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Radiative annihilation of a soliton and an antisoliton in the coupled sine-Gordon equation
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In the sine-Gordon equation solitons and antisolitons in the absence of perturbations do not annihilate. Here,
I present numerical analysis of soliton-antisoliton collisions in the coupled sine-Gordon equation. It is shown
that in such a system, soliton-antisoliton pairs (breathers) do annihilate even in the absence of perturbations.
The annihilation occurs via a logarithmic-in-time decay of a breather caused by emission of plasma waves in
every period of breather oscillations. This also leads to a significant coupling between breathers and propagating
waves, which may lead to self-oscillations at the geometrical resonance conditions in a dc-driven system. The
phenomenon may be useful for achieving superradiant emission from coupled oscillators.
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I. INTRODUCTION

Analysis of soliton dynamics in the sine-Gordon (SG)
formalism is important in many research areas,1 including non-
linear optics, condensed matter, atomic,2 and particle physics.3

Solitons are elementary particles of the sine-Gordon equation,
in a sense that they are quantized and do not spontaneously
decay. Soliton-antisoliton collision is a nontrivial example of
interaction of strongly nonlinear waves. It may lead either to
passage of the two waves or to formation of a bound pair—the
breather.4 Within the pure SG equation, soliton and antisoliton
do not annihilate because the collision is elastic and the
annihilation is prohibited by energy conservation. However,
addition of various perturbation terms to the SG equation does
allow particle-antiparticle annihilation via breather decay.4,5

This may happen both via intrinsic viscous damping and via
radiative losses from the breather.1

In recent years, properties of solitons in the coupled
sine-Gordon equation (CSGE) are being actively studied.
The CSGE describes complex behavior of interacting sys-
tems, such as atoms in a periodic potential,2 magnetic
multilayers,6 stacked Josephson junctions,7–10 and layered
superconductors.11–13 Coupling of N systems leads to a
variety of unusual effects. First of all, it leads to appearance
of N eigenmodes with different symmetries, length scales,
and velocities.8,14 Even though the exact soliton solution in
this case is not known, numerical and approximate analytic
results demonstrated that the soliton becomes composed of
different eigenmodes9,10 and the shape of such a composite
soliton may become very unusual in the dynamic case. Next,
unlike the sine-Gordon equation, the coupled sine-Gordon
equation is not Lorentz invariant.13 Therefore superluminal
soliton motion (faster than the slowest eigenmode velocity) is
possible.9,13,15 It is accompanied by Cherenkov-type radiation,
due to decomposition of soliton components with eigenmode
velocities slower than the speed of the soliton into plasma
waves traveling along with the soliton.9,10,15

In this work, I present numerical analysis of soliton-
antisoliton collisions within the coupled sine-Gordon equation
with focus on Josephson vortex (fluxon) dynamics in magneti-
cally coupled stacked Josephson junctions. Both direct (fluxon
and antifluxon in the same junction) and indirect (fluxon and
antifluxon in different junctions) collisions are considered. It
is demonstrated that soliton-antisoliton pair in the CSGE can

annihilate even in the absence of viscous damping or other
perturbations. Annihilation occurs via emission of plasma
waves from an oscillating breather, to some extent resembling
annihilation of elementary particles via emission of a pair
of photons. The radiative annihilation leads to a significant
coupling of a breather to linear waves and brings about a
variety of resonant and self-oscillation phenomena,16 which
can be useful for achieving a coherent superradiant emission
from coupled systems.16,17

II. GENERAL RELATIONS

We consider one-dimensional chains/junctions described
by the perturbed sine-Gordon equation:

ϕ′′ − ϕ̈ − αϕ̇ = sin ϕ − γ, (1)

where ϕ is the phase variables, “primes” and “dots” denote
spatial ϕ′ = ∂ϕ/∂x and temporal ϕ̇ = ∂ϕ/∂t derivatives,
respectively, α is the viscous damping parameter, and γ is
the driving (bias) term. In the absence of perturbation terms
α = γ = 0, it reduces to the pure SG equation:

ϕ′′ − ϕ̈ = sin ϕ. (2)

The soliton in the SG Eq. (2) is a 2π phase kink:4

F = 4 arctan[exp(x − ut)/
√

1 − u2], (3)

where u is the velocity of the soliton, normalized by the speed
of light (the Swihart velocity). The velocity-dependent factor
represents the relativistic contraction of the soliton when its
velocity approaches the speed of light u → 1.4 This is the
consequence of Lorentz invariance of the SG equation (2).
The normalized energy of a static soliton u = 0 is Esol = 8.

A. The coupled sine-Gