − Ajj ′ ), (1a)

where the interaction of the variables ϕj defined on the sites
j of some regular two-dimensional lattice is described by the
periodic function

V (θ ) = −J cos θ, (1b)

J > 0 is the coupling constant, and the summation is per-
formed over all pairs of nearest neighbors (jj ′) on the lattice.
The nonfluctuating (quenched) variables Ajj ′ ≡ −Aj ′j defined
on lattice bonds have to satisfy the constraint∑

�α

Ajj ′ = 2πf (mod 2π ) (1c)

on all lattice plaquettes. The notation �α below the sign of
summation implies the directed sum of variables Ajj ′ ≡ −Aj ′j
over the perimeter of plaquette α in the counterclockwise di-
rection. For f = 0 the model defined by Eqs. (1) is isomorphic
to the conventional XY model (without frustration), whereas
for f = 1

2 (the maximal irreducible value of f , see Ref. 1) this
model is called fully frustrated.

Since the 1980s, the uniformly frustrated and, especially,
the fully frustrated XY models on various lattices have been
studied rather intensively (for reviews, see Refs. 2 and 3),
mostly in relation with experiments on Josephson junction
arrays.4 In these artificial superconducting systems variables
ϕj can be associated with the phases of the superconducting
order parameter on different superconducting grains forming
an array, and Aij is related to the vector potential of a uniform
magnetic field, whose magnitude corresponds to having f

superconducting flux quanta per lattice plaquette. The form of
Eq. (1c) corresponds to taking into account only the external
magnetic field and neglecting the field of weak currents
flowing in the junctions. Planar magnets with odd number
of antiferromagnetic bonds per plaquette5 (for example, an

antiferromagnet with triangular lattice) are also described by
the fully frustrated XY models. The recent renewal of the
interest to the fully frustrated Josephson junction arrays has
been related to their possible application for the creation of
topologically protected quantum bits.6

In a typical situation, the energy of each of the Josephson
junctions forming an array as a function of the gauge-invariant
phase difference,

θjj ′ = ϕj ′ − ϕj − Ajj ′ , (2)

is indeed rather accurately described by the function of
Eq. (1b). On the other hand, a magnetically frustrated network
of thin superconducting wires can be described3 in the London
limit (when the amplitude of the superconducting order
parameter can be assumed to be constant along the wires)
by the same Hamiltonian (1a) with V (θ ) replaced by the
so-called Berezinskii-Villain interaction7,8 having the same
symmetry and periodicity as V (θ ); see Appendix A. The fully
frustrated XY model with the Berezinskii-Villain interaction
is more convenient for a theoretical analysis, because its
partition function can be rigorously transformed into that
of a Coulomb gas with half-integer charges9 (Appendix A
gives more details). In a number of cases it can be expected
that the main features of the frustrated XY models with the
conventional and with the Berezinskii-Villain interaction are
the same.

The ground states of the fully frustrated XY models are
characterized by the coexistence of the continuous U (1)
degeneracy (related to the possibility of the simultaneous
rotation of all phases) with a discrete one, whose nature
depends on the structure of the lattice. Accordingly, the fully
frustrated XY models allow in addition to the phase transition
related to unbinding of vortex pairs also for the existence of
other phase transitions related to the disordering of the discrete
degrees of freedom. The main question in such a situation is
what is the sequence and the nature of these phase transitions.

The most thoroughly studied examples of the fully frus-
trated XY models are the models on square and triangular
lattices. In both of them the ground states are characterized
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by a regular alternation of the plaquettes with positive and
negative vorticities. Accordingly, the discrete degeneracy of
the ground states is twofold, that is, the simplest one that
is possible. However, it took about two decades before it was
firmly understood3,10 why the Berezinskii-Kosterlitz-Thouless
transition related to the unbinding of vortex pairs has to take
place in these models at lower temperatures than the second
phase transition related to the proliferation of the Ising-type
domain walls. Due to a strong mutual influence of the two
transitions (which are situated rather close to each other), a
convincing numerical demonstration of the Ising nature of one
of them has required very substantial efforts.2,11

The properties of the fully frustrated XY model on a
honeycomb lattice are not so well understood. The family of its
ground state is known to have an infinite discrete degeneracy,12

which can be conveniently described in terms of the formation
of zero-energy domain walls parallel to each other.13,14 The
analysis of the half-integer Coulomb gas on a triangular lattice
(a representation of the considered XY model in terms of
vortices) has revealed15 that in this system the formation of a
domain with a different charge pattern can cost only a finite
energy even when the size of this domain is arbitrary large.
This has led the authors of Ref. 15 to the conclusion on the
absence of a long-range order at any nonzero temperature T .

This conclusion is not directly applicable to the fully
frustrated XY model with the interaction given by Eq. (1b)
because at T > 0 the zero-energy domain walls acquire a
positive free energy fDW originating from the difference in
the free energy of the continuous fluctuations (spin waves).14

However, the effect is very weak and according to the estimates
in Ref. 14 can manifest itself only if the size of the system L

substantially exceeds Lc � 105, which makes it unobservable
in real and numerical experiments on systems with L � Lc.

Nonetheless, up to now it has remained unclarified if, in
situations when fDW is absent (as it happens in the case
of the Berezinskii-Villain interaction) or can be neglected,
the system can still demonstrate a phase transition related
to the continuous degrees of freedom or the destruction of
the long-range order in terms of vortex pattern prevents
the possibility of such a transition. The available numerical
data12,15–18 does not lead to a unique conclusion and allows for
different interpretations, including the existence of a spin-glass
transition.17

In this work we reexamine the fully frustrated XY model
on a honeycomb lattice with the aim of finding an answer to
this question, as well as establishing what is the nature of the
phase transition (transitions) induced by the positiveness of
fDW. Our main conclusions can be formulated as follows.

Even when fDW is equal to zero (or can be neglected),
this does not mean the complete absence of the long-range
order at any nonzero temperature. In a such a situation, the
long-range order existing at low temperatures is related not to
the dominance of a particular vortex pattern but to a preferable
orientation of the zero-energy domain walls.

The phase transition leading to the destruction of this
long-range order is related to the appearance of a finite concen-
tration of unpaired fractional vortices with topological charges
q = ± 1

8 . The fractional vortices are located at the nodes of the
domain-wall network existing in the system with fDW = 0 at
any temperature; however, at low temperatures they have to

be bound in pairs, which imposes the existence of a preferable
orientations of domain walls.

In the model with the conventional interaction
V (θ ) = −J cos θ which at T > 0 has small but positive fDW

(induced by spin waves), the increase of temperature leads
to the sequence of three phase transitions. However, the two
of them require for their observation very large systems with
L � Lc ∼ 107. In physical systems like magnetically frus-
trated Josephson junction arrays and superconducting wire
networks, the value of Lc will be lower due to the presence
of other mechanisms for the removal of the accidental
degeneracy.

Although the lowest-temperature phase transition (whose
critical temperature tends to zero when fDW → 0) consists
in the appearance of domain walls, it does not lead to the
destruction of the long-range order in terms of vortex pattern.
On the contrary, it is related to a partial restoration of the
continuous U (1) symmetry. This phase transition belongs to
the Ising universality class, whereas the two other transitions
mentioned above must be of the first order.

A more detailed summary of the phase diagram of the
fully frustrated XY model on a honeycomb lattice and of the
properties of different phases and phase transitions is presented
in the concluding Sec. VIII. It also compares our results with
that of other works and discusses their relevance for some
experimental situations and other uniformly frustrated XY

models that allow for the formation of parallel zero-energy
domain walls.

II. ZERO-TEMPERATURE ANALYSIS

A. The ground states

When speaking about both global and local minima of the
Hamiltonian of an XY model it is convenient to characterize
them in terms of vorticities of different plaquettes. Vorticity
vα of plaquette α can be defined as the directed sum over
the perimeter of this plaquette of the gauge-invariant phase
differences θjj ′ = ϕj ′ − ϕj − Ajj ′ reduced to the interval
(−π,π ). Here and below we use Greek indices for labeling the
plaquettes, each of which can be associated with a particular
site of the triangular lattice T dual to the original honeycomb
lattice H.

In the fully frustrated XY model on a honeycomb lattice,
variables vα can acquire the values ±π, ± 3π, ± 5π . Since
the main role in the thermodynamics is played by the minima
of the Hamiltonian of Eq. (1) with va = ±π (as well as by
fluctuations in the vicinities of these minima), one often speaks
not about vorticities but about chiralities σα = vα/π = ±1 of
different plaquettes. The knowledge of the chiralities of all
plaquettes is sufficient for restoring (up to a global rotation) the
values of phase variables ϕj in the minimum of the Hamilto-
nian that can be associated with this particular configuration of
chiralities.

In all ground states of the fully frustrated XY model on
a honeycomb lattice the plaquettes with different signs of
chirality are separated by the bonds with θjj ′ = ±π/4, whereas
the plaquettes with the same sign of chirality are separated
by the bonds with θjj ′ = 0. In Fig. 1 showing some of the
ground states the plaquettes with positive (negative) chirality
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are shaded (unshaded), whereas the bonds with θjj ′ = ±π/4
are shown by arrows. On any bond with an arrow, θjj ′ is equal
to +π/4 if the arrow is directed from site j to site j ′ and to
−π/4 in the opposite case.

Figure 1(a) shows an example of the ground state with
the simplest possible structure. In this state the plaquettes
with the same sign of vorticity form parallel straight stripes.
Accordingly, such states are called below the striped states.
The set of striped states is characterized by a sixfold discrete
degeneracy related to the possibilities of shifting and rotating
vortex pattern. Naturally, it also has the continuous U (1) de-
generacy related to the simultaneous rotation of all phases, but
in the following the term striped state will always refer just to
the configuration of chiralities, without specifying the phases.

Striped states allow for the formation of domain walls
(separating different realizations of such states) that cost no
energy.13 An example of such a zero-energy domain wall
(ZEDW) is shown in Fig. 1(b). An arbitrary number of ZEDWs
separated by arbitrary distances can be introduced into the
system in parallel to each other, as shown in Fig. 1(c).

The only possible intersection of ZEDWs that does not
cost extra energy is shown in Fig. 1(d). Since each ZEDW
can be ascribed a particular direction in accordance with the
orientation of the angle made by the stripes, as shown in Fig. 1,
it is clear that in a ground state the system cannot contain
more than one intersection of such a kind and, in the case
of the periodic boundary conditions, even one is impossible.
Therefore, a typical ground state contains an irregular sequence
of straight ZEDWs that are parallel to each other, as shown in
Fig. 1(c). The presence of a boundary between two ground
states with a finite concentration of ZEDWs and different
orientations of these walls would cost an amount of energy
proportional to the length of this boundary.

The structure of the ground states is not sensitive to a
particular form of the interaction in the Hamiltonian of the
model, as soon as it is even in θ and behaves more or
less in the same way as V (θ ) = −J cos θ [that is, it has
the single maximum at θ = π and the single minimum at
θ = 0 whose width is comparable with the period of V (θ )].
For example, it can be also the Berezinskii-Villain interaction
defined by Eq. (A2) or the piecewise parabolic interaction (the
zero-temperature limit of the Berezinskii-Villain interaction).

B. Zero-energy domain walls and long-range order

If domain walls separating different striped states would
have a positive energy per unit length, at zero temperature the
system would be frozen in one of the six striped states. In
terms of chiralities σα , the order parameter corresponding to
the corresponding long-range order (LRO) can be written as

S =
3∑

n=1

ei 2πn
3

∑
α

sn,α, sn,α = σα exp
iQnrα

2
. (3)

Here and below rα denotes the positions of the sites α of
the dual triangular lattice T that can be associated with
the plaquettes of the original honeycomb lattice H, whereas
Qn (with n = 1,2,3 and Q1 + Q2 + Q3 = 0) are the three
reciprocal vectors of T . In any of the striped states one of
the three sums Sn ≡ ∑

α sn,α grows with size of the system
as Sn = ±N (N being the total number of the plaquettes in
the system), whereas the two other are equal to zero. The
correlation function

Cch(rα − rβ) = 〈σασβ〉, (4)

where the average is taken over the six striped vortex patterns,
has an oscillating behavior, namely if a triangular lattice
T is partitioned into four equivalent triangular sublattices,
then Cch(rα − rβ) is equal to 1 when α and β belong to the
same sublattice and to −1/3 when they belong to different
sublattices.

When the domain walls shown in Fig. 1 cost no energy, the
oscillating behavior (without a decay at |rα − rβ | → ∞) of
the correlation function of Eq. (4) (where the average now has
to be taken over the infinite set of the ground states) is retained
only when α and β belong to the same column of sites on T ,
that is, when vector rα − rβ is directed along en, one of the
three lattice vectors of T (e1 + e2 + e3 ≡ 0). In such a case,
in one-third of the ground states, the line connecting α and
β cannot be crossed by any domain walls and, therefore, the
product σασβ depends only on the distance between α and β.
For all other directions of rα − rβ , the correlations of σα and
σβ are absent, which leads to

〈|S|2〉 ∝ N. (5)

(a) (c) (d)

(b)

FIG. 1. (Color online) The ground states of the FFXY model on a honeycomb lattice: (a) a striped state; (b) a state with a single zero-energy
domain wall separating two different striped states; (c) a typical ground state with an irregular sequence of parallel domain walls; (d) the only
possible intersection of domain walls that does not cost extra energy. The plaquettes with positive (negative) chirality are shaded (unshaded).
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This means that the long-range order in terms of sn,α is
destroyed. It is worthwhile to emphasize explicitly that the
dependence in Eq. (5) is not a consequence of algebraic
correlations of σα , as it could seem from its form, but has
a different origin explained above.

However, it is not difficult to note that the destruction of the
long-range order is not complete. In the presence of a random
sequence of straight parallel ZEDWs, the system contains the
domains of only four different striped states of six, whereas the
two other vortex patterns (with stripes parallel to the direction
of the domain walls) are not represented at all. Therefore, in
a typical ground state the system still possesses a long-range
order. The most evident interpretation of this order consists in
associating it with the direction of ZEDWs.

Instead of really monitoring the direction of domain walls
(whose identification requires analyzing chirality patterns in
rhombic clusters formed by four neighboring plaquettes), an
order parameter sensitive to the direction of domain walls
can be introduced by studying the distribution of energy
between the bonds with different orientations. In a typical
ground state the average energy of the bonds whose direction
is perpendicular to the orientation of domain walls is equal to
V (π/4), whereas for the bonds with two other orientations it
is equal to 1

2 [V (0) + V (π/4)] < V (π/4). This allows one to
introduce an order parameter as

D =
∑
(jj ′)

exp

[
i
2πnjj ′

3

]
V (θjj ′), (6)

where the value of njj ′ = 1,2,3 depends on the orientation of
the bond (jj ′).

Thus, the vanishing of the energy of domain walls does not
lead to the complete destruction of the long-range order in the
system and one can expect that there should occur a phase
transition related to the destruction of the long-range order
described by order parameter D. Note that D is proportional
to the area of the system also when one of the six striped vortex
patterns is a dominant one. However, in contrast to S, order
parameter D does not allow one to distinguish between two
vortex patterns that differ from each other by changing the
signs of all chiralities.

C. Phase correlations

When speaking about phase correlations, one should not
forget that a change of gauge leads to the multiplication of
exp[i(ϕα − ϕβ)] by some phase factor. In accordance with
that, a gauge-invariant description of phase correlations can
be achieved by paying attention only to the absolute values
of the standard correlation functions. For taking into account
the peculiarities of the considered model, it is convenient to
introduce the set of gauge-invariant phase correlation functions
defined as

Cp(rj − rk) = |〈exp[ip(ϕj − ϕk)]〉| (7)

and numbered by positive integer p. Another approach
to introducing gauge-invariant phase correlation functions
involves considering two identical but completely independent
replicas of the system.19

If domain walls separating different striped states would
have a positive energy per unit length, at zero temperature

there would exist a true long-range order in terms of phase
variables. In particular, if the honeycomb lattice is partitioned
into 32 equivalent triangular sublattices, for any two sites j

and k belonging to the same sublattice, Cp(rj − rk) would
be equal to 1 for any integer p. On the other hand, when p

is a multiple of eight (p = 8p′ with integer p′), Cp(rj − rk)
would be equal to 1 for any pair of sites. This is evident already
from the fact that for θjj ′ = 0, ± π/4 the factors exp i(8θjj ′ )
are always equal to 1.

For evident reasons, the presence of a random sequence of
straight domain walls separating different striped states cannot
change the behavior of Cp(r) with p = 8p′, which remain
identically equal to 1. However, it leads to an exponential decay
of Cp(r) for p �= 8p′ for all directions except those parallel to
en. For these special directions, all phase correlation functions
with p < 8 have an oscillating behavior. Like with chiralities,
when one calculates the averages of the squares of certain
Fourier transforms of exp(ipϕj ) over all ground states, they
diverge in a typical ground state proportionally to the area of
the system, but this should not be taken for the signature of the
algebraic correlations of exp(ipϕj ).

III. REMOVAL OF THE ACCIDENTAL DEGENERACY
BY SPIN WAVES

The infinite degeneracy of the ground states that manifests
itself through the possibility of the formation of ZEDWs is of
an accidental nature (i.e., it is not imposed by the symmetries
of the system). Accordingly, it can be removed by the addition
of some small interactions that preserve the symmetries of
the Hamiltonian. It is also removed at a finite temperature
when one takes into account the free energy of the continuous
fluctuations (spin waves). This mechanism for the removal
of an accidental degeneracy20,21 is often referred to as “order
from disorder.” In systems with a continuous degeneracy it
is usually sufficient to compare the contributions from the
harmonic fluctuations.21–23

In contrast, in the fully frustrated XY model on a honey-
comb lattice the free energy of the harmonic fluctuations is
exactly the same for all ground states of the model.14 This is a
consequence of a hidden symmetry existing in the Hamiltonian
describing such fluctuations.24 The difference in the spin-wave
free energy appears only when one goes beyond the harmonic
approximation. The analysis of the third- and fourth-order
anharmonic terms reveals that the spin-wave free energy is
minimal for the striped states, whereas the presence of ZEDWs
adds to the free energy of the system, a positive term roughly
proportional to the total length of the walls.14 This allows one
to ascribe to domain walls the free energy per unit length,

fDW = γ T 2/J, γ ≈ 0.7 × 10−4, (8)

where by unit length we mean the lattice constant of the dual
triangular lattice a
. In terms of a
, the lengths of all walls
are integer.

The positiveness of fDW suggests that in the thermodynamic
limit the free energy of a domain wall crossing the whole
system is infinite and, therefore, at the lowest temperatures (at
which the positiveness of fDW is not killed by other types
of fluctuations), such walls must be absent. This ensures
the existence of the long-range order corresponding to the
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dominance of one of the six equivalent striped vortex patterns.
On the other hand, at any nonzero temperature the presence
of spin waves leads to an algebraic decay of the correlation
functions describing phase correlations.

In terms of chiralities σα = ±1 (defined on sites α of the
dual triangular lattice), the structure of the striped state is
exactly the same as that of the ground state of the antiferromag-
netic Ising model on a triangular lattice with an additional weak
antiferromagnetic interaction of second neighbors.25 In this
model there exist two different scenarios for the disordering of
the ordered state,26 the choice between which depends on the
relations between the coupling constants. The basic scenario
consists in having a single first-order transition leading to the
formation of an isotropic domain-wall network mixing the
domains of all six striped states. This leads to the complete
loss of the long-range order. It is interesting that this phase
transition takes place when the free energy of a domain wall
(per unit length) is still positive and not when it vanishes.

However, for some relations between the coupling constants
the first-order transition related to the formation of a domain-
wall network can be preceded by a continuous phase transition
related to vanishing of the free energy of double domain walls.
This phase transition leads only to a partial loss of the long-
range order. Above it the threefold degeneracy with respect to
the directions of stripes still persists, but the system consists
of alternating domains of the two striped states with the same
orientation of the stripes.26

The existence of different options suggests that in the fully
frustrated XY model on a honeycomb lattice, the conclusion
on how the disordering of the striped state takes place also
should be based on the comparison of different mechanisms for
disordering. In particular, it still remains to be established what
the nature of the first (with the increase in temperature) phase
transition induced by the extreme smallness of the domain-wall
free energy is and whether it leads to the complete loss of the
long-range order or only to its partial loss, which leaves a place
for another phase transition (or transitions).

In order to answer these questions we have to understand
what is the most efficient mechanism for the proliferation
of domain walls. And since the decrease of the free energy
of domain walls is induced by the presence on them of
pointlike defects we have to find the pointlike defects that
play the dominant role in the development of the domain-wall
fluctuations.

IV. POINTLIKE DEFECTS

A. Conventional vortices and vortex pairs

As with any other XY model, the fully frustrated XY

model on a honeycomb lattice allows for the formation
of conventional vortices with integer topological charges.
In particular, a vortex with topological charge q = ±1 is
created when the sign of chirality of some plaquette is
flipped in comparison with what it would be in a ground
state. On any contour surrounding the core of a vortex with
topological charge q the deviations of the gauge-invariant
phase differences θjj ′ = ϕj ′ − ϕj − Ajj ′ from the values they
would have in a ground state (0 or ±π/4) sum to 2πq.

At low temperatures vortices with integer topological
charges can be present in the system only in the form of
small neutral pairs whose concentration at T � J has to
be exponentially low. Below we demonstrate that all phase
transitions in the considered model take place at T � J , when
the bound pairs of integer vortices are exponentially rare and,
accordingly, have no influence on the properties of the system.
For this reason the presence of such pairs can be neglected.

In addition to conventional vortices, in frustrated XY

models there also can exist fractional vortices localized
on corners and intersections of domain walls.13,27 In the
situation when the energy of domain walls connecting different
fractional vortices is exactly equal to zero, the energies of
neutral pairs of fractional vortices will be much lower than that
of pairs of conventional vortices. Accordingly, one can then
expect the neutral pairs of fractional vortices to be the most
important finite-energy excitations at the lowest temperatures.

B. Fractional vortices

In any ground state of the fully frustrated XY model on
a honeycomb lattice, each plaquette has exactly two nearest
neighbors with the same sign of chirality and four with the
opposite sign. In such a situation the simplest idea of having
a pointlike excitation consists in constructing a configuration
in which one (and only one) of the plaquettes has a wrong
number of neighbors with the same sign of chirality. Indeed,
such configurations can be constructed, see Fig. 2, where, as
in other figures below, the plaquettes with positive (negative)
chiralities are marked by the presence (absence) of shading.

In particular, in Fig. 2(a) the plaquette denoted by the plus
sign has three neighbors with the same sign of chirality (instead
of two), whereas the analogous plaquette in Fig. 2(b) has one
neighbor. In both configurations, in order to have the correct
number of neighbors with the same sign of chirality on all
other plaquettes, three ZEDWs have to merge at the defect.

An important property of these defects is that they are
fractional vortices with topological charges q = ±1/8. In any
ground state, the correct value of vorticity on each plaquette
is achieved because, on all four bonds separating it from
the plaquettes with the opposite sign of vorticity, variables
θjj ′ are equal either to +π/4 or to −π/4 and sum to ±π .
When the number of neighbors with the same sign of vorticity
is equal to 1 or 3 (instead of 2), there appears a misfit of
±π/4 that has to be distributed over all six bonds surrounding
the corresponding plaquette. The same misfit is also present
on any closed contour surrounding the defect independently
of the size of this contour, from where it is clear that the
deviations of variables θjj ′ from the values they would have in
a ground state (0 or ±π/4) decay with the distance from the
defect R as 1/R. This leads to a logarithmic divergence of the
energy of a single defect and a logarithmic (at large distances)
interaction between such defects. In accordance with their
topological charges q = ±1/8, the logarithmical interaction
of the fractional vortices in the considered problem is 64 times
smaller than that of conventional vortices with topological
charges q = ±1.

The defect shown in Fig. 2(c) (in which the central plaquette
has no neighbors with the same sign of vorticity) can be
considered as an overlap of two defects of the type shown
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FIG. 2. (Color online) The simplest pointlike defects in which one of the plaquettes has a wrong number of neighbors with the same sign
of chirality.

in Fig. 2(b). This statement applies both to the number of
ZEDWs that meet at the defect and to its vorticity.

In Fig. 2 the positions of fractional vortices are denoted
by the plus sign, because in all configurations shown in this
figure the topological charge of the fractional vortex is positive.
Below the positions of fractional vortices are denoted by pluses
and minuses in accordance with the signs of their topological
charges. In the case of the Berezinskii-Villain interaction, it is
possible to exactly express the energy of any configuration
of chiralities in terms of the pairwise interaction between
fractional vortices (see Appendix B).

C. Neutral pairs of fractional vortices

We now know how the fractional vortices look like and the
next step is to find how two fractional vortices can be combined
to form a neutral pair with a finite energy. Since each ZEDW
can be ascribed a particular direction as shown in Figs. 1 and 2,
each fractional vortex can be considered either as a “sink” [the
configuration in Fig. 2(a)] or as a “source” [the configurations
in Figs. 2(b) and 2(c)] of domain walls.

Apparently, in the case of periodic boundary conditions,
the number of sources must be equal to the number of sinks
[naturally, for the correct balance the configurations of the
type shown in Fig. 2(c) have to be counted as double sources].
It is impossible to construct an isolated pair of fractional
vortices from two sink configurations because the domain
walls meeting in them would have to intersect each other,
which would imply the existence of other defects close by. For

FIG. 3. (Color online) Neutral pairs of fractional vortices that
cannot be present in the system in the absence of free fractional
vortices.

the same reason it is impossible to construct an isolated pair
from two double sources. On the other hand, although locally
a neutral pair consisting of two sources looks like a legitimate
object (see Fig. 3), such pairs cannot appear because in the
absence of unpaired fractional vortices there will be no sinks
to compensate for these sources [in that respect they resemble
the configuration shown in Fig. 1(d)].

Therefore, in a domain-wall network formed by small pairs
of fractional vortices, each pair should consist of a source and a
sink. Such pairs can be divided into three classes, exemplified
in Fig. 4. The first of them is an intersection of a single ZEDW
and a double domain wall, that is, a pair of parallel ZEDWs
(which change their orientation after crossing a single wall).
An example of such a pair of fractional vortices is shown in
Fig. 4(a).

The second type of the fractional-vortex pairs are the bends
on a double domain wall; see Fig. 4(b). For such a pair to
be neutral, the distance between the two single walls forming
the double wall has to be even (in the considered model it is
natural to measure the distance between domain walls in units
of h
, the height of the triangular cell of the dual lattice). If
the distance between two parallel ZEDWs would be odd (for
example, the minimal distance), in the configuration analogous
to the one shown in Fig. 4(b) both fractional vortices would be
of the same sign.

The third class of the fractional-vortex pairs corresponds
to a double domain wall ending on a single domain wall; see
Fig. 4(c). In this case, the distance between the two parallel
ZEDWs also has to be even in order to avoid a situation when
both fractional vortices in a pair are of the same sign.

V. THE LOWEST-TEMPERATURE PHASE TRANSITION

When a linear defect (for example, a domain wall) has
proper energy or free energy per unit length ε and additionally
allows for the creation of pointlike defects with energy ED, its
total free energy per unit length is given by

F = ε − cT ln(1 + e−ED/T ) ≈ ε − cT e−ED/T , (9)

where c is the number of places per unit length available for
the formation of a pointlike defect and we have assumed that
T � ED. A natural choice for the unit length when speaking
about domain walls in a lattice model is the lattice constant
either of the direct or of the dual lattice, depending on whether
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FIG. 4. (Color online) Neutral pairs of fractional vortices that can exist in the absence of free fractional vortices.

the domain walls can be associated with the bonds of the
former or of the latter. Then c has to be equal either to 1 or
to some simple fraction (or integer) of the order of 1. In our
system, it is convenient to measure the length of domain walls
in lattice constants of the dual (triangular) lattice, a
.

It follows from Eq. (9) that for ε � ED the temper-
ature T∗ at which F changes sign lies between ε/c and
ED (ε/c � T∗ � ED) but depends on ED much stronger than
on ε,

T∗ = ED

ln(cT∗/ε)
. (10)

It is clear from Eq. (10) that the first linear defects whose free
energy vanishes with the increase in temperature are those that
allow for the formation of pointlike defects with the lowest
energy.

It follows from the analysis of Sec. IV C that the lowest-
energy pointlike excitation on a linear defect in the considered
problem is a bend on a doubly spaced double domain wall
(DDDW), consisting of two single domain walls separated by
distance 2h
; see Fig. 4(b). A numerical minimization of en-
ergy in a finite system (complemented with the extrapolation to
the infinite size) shows that in the model with V (θ ) = −J cos θ

the energy of this defect EB is one order of magnitude smaller
than the coupling constant, EB/J ≈ 0.111. Taking for DDDW
ε = 2fDW, with fDW given by Eq. (8), c = 1, and ED = EB,
one obtains from Eq. (10) that Tc1, the temperature where the
free energy of a DDDW vanishes, is about 14 times lower
than EB and two orders of magnitude lower than the coupling
constant,

Tc1 ≈ 0.81 × 10−2 J. (11)

In the vicinity of Tc1, the influence of the pointlike defects
on the free energy of other types of domain walls can be
neglected. This follows from the analysis of their energies. In
particular, a bend on a double domain wall with the minimal
separation between the walls, h
 (a singly spaced double
domain wall), contains two fractional vortices with the same
sign of topological charge q = ± 1

8 . Therefore, its energy is
logarithmically divergent and the lowest-energy excitation on
such a wall is not a bend but a kink formed by two bends; see
Fig. 5(a). Since this object can be considered as a neutral pair of
fractional vortices with topological charges q = ± 1

4 , its energy
EK has to be larger than that of a bend on a DDDW (a neutral
pair of fractional vortices with topological charges q = ± 1

8 ).
This is confirmed by a numerical calculation revealing that
EK ≈ 0.287 J , that is, the energy of such a kink is 2.6 times
larger than that of a bend on a DDDW. This ensures that at
T ≈ Tc1 the correction to the free energy of a singly spaced
double domain wall is nine orders of magnitude smaller than
its bare value and, therefore, can be neglected.

A single domain wall has no possibility to make a bend,
because the direction of such a wall is uniquely determined
by the directions of vortex stripes in the states it separates.
The simplest pointlike excitation on a single domain wall is a
kink with height 2h
. Such a kink is formed by four fractional
vortices with q = ±1/8 having the same sign [see Fig. 5(b)]
and, therefore, has topological charge q = ± 1

2 . Accordingly,
the minimal-energy excitation on a single domain wall is a
neutral pair of such kinks forming a kink of height 4h
; see
Fig. 5(c). It is clear that the energy of this complex object
Es

K has to be about one order of magnitude larger than that
of a bend on a DDDW (for the case of the Berezinskii-Villain

FIG. 5. (Color online) Kinks on a singly spaced double domain wall (a) and a single domain wall [(b) and (c)].
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interaction, the values of EB, EK, Es
K, and other finite-energy

defects mentioned in the text can be found in Appendix B).
From this, one can conclude that in the vicinity of Tc1 all

other topological excitations save DDDWs can be neglected.
Note that since the vortex patterns on the two sides of a DDDW
are the same, a DDDW is not a topologically stable object
and, in principle, can end somewhere; see Fig. 6(a). This is
especially evident when one notices that any DDDW is nothing
else but a line of plaquettes with alternating chiralities on which
the signs of all chiralities are reversed. However, the states on
the two sides of a DDDW are not exactly the same, namely
they differ by a phase rotation by π . In order to compensate
for this misfit an end point of a DDDW has to be a fractional
vortex with topological charge q = ± 1

2 . The same conclusion
also follows from observing that an end point is formed by
four fractional vortices with q = ± 1

8 having the same sign;
see Fig. 6(a).

At temperatures we are discussing, vortices with topo-
logical charges q = ± 1

2 have to be bound in small neutral
pairs. Therefore, in the nearest vicinity of any end point there
always has to be present another end point with the opposite
topological charge, so the two DDDWs can be considered a
continuation of one another [an analogous situation is known
to exist in the unfrustrated XY model in which the interaction
function V (θ ) in addition to the main minimum at θ = 0 has an
additional minimum at θ = π with almost the same depth].28

The orientation of a fluctuating DDDW is determined by the
orientation of stripes in the vortex pattern on its sides, on the
average such a wall will be perpendicular to the direction of
stripes.

At T > Tc1 the free energy of a single DDDW becomes
negative, which suggests that there should appear a finite
concentration of such walls ρ restricted by their repulsion.
Since this repulsion is of contact nature, the dependence of ρ

on the distance from the critical temperature can be expected
to be of the Pokrovsky-Talapov29 type, ρ ∝ (T − Tc1)1/2.

However, in addition to the formation of infinite DDDWs
the system allows also for the creation and annihilation of
pairs of fluctuating DDDWs; see Fig. 6(b). This means that, in
addition to infinite DDDWs crossing the whole system, there
should be present finite-size defects formed by two fluctuating
DDDWs, which on both sides of the defect merge together
as shown in Fig. 6(b). In the theory of the commensurate-
incommensurate transitions the objects where n solitons merge
together are known as dislocations and the case of n = 2

FIG. 6. (Color online) (a) An end point of a DDDW is a q = ± 1
2

vortex; (b) an end point of a finite-size defect formed by two
fluctuating DDDW.

corresponds to the double degeneracy of the ground state.30 In
our system, the presence of a twofold degeneracy manifests
itself through the fact that the states on the two sides of a
DDDW differ from each other by phase rotation by π . As a
consequence of this, after crossing two DDDWs one returns
to the same state as before. Accordingly, the phase transition
related to the proliferation of DDDWs has to be of the Ising
type.

Since the states on the two sides of a DDDW correspond
to the same vortex pattern but differ by a phase rotation by
π , the phase transition related to their proliferation does not
destroy the long-range order in terms of chirality but leads
to a partial suppression of phase correlations. In particular,
an algebraic decay of correlation function C1(r) is replaced
by an exponential one, whereas the correlations of the double
phase [described by C2(r)] remain algebraic. In the Pokrovsky-
Talapov regime, the temperature dependence of the correlation
radii describing the decay of C1(r) is characterized by two
different values of the exponent ν (ν = 1/2 and ν = 1) for the
two directions, whereas in the Ising regime the value of ν = 1
is the same for both directions.

The crossover from the Pokrovsky-Talapov behavior to the
Ising one must take place very close to the phase transition
temperature, because each point where two DDDWs are
created or annihilate is a pair of fractional vortices with
topological charges q = ± 1

4 and accordingly has larger energy
than a bend on DDDW. It should be emphasized that when the
temperature is about 14 times smaller than EB even a relatively
small increase in energy in comparison with EB leads to the
suppression of the Boltzmann factor exp(−ED/T ) by orders
of magnitude.

Just above Tc1 the distance between the DDDWs L is
much much larger then their “effective width” ξ given by
the average distance between neighboring bends on a wall,
ξ ≡ ξ (T ) = exp(EB/T ). Since it is evidently disadvantageous
to have L � ξ (this would force the concentration of bends
with positive energy to be much larger than the optimal one),
the ratio L/ξ has to saturate with the increase in temperature
at L/ξ ∼ 1. For this to take place, the Boltzmann factor

wB(T ) ≡ exp(−EB/T ) (12)

has to become much larger than fDW/T , which allows one
to neglect the first term in Eq. (9). Due to the exponential
dependence of wB(T ) on T , this is achieved at temperatures
only slightly above of Tc1.

In this regime the free energy of the fluctuating DDDWs
(per lattice plaquette) is of the order of −T exp(−2EB/T ),
where one factor exp(−EB/T ) is directly related to the energy
of the elementary pointlike defect and the other one appears
because the distance between neighboring DDDWs has to be
exponentially large and, accordingly, the number of places
where these pointlike defects can be created is exponentially
suppressed. However, in the situation when the fluctuation-
induced free energy of domain walls can be neglected (or is
absent from the beginning, as in the case of the Berezinskii-
Villain interaction), one has to consider also other possibilities
for the appearance of pointlike defects in the system. This task
is carried out in the next section.
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VI. UNIAXIAL NETWORK STATE

In this section we, first, discuss what happens at low
temperatures if fDW, the free energy of straight domain walls
per unit length, is exactly equal to zero and, therefore, does not
induce a removal of the accidental degeneracy of the ground
states. And after finding an answer to this question, we return
to the problem with small but finite fDW > 0.

For fDW = 0, one can expect that at low temperatures a
typical configuration, in addition to having parallel straight
domain walls, may include a small concentration of local
defects (with finite energies) at which these domain walls
change their orientations. However, a finite concentration of
such objects can appear at arbitrary low temperatures only
if the entropy (per defect) of the network of domain walls
connecting them can be made arbitrary, large by the decrease
of their concentration, as in the gas of noninteracting particles.
Without a detailed analysis it is not evident what structure
such a network can have and whether its appearance induces
a complete disordering of the vortex pattern.

In Sec. IV we have shown that the lowest-energy local
defects in our system are pairs of fractional vortices with
topological charges q = ± 1

8 . Four different classes of such
defects are illustrated in Figs. 3 and 4. However, a network

of domain walls cannot contain the pairs of the type shown in
Figs. 3 because the domain walls “emitted” by them can end
only on free (that is, unpaired) fractional vortices, which at
low temperatures cannot be present in the system.

The neutral pair of fractional vortices shown in Fig. 4(a)
is an intersection of single and double domain walls. In order
to have a finite concentration of the defects of such a kind,
it is necessary to have a sequence of parallel single domain
walls and a sequence of double domain walls crossing them.
However, the entropy of such a network will be proportional
to the number of the walls in these sequences, which does
not give the entropic contribution to free energy a chance to
overcome the positive term related to the proper energy of the
defects and proportional to the number of the intersections.
This suggests that such defects cannot play a substantial role
in the spontaneous formation of a domain-wall network at the
lowest temperatures.

In contrast to that, the neutral fractional-vortex pairs of the
two other types shown in Fig. 4(b) and Fig. 4(c) allow for
having an arbitrary large entropy per defect. In particular, the
configuration shown in Fig. 4(b) is nothing but a bend on a
double-spaced double domain wall. In the last paragraph of
Sec. V we have argued that for fDW → 0 the free energy (per

FIG. 7. (Color online) A network formed by parallel single domain walls connected by double-spaced double domain walls: (a) with
relatively small density nDW of single walls; (b) with nDW ≈ 1/2.
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site) of the sequence of such double walls has to be of the order
of −T exp(−2EB/T ), where EB is the energy of a single bend.
In this estimate, the exponent contains not just the ratio EB/T ,
like it would if different pointlike defects could be created
independently of each other, but 2EB/T . The second factor
exp(−EB/T ) appears because double domain walls have to be
separated by distances of the order of ξ ≡ exp(EB/T ), and,
therefore, the number of places where the pointlike defects
with energy EB can appear is exponentially suppressed.

Another possibility to get a free energy of comparable order
consists in considering configurations in which the energy of
pointlike defects is larger than EB, but the number of places
available for their creation is just proportional to the area
of the system without an additional exponential suppression.
This happens when one considers a configuration with a finite
density ρ‖ of parallel single domain walls and inserts into it
a finite concentration of pointlike defects, each of which is a
double-spaced double domain wall starting on one single wall
and ending on a neighboring one, as shown in Fig. 7(a). The
energy of these defects is close to 2EB and, accordingly, for
ρ‖ � 1, the free energy of such a “uniaxial” network can be
estimated as

FUNW ∼ −ρ‖ T exp(−2EB/T ). (13)

Note that Fig. 7 gives just a schematic representation of the
structure of corresponding states. In reality, at T � EB, the
typical distances between neighboring local defects have to
be exponentially large. Accordingly, the mutual influence of
the local defects can be neglected.

It is clear from Eq. (13) that it is more profitable to have ρ‖
of the order of 1 rather than ρ‖ � 1. The concentrations close
to 1/2 (the average concentration of parallel domain walls in
a typical ground state) seem to be the most optimal because
they optimize both the number of the available configurations
as well as the energy of typical local defects.

The minimum of energy of two fractional-vortex pairs
connected by a double-spaced double domain wall is achieved
when the four fractional vortices form a symmetric rombus,
as shown in Fig. 8(a). Both for V (θ ) = −J cos θ and for the
Berezinskii-Villain interaction, the energy of such a defect,
ER, is smaller than 2EB by approximately 11%. The same is
true for another defect with the same rhombic arrangement
of four fractional vortices shown in Fig. 8(b). Accordingly,
the free energy of the domain-wall network containing such
defects (and maybe some other defects as well) at the lowest

FIG. 8. (Color online) The structure of the typical local defects
participating in the formation of the uniaxial network state [shown in
Fig. 7(b)].

FIG. 9. (Color online) Intersections of double domain walls.

temperatures will be of the order of −T exp(−ER/T ), that
is, lower than the free energy of the sequence of fluctuating
double walls.

Note that the list of local defects whose energy is lower than
ER, in addition to configurations that cannot participate in the
formation of a domain-wall network (Fig. 3) and bends on
double-spaced double domain walls [Fig. 4(b)], includes only
the intersections of a double domain wall with either a single
wall [Fig. 4(a)] or another double wall (Fig. 9). The presence
of such local defects is not sufficient for the construction of
a domain-wall network whose entropy dominates over the
energy of the defects. This ensures that, for fDW = 0, the main
role in the formation of the domain-wall network is played by
the rhombic defects (shown in Fig. 8) whose presence leads
to the formation of the uniaxial network state schematically
depicted in Fig. 7(b).

It must be noted that in a typical ground state the
concentration of domain walls parallel to each other is equal
to 1/2. For fDW = 0 at the lowest temperatures the system
will be in the same phase, the main difference consisting in
the presence of an exponentially small concentration of local
defects, which shift the positions of domain walls but do not
lead to the change of their orientation; see Fig. 7(b). Like at
T = 0, the presence of a finite concentration of parallel domain
walls leads to the intermixing of four of six striped vortex
patterns. However, there remains a triple degeneracy related to
the orientation of domain walls. The order parameter suitable
for describing this kind of ordering was introduced in Sec. II B.

In terms of phase correlations, the main qualitative differ-
ence with the case of T = 0 is that, at T > 0, the correlation
function Cp(r) with p = 8 acquires an algebraic decay (anal-
ogous correlation functions with p < 8 decay exponentially,
even at T = 0). However, this property is related not to the
appearance of local defects in the domain-wall network but to
the presence of spin waves.

Thus, we have found that the formation of local defects
works as a mechanism for the removal of the accidental
degeneracy of the ground states, which makes the free energy
of the system dependent on the concentration of parallel
single domain walls ρ‖, with F (ρ‖) having the minimum in
the vicinity of ρ‖ = 1/2 (in the limit of T → 0 exactly at
ρ‖ = 1/2). We now have to remember that in the absence of
this mechanism F (ρ‖) is equal at small ρ‖ to fDW(T )ρ‖ and,
accordingly, is minimal at ρ‖ = 0. When both mechanisms are
taken into account, the function F (ρ‖), at least in some interval
of temperatures, will have two minima whose depths change
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with temperature. At the temperature where these two depths
become equal, a first-order phase transition has to take place.

For fDW > 0, a possibility to describe the system assuming
fDW = 0 exists if the ratio

κ(T ) = fDW(T )

T exp(−ER/T )
(14)

is much smaller than 1. For the model with V (θ ) = −J cos θ

the substitution of the expression (8) for fDW(T ) into Eq. (14)
gives that at T/J = 0.02 the value of κ(T ) is close to 0.03.
Accordingly, at T/J ≈ 0.02 the corrections to free energy
related to the positiveness of fDW can be neglected and one
can expect that the free energy of the system is minimal in the
uniaxial network state. On the other hand, at T/J = 0.015,
the negative contribution to the free energy related to the
appearance of the pointlike defects with energy ER cannot
overcome the positive term related to the proper free energy of
domain walls, and any reasons for the appearance of a uniaxial
network with a large concentration of parallel domain walls
are absent.

From this it is clear that the first-order transition mentioned
above takes place at the temperature Tc2 situated between
0.015 J and 0.02 J . Below this transition the minimum of free
energy is achieved in the phase with a sequence of fluctuating
double walls described in Sec. V and above it in the uniaxial
network with a relatively high density of parallel domain walls.
The conclusion that this phase transition is of the first order
is additionally confirmed by checking that the presence of
fluctuating double-spaced double domain walls does not lead
to a decrease of free energy of a single domain wall crossing
them. The advantages of the uniaxial domain-wall network
manifest themselves only when the density of single domain
walls is of the order of 1/2. They consist in the possibility of
having local defects of an additional type shown in Fig. 8(b),
which increases the number of configurations with the given
number of the defects, that is, with the given energy.

VII. PHASE TRANSITION TO A DISORDERED PHASE

For the complete disordering of vortex pattern the network
of domain walls has to have a structure leading to an unbiased
mix of all six striped patterns. If all fractional vortices are
bound in small neutral pairs, this is impossible. The existence
of a finite concentration of such pairs as those shown in Fig. 3 is
prohibited by a simple conservation law explained in Sec. IV C,
whereas the presence of small concentration of pairs of the
three types represented in Fig. 4 leads to the intermixing of
only four striped states of six. Such a uniaxial network has a
preferable orientation of domain walls.

In order to have an equal representation of all six striped
vortex patterns, there should exist a finite concentration of free
fractional vortices that are not bound in pairs. If their positions
could be arbitrary (that is, not restricted by the requirement
for them to be connected by domain walls), free fractional
vortices would appear when the two logarithmically divergent
contributions to the free energy of a single fractional vortex,

FFV = EFV − T SFV, (15)

compensate each other. Here,

EFV ≈ E0 ln Lmax , E0 = (
1
8

)2
π� (16)

is the energy of a fractional vortex and SFV ≈ 2 ln Lmax its
entropy, whereas � ≡ �(T ) is the helicity modulus31 and
Lmax the size of the system (Lmax → ∞). The prelogarithmic
factor in FFV becomes equal to zero at T = 1

2E0 = π
128�. On

a honeycomb lattice with the conventional or the Berezinskii-
Villain interaction �(T = 0) is, respectively, slightly below or
slightly above J/2. Substitution of this value suggests that in
the absence of any restrictions related to domain walls free
fractional vortices would appear at TFV ≈ 0.01J .32

Naturally, in the fully frustrated XY model on a honeycomb
lattice the entropy of the system of fractional vortices is
substantially decreased by the requirement that they have to
be connected by straight domain walls (with maybe some rare
kinks on them). Moreover, the direction of each domain wall
is uniquely determined by the directions of the vortex stripes
in the two states that it separates. Nonetheless, these rather
strong restrictions still allow for constructing a domain-wall
network that leads to an unbiased representation of all six
striped vortex patterns. A possible structure of such a network
is schematically shown in Fig. 10. Here the letters A, B, and C
are used to denote the domains with three different orientations
of vortex stripes. Note that all walls between A and B are
parallel to each other. The same is true for all walls between B
and C, as well as for all walls between C and A. For the sake of
lucidity Fig. 10 does not show which of the two versions of A,
B, or C (related to the change of the signs of all chiralities) is
realized in each particular domain. This depends on the exact
positions of domain walls.

Quite remarkably, the entropy (per node) of such a network
logarithmically depends on typical distance between neighbor-
ing nodes,26 like it would be in a gas of free particles. This is so
because each domain of a network with such a structure can be
shifted in parallel to six domain walls that end up in its corners
without changing the number of domains or the total length
of the domain walls. Thus, if the typical distance between
neighboring nodes of the network is of the order of L � 1,
then each domain can occupy a number of positions that is
proportional to L. Since the number of domains is equal to one
half of the number of nodes, the domain-wall-network entropy
per fractional vortex is given (for large-enough L) by 1

2 ln L

per fractional vortex. This quantity is only 4 times smaller

FIG. 10. (Color online) The structure of a domain-wall network
in which all six regular vortex pattern are intermixed.

134526-11



S. E. KORSHUNOV PHYSICAL REVIEW B 85, 134526 (2012)

than in the absence of restrictions induced by the presence of
domain walls.

The logarithmic behavior of the domain-wall network
entropy was first discovered by Villain33 when considering
a honeycomb network in which each domain has the shape
of a hexagon with all angles equal to 120◦. Such a network
is formed in a system with a threefold degeneracy in which a
domain wall of a given type (for example, a wall between states
A and B) can have only three particular orientations of six that
seem to be possible when one looks just at the symmetry of
the lattice. A domain-wall network with the structure shown
in Fig. 10 (in which each domain also has the shape of a
hexagon but with angles of 60◦, 120◦, and 240◦) has been
proposed for the Ising model on a triangular lattice with the
antiferromagnetic interaction of the nearest and second and
third neighbors.26 For some relation between parameters, the
ground states of this Ising model have the striped structure25

completely analogous to that of the striped ground states of
the considered XY model. However, the important difference
between the two models is that in the model we discuss
now the nodes of the domain-wall network have a long-range
logarithmical interaction.

In accordance with that, in the fully frustrated XY model
on a honeycomb lattice the free energy (per lattice plaquette)
of a domain-wall network with the structure shown in Fig. 10
is given by

FNW = c1

L2

(
E0 − T

2

)
ln L + F

(1)
NW(L), (17)

where c1 ∼ 1 is a constant of purely geometrical origin,
whereas L � 1 is the typical distance between neighboring
fractional vortices. The last term in Eq. (17) describes the
dominant corrections to the logarithmic terms and for L � 1
can be estimated as F

(1)
NW(L) ∼ E0/L

2.
At T < TFV = 2E0, when both terms in Eq. (17) are

positive, the minimum of FNW is achieved when L → ∞, that
is, in the absence of a domain-wall network. On the other hand,
at T > TFV the free energy of the system at large L decreases
with the decrease in L. Therefore, the optimal value of L at
such temperatures is determined by the interplay between the
two terms in Eq. (17). It is then clear, without performing any
calculations, that when T tends to TFV from above, the value
of L minimizing FNW goes to infinity.

However, all the conclusions of the previous paragraph
would be applicable only if any other fluctuations save the
formation of a domain-wall network with the structure shown
in Fig. 10 are prohibited. In reality, one expects that at
such temperatures the system is in the uniaxial-network state
with a large concentration of parallel domain walls. In this
situation, the structure of the domain-wall network related
to the appearance of unpaired fractional vortices also can
be illustrated by Fig. 10, where now the domains denoted
by the same letter correspond to uniaxial-network states with
the same dominant orientation of domain walls. Nonetheless,
exactly as before, each node of the network corresponds to an
unpaired fractional vortex with topological charge q = ± 1

8 ,
which means that one can still use Eq. (17) for describing the
energy of the interaction of unpaired fractional vortices plus
the entropy of the network related to fluctuations of positions

of different domains. However, one also has to add to this
expression the energy of the boundaries between different
uniaxial networks.

A boundary between two uniaxial-network states with dif-
ferent preferable orientations of domain walls is schematically
shown in Fig. 11, where each line corresponds to a domain
wall, whereas letters A, B, and C again denote domains with
three different orientations of vortex stripes. Note that one of
the uniaxial networks (the one to the right) contains mainly
domains A and C, whereas the other one domains B and C. It
is clear that the change of the dominant orientation of domain
walls that has to take place at a boundary between domains
requires to have a large concentration of fractional vortices on
this boundary and, accordingly, the energy of such a boundary
per unit length has to be of the order of E0.

Accordingly, the expression for the free energy of the
domain-wall network formed by unpaired fractional vortices
separated by distances of the order of L must also contain a
positive contribution of the order of E0/L, which, for large
L, will always dominate over the first term in Eq. (17). This
suggests that the phase transition related to the appearance
of free fractional vortices must take place at T = Tc3 > TFV

and has to be of the first order, because the two minima of
the function FNW(L) (at L = ∞ and at finite L) will always
be separated by some barrier. Moreover, since the behavior of
the function FNW(L) is determined (in addition to T ) by the
single energy scale, E0, one can expect that the shift of the
transition temperature, Tc3, with respect to TFV will be of the
order of E0, whereas the typical distance between fractional
vortices just above the transition can be only numerically larger
than 1, and not parametrically. Accordingly, we can conclude
that Tc3 ∼ (0.05 ÷ 0.1)J but cannot provide a more accurate
estimate.

Note that the formation of a domain-wall network leading to
the intermixing of all six striped vortex patterns is impossible
without the proliferation of free fractional vortices. This means
that there is no possibility for the phase transitions related with
the removal of the triple degeneracy of the uniaxial network
states and suppression of the algebraic phase behavior of C8(r)
to take place at different temperatures. On the other hand, the

FIG. 11. (Color online) A boundary between two uniaxial net-
works with different preferable orientations of domain walls.
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appearance of free fractional vortices leads to the screening of
the logarithmic interaction of the conventional vortices, so the
pairs of such vortices also unbind. Accordingly, at T > Tc3,
the system is in the completely disordered phase in which all
correlations decay exponentially.

VIII. CONCLUSION

A. Phase diagram

The main results of this work are summarized in Table I,
which reviews the properties of various phases represented
in the phase diagram of the fully frustrated XY model on a
honeycomb lattice. The order in which these phases are listed
corresponds to the increase in temperature. By the existence
of the long-range order (LRO) in terms of vortex pattern, we
mean the selection of one of the six equivalent striped vortex
patterns; see Fig. 1(a). On the other hand, the existence of
the long-range order in terms of the domain-wall orientation
implies the choice of one of the three preferable orientations
of domain walls. The last three columns describe the behavior
of the gauge-invariant phase correlation functions defined by
Eq. (7).

The first line in Table I refers to the behavior of the
correlation functions when the averages are calculated over
the set of the all ground states of the model. A typical ground
state incorporates an irregular sequence of parallel straight
domain walls, which leads to the exponential decay of the
chirality correlation function, Eq. (4), as well as of phase
correlation functions Cp(r) with p < 8 for all directions that
are not exactly perpendicular to one of the directions of lattice
bonds. Nonetheless, the system has the long-range order in
terms of domain-wall orientation.

At T > 0 domain walls acquire a finite free energy per unit
length given by Eq. (8) and originating from the difference in
the free energy of spin waves.14 At the lowest temperatures,
this leads to the suppression of infinite domain walls crossing
the whole system and the appearance of the long-range order
in terms of vortex pattern (phase No. 1 in Table I). The system
spontaneously chooses one of the six equivalent striped vortex
patterns. On the other hand, all phase correlation functions
decay algebraically due to the presence of spin waves.

With the increase in temperature, the first phase transition
takes place at T = Tc1 ≈ 0.8 × 10−2 J and is related to the
appearance of a sequence of fluctuating double-spaced double
domain walls. On average, the direction of these fluctuating
walls is perpendicular to the direction of the vortex stripes. This

phase transition is continuous with the Ising-type behavior
in a very narrow critical region and the Pokrovsky-Talapov
behavior in a wider region around the critical one. Although the
transition taking place at T = Tc1 is related to the appearance
of domain walls, above it (phase No. 2 in Table I) the discrete
degeneracy (related to the long-range order in terms of vortex
pattern) remains the same (sixfold), whereas the decay of the
phase correlation function C1(r) changes from algebraic to
exponential. This happens because the presence of a doubly
spaced double domain wall between two points shifts the phase
difference by π .

The next phase that appears with the increase in temperature
(phase No. 3 in Table I) has the same symmetry properties as
a typical ground state of the model. In particular, in this phase
there is no long-range order in terms of vortex pattern. The
main difference with a random sequence of parallel straight
domain walls (characteristic for a typical ground state) consists
in the presence of local defects which shift the positions of
these walls but do not change their preferable orientation; see
Fig. 7(b). The phase transition to this uniaxial domain-wall
network has to be of the first order and can be expected to take
place at T = Tc2 ∼ 2Tc1.

The important feature of the uniaxial domain-wall network
is that the nodes of this network, which, in terms of phase
variables, correspond to logarithmically interacting fractional
vortices, are bound in neutral pairs. As a consequence of this,
the helicity modulus in this phase is finite, like in the other
ordered phases discussed above. Since all three ordered phases
have some preferred direction (of vortex stripes or of domain
walls), the helicity modulus in all of them has to be anisotropic.

The phase transition to the disordered phase (phase No. 4
in Table I) with the complete suppression of the long-range
order and exponential decay of all correlation functions can
be associated with the appearance of an isotropic domain-wall
network in which some fractional vortices (the nodes of the
network) are not bound in pairs but are free. By analyzing how
the free energy of such a network depends on typical distance
between free fractional vortices, it is possible to establish that
this transition must be of the first order and has to occur at
Tc3 ∼ (0.05 ÷ 0.1)J .

All phase transitions mentioned above take place at tem-
peratures that are much lower than the temperature TBKT ∼ J

at which the unbinding of pairs of the conventional vortices
(with integer topological charges) would take place if any
other fluctuations were absent. At T � TBKT, the presence of
an exponentially small concentration of small bound pairs of

TABLE I. The properties of different phases of the fully frustrated XY model on a honeycomb lattice; “exp” denotes an exponential decay
of the corresponding correlation function (for a generic direction) and “a” an algebraic decay.

LRO in terms of

Decay of phase correlation functionsTemperature Vortex Domain wall
No. interval Domain wall presence pattern orientation C1(r) C2(r) C8(r)

T = 0 Straight parallel domain walls − + exp exp LRO
1 0 < T < Tc1 No infinite domain walls + − a a a
2 Tc1 < T < Tc2 Sequence of fluctuating DDDWs + − exp a a
3 Tc2 < T < Tc3 Uniaxial domain-wall network − + exp exp a
4 Tc3 < T Isotropic domain-wall network − − exp exp exp
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integer vortices does not lead to any noticeable consequences
and, therefore, can be neglected. On the other hand, at T > Tc3,
the logarithmic interaction of integer vortices is screened due to
the presence of a finite concentration of free fractional vortices
and, therefore, there are no grounds to expect the existence
of an additional phase transition related to the unbinding of
integer vortices.

B. Discussion

Thus, we have established that the equilibrium thermody-
namics of the fully frustrated XY model on a honeycomb
lattice supports the existence at T > 0 of four different
phases, three of which are characterized by the presence of
a long-range order. However, the observation of some of these
phases (and the phase transitions between them) in a real or
numerical experiment may turn out to be a big problem.

In particular, at 0 < T < Tc1, the complete suppression of
domain walls crossing the whole system (induced by the spin-
wave contribution to their free energy, see Sec. III) is achieved
only in the thermodynamic limit, Lmax → ∞. In a finite system
with linear size Lmax, in order to have the average number of
such walls smaller than 1, the size of the system should be
larger than Lc(T ), the temperature-dependent solution of the
equation

Lmax exp

(
−γ

T Lmax

J

)
= 1. (18)

At T = Tc1, the point of the phase transition related to the
appearance of infinite double-spaced double domain walls,
Lc ≈ 3 × 107. This means that numerical simulations of
systems with L � 107 does not allow one to observe the phase
with suppressed domain walls independently of whether it is
possible to reach the thermal equilibrium at T ∼ Tc1.

More or less the same criterion applies to the observation
of the phase with a sequence of fluctuating double domain
walls. Accordingly, for L � 107 the increase of temperature
will lead just to a smooth crossover from a random sequence
of parallel straight domain walls to the uniaxial domain-wall
network with the same preferable orientations of domain walls.
However, a discontinuous transition from the uniaxial domain-
wall network to an isotropic one (the disordered phase) can be
expected to be observable, even if the size of the system is
not so large. On the other hand, it follows from the numerical
simulations of Refs. 17 and 18 that the task of reaching thermal
equilibrium at T � 0.1 J will require very special effort for its
implementation. Moreover, the phase with a uniaxial domain-
wall network cannot be observed by the methods18 assuming
the existence of the long-range order in terms of the vortex
pattern. Instead, one should look for the anisotropy of a current
distribution or for the appearance of a finite helicity modulus
(superfluid density).

In the case of the Berezinskii-Villain interaction, the free
energy of spin waves is exactly the same for all domain-wall
configurations and, therefore, does not lead to the removal
of the accidental degeneracy of the ground states. In such
a situation, a smooth crossover from a random sequence of
parallel straight domain walls to the uniaxial domain-wall
network is realized not only when Lmax � Lc but also in
the thermodynamic limit. That is, instead of three phase

transitions, an infinite system with the Berezinskii-Villain
interaction must experience only one, related to the loss of
the long-range order in the orientation of domain walls and of
the algebraic decay of C8(r). The conclusion that this transition
has to be of the first order is not sensitive to a particular form
of the interaction in the Hamiltonian of the model.

Since the fully frustrated XY model with the Berezinskii-
Villain interaction on a honeycomb lattice is exactly equivalent
to the half-integer Coulomb gas on a triangular lattice, the
scenario described in the previous paragraph has to be realized
also in such a Coulomb gas. Numerical simulations of the half-
integer Coulomb gas on a triangular lattice were undertaken by
Lee and Teitel,15 who have discovered a relatively sharp jump
of the dielectric function at T/J ∼ 0.04 but assumed it to be
a finite-size-induced artifact. This conclusion was based on
the observation that the formation and motion of finite-energy
local defects (analogous to those shown in our Fig. 8) destroys
the long-range order in the vortex pattern at an arbitrary low
temperature. However, this argument missed the possibility of
having the long-range order in the domain-walls orientation,
which, according to our analysis, should be present in the
half-integer Coulomb gas on a triangular lattice at low-enough
temperatures.

It should be mentioned that a uniformly frustrated XY

model with this or that interaction provides just an idealized
description of a Josephson junction array or of a superconduct-
ing wire network. In physical situations there can exist other
mechanisms for the removal of the accidental degeneracy of
the ground states related to the interactions not taken into
account in the framework of an XY model. One of them is the
magnetic interaction of currents in the junctions or in the wires.
However, it is likely that the sign of the domain-wall energy
induced by this interaction may depend on the particular
geometry of the system.

If EDW, the domain-wall energy per unit length, is positive,
this will substantially improve the possibilities for the observa-
tion of the phase with the striped vortex pattern. Even if EDW

is a few orders of magnitude smaller than J , it will be many
orders of magnitude larger than the value of fDW given by
Eq. (8) at the corresponding temperatures. The opposite sign
of EDW will lead to the stabilization of another periodic vortex
pattern shown in Fig. 1(c) of Ref. 14. In any case, a nonzero
value of EDW will allow the observation of a phase with a
long-range order in terms of vortex pattern in the systems of
less than macroscopic sizes.

On the other hand, the magnetic interaction of currents
leads to the screening of the logarithmic interaction of vortices
(both conventional and fractional) at large distances. This will
transform the phase transition related to the appearance of a
sequence of fluctuating double-spaced double domain walls
into a crossover, because when the logarithmic interaction of
fractional vortices is screened, such double walls no longer are
topologically stable defects and can have free end points. A
substantial increase of EDW may lead also to the disappearance
of the region of stability of the uniaxial network state, which
implies a direct transition from the phase with the long-range
order in terms of vortex pattern into the disordered phase.

Another mechanism for the stabilization of striped vor-
tex patterns in magnetically frustrated superconducting wire
networks may be related with the nonuniformity of the
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order parameter amplitude34 (see also Ref. 35). However,
the conclusions of Ref. 34 are in some contradiction with
the results of Ref. 36 devoted to including into analysis the
higher-order terms of the Ginzburg-Landau expansion, which
suggests that the problem requires further investigation.

The uniformly frustrated XY model with triangular lattice
and f = 1

4 also allows for the formation of zero-energy domain
walls parallel to each other,23 so its phase diagram may
have some common features with the one constructed in this
work. In the uniformly frustrated XY model with f = 1

3 on a
triangular lattice,23 as well as in the fully frustrated XY model
on a dice lattice,37,38 the situation is more complex because
these models allow for the formation of two sets of parallel
zero-energy domain walls that can cross each other without
paying any energy for this. However, in such a situation, it is
also possible to expect the existence of a phase in which vortex
pattern is disordered, whereas the long-range order is related
to the orientation of domain walls.

On the experimental side, the conclusions of this work
may be applicable not only to Josephson junction arrays and
superconducting wire networks with a half-integer number of
flux quanta per plaquette but also to magnetically frustrated
triangular arrays of microholes39 or nanoholes40 in thin
superconducting films. For a half-integer number of flux
quanta per hole, the energy of different vortex configurations
in such objects has to be described by the Hamiltonian
of the half-integer Coulomb gas with screened logarithmic
interaction.

The most reliable approaches to the experimental identi-
fication of the phase with the long-range order in terms of
vortex pattern may be based on the methods involving direct
observation of vortex arrangement by monitoring the magnetic
field distribution. This phase is also characterized by the
anisotropic superfluid density. In the phase with the uniaxial
domain network the superfluid density is also anisotropic, but
the long-range order in terms of the vortex pattern is absent.

APPENDIX A: BEREZINSKII-VILLAIN INTERACTION
AND THE COULOMB GAS REPRESENTATION

A magnetically frustrated network formed by identical
superconducting wires can be described in the London regime
(when the amplitude of the superconducting order parameter
is uniform along the wires) by the Hamiltonian41

H = J

2

∑
(jj ′)

θ2
jj ′ , (A1a)

where θjj ′ is the integral of the gauge-invariant phase gradient
along the wire connecting nodes j and j ′. Variables θjj ′

can acquire arbitrary values, −∞ < θjj ′ < +∞, but on any
plaquette of the lattice have to satisfy the constraint∑

� α

θjj ′ = −2πf (mod 2π ), (A1b)

where parameter f depends on the applied magnetic field and
is equal to the number of superconducting flux quanta per
plaquette.

In terms of phase variables ϕj defined on the nodes of
the network, the partition function of the model (A1) can be

rewritten42 as the partition function of the uniformly frustrated
XY model with the so-called Berezinskii-Villain interaction
VBV(θ ) defined by the relation

exp

[
−VBV(θ )

T

]
=

∞∑
h=−∞

exp

[
− J

2T
(θ − 2πh)2

]
. (A2)

The function VBV(θ ) has the same symmetry and periodicity
as V (θ ) = −J cos θ . For J � T it is everywhere except
the close vicinity of the point θ = π close to parabola,
VBV(θ ) ≈ (J/2)θ2 + const. In the opposite limit, J � T , the
function VBV(θ ) with an exponential accuracy is reduced to
−Jeff cos θ + const, where, however, the coupling constant
Jeff = 2T exp(−T/2J ) is much smaller than J .

The interaction function defined by Eq. (A2) was introduced
by Berezinskii7 and Villain8 because it allows one to simplify
the analytical analysis of XY models. The integration over
variables ϕj in the partition function of an XY model with such
an interaction is Gaussian and, therefore, can be performed
exactly. In particular, in the case of the periodic boundary
conditions the application of this procedure transforms the
partition function of a uniformly frustrated XY model with
the Berezinskii-Villain interaction into that of a “fractional”
Coulomb gas9 described by the Hamiltonian

HCG = 1

2

∑
α,β

mαGαβmβ, (A3)

where variables mα (the charges of the Coulomb gas) are
defined on the sites α of the dual lattice and acquire values
shifted with respect to integers by −f . Each of these variables
is proportional to the sum of variables θjj ′ − hjj ′ (defined on
lattice bonds) over the perimeter of plaquette α and, in terms
of the XY representation, can be identified with the vorticity
of this plaquette divided by 2π .

The long-range interaction Gαβ entering Eq. (A3) has a
form,

Gαβ = 4π2J (−�̂)−1
αβ , (A4)

where �̂ is the discrete Laplace operator on the dual lattice.
This interaction logarithmically depends on rαβ = |rα − rβ |,
the distance between α and β,

Gαα − Gαβ = 2π�0(ln rαβ + κ), (A5)

where �0 is proportional to J but also depends on the structure
of the lattice. In terms of the XY representation �0 is the
helicity modulus describing the rigidity of the system with
respect to phase twist. In the considered case �0 = J/

√
3,

whereas κ = π/
√

3 for rαβ = 1 (the nearest neighbors on the
triangular lattice) and monotonically increases by less than
0.5% with the increase of rαβ to infinity.

It can be expected that the number of qualitative features
of frustrated XY models with the conventional and with
the Berezinskii-Villain interactions are the same. However,
in situations when the ground states of the model possess
an accidental degeneracy, one should be cautious because,
in a model with the Berezinskii-Villain interaction, the free
energy of the spin waves is exactly the same for all vortex
configurations and, therefore, does not lead to the removal
of such a degeneracy (in contrast to the models with the
conventional form of the interaction).
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In the case of a fully frustrated model (with f = 1
2 ), the

charges of the Coulomb gas are half-integer. Since the charges
of the opposite signs attract each other, it is rather clear
that when the dual lattice is bipartite (square or honeycomb),
the minimum of energy is achieved in configurations with a
regular (checkerboard-like) alternation of positive and negative
charges. This is in a perfect agreement with having a twofold
discrete degeneracy of the ground states in terms of the XY

representation. In the case of the half-integer Coulomb gas on
a triangular lattice it is impossible to construct a configuration
in which each charge has neighbors only of the opposite
sign. Accordingly, it is much less evident what are the states
minimizing the energy and how high is their degeneracy. In
Appendix B we propose a transformation that substantially
simplifies this task and also provides a transparent expression
for the energies of the excited states of the half-integer
Coulomb gas.

APPENDIX B: EFFECTIVE CHARGE REPRESENTATION

When considering the half-integer Coulomb gas described
by Hamiltonian (A3), it is convenient to introduce auxiliary
variables qα linearly related to mα ,

qα = mα + λ�̂αβmβ, (B1)

where �̂αβ is the discrete Laplacian on the lattice on which
variables mα are defined and the choice of λ depends on
the structure of this lattice. The replacement of mα by
qα − λ�̂αβmβ allows one to rewrite Eq. (A3) as

HCG = 1

2

∑
α,β

qαGαβqβ + 4π2J (λ − λ2z)
∑

α

m2
α

+ 2π2Jλ2
∑
(αα′)

(mα + mα′)2, (B2)

where z is the coordination number of the lattice, whereas the
summation in the last term is performed over all pairs of nearest
neighbors (αα′). The form of Eq. (B2) suggests that the long-
range interaction of the charges of the half-integer Coulomb
gas can be replaced by their repulsion on neighboring sites plus
the long-range interaction of the “effective charges” qα defined
by Eq. (B1). Naturally, it is convenient to choose the value of
λ in such a way that, in the ground states, all effective charges
are equal to zero, which substantially simplifies the calculation
of energy and also minimizes the first term in Eq. (B2).

For λ < 1/z the second term in Eq. (B2) is minimized when
mα = ± 1

2 , whereas the third term requires maximization of the
number of bonds on which mα and mα′ have opposite signs. On
bipartite lattices it is always possible to do this for any pair of
neighboring sites. In such a case, the fulfillment of condition
qα = 0 is achieved when one takes λ = 1/(2z). For a square
lattice this gives λ = 1

8 and for a honeycomb lattice λ = 1
6 .

For these values of λ the states with the regular checkerboard
alternation of positive and negative charges mα = ± 1

2 ensure
the simultaneous minimization of all three terms in Eq. (B2),
which rigorously proves that they are the ground states.

In the case of a triangular lattice, each plaquette has to have
either one or three bonds with the same sign of mα and mα′ .
As a consequence of this, on average, each charge has to have
at least two neighbors of the same sign. In such a situation it

is convenient to take λ = 1
8 , which for all configurations with

mα = ± 1
2 reduces Eq. (B2) to

HCG = 1

2

∑
α,β

qαGαβqβ +
(

N + N3

2

)
g, (B3)

where

g =
(π

4

)2
J, (B4)

N is the total number of sites, and N3 is the number of
triangular plaquettes on which all three charges have the same
signs. It is evident that the first term in Eq. (B3) is minimized
when all variables qa are equal to zero and the second one
when N3 = 0. Since both these conditions can be fulfilled
simultaneously, constant g is nothing else but the ground-state
energy per site. Note that the value of g given by Eq. (B4) is
in perfect agreement with having, in the fully frustrated XY

model, θjj ′ = 0 on one-third of the bonds of the honeycomb
lattice and θjj ′ = ±π/4 on all other bonds.

Thus, the set of the ground states of the half-integer
Coulomb gas includes all states in which all charges are equal
to ±1/2, each charge has exactly two neighbors of the same
sign, and, on each triangular plaquette, there are always two
charges of one sign and one charge of the opposite sign. These
states can be put into the correspondence with the ground
states of the fully frustrated XY model on a honeycomb lattice
by interpreting the charges mα as vorticities (divided by 2π )
of the corresponding plaquettes, as it could be expected from
the equivalence between the half-integer Coulomb gas and
the fully frustrated XY model with the Berezinskii-Villain
interaction on the dual lattice (see Appendix A). However, the
reduction of Hamiltonian (A3) to the form (B3) has allowed
us to find the structure of the ground states of the half-integer
Coulomb gas on a triangular lattice directly in terms of the
Coulomb gas representation.

Note that the form of Eqs. (B2) and (B3) relies on the very
special form of the interaction of charges in the Coulomb gas
[given by Eq. (A4)]. As soon as the form of the interaction
is modified (for example, to take into account the screening
effects in a superconducting array or wire network), the
possibility to transform the Hamiltonian to the form of Eq. (B2)
with only local interaction of variables mα disappears, which
leads to a partial removal of the degeneracy between the states
with qα = 0 and N3 = 0.

TABLE II. The energies (in units of J ) of the finite-energy
defects presented in Figs. 3–9 in the case of the Berezinskii-Villain
interaction.

Figure number Defect energy Notation

3(a) 0.102808
3(b) 0.134471
4(a), 4(b), 4(c) 0.142292 EB

9(b) 0.197419
9(a) 0.237279
8(a), 8(b) 0.253298 ER

6(b) 0.347909
5(a) 0.371750 EK

5(c) 1.977200 Es
K
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In the configurations with mα = ± 1
2 on a triangular lattice,

the values of effective charges qα are given by

qα = Nα − 2

4
mα, (B5)

where Nα is the number of the nearest neighbors of site α with
the same sign of the charge m. It follows from Eq. (B5) that the
effective charges of various sites are either zero or equal to ± 1

8
or multiples of these values. In Sec. IV B, the appearance of
logarithmically interacting vortices with fractional topological
charges on those plaquettes of the honeycomb lattice which

have the number of neighbors with the same sign of vorticity
not equal to two has been discussed directly in terms of the
XY model.

Equation (B3) provides a convenient way for calculating
the energies of local defects in half-integer Coulomb gas on
a triangular lattice (or in the equivalent fully frustrated XY

model with the Berezinskii-Villain interaction on a honeycomb
lattice) by summing just few terms. The values of these
energies for various finite-energy defects discussed above and
illustrated in Figs. 3–9 are listed in Table II.
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14S. E. Korshunov and B. Douçot, Phys. Rev. Lett. 93, 097003 (2004).
15J.-R. Lee and S. Teitel, Phys. Rev. B 46, 3247 (1992).
16W. Y. Shih and D. Stroud, Phys. Rev. B 30, 6774 (1984).
17R. W. Reid, S. K. Bose, and B. Mitrović, J. Phys.: Condens. Matter
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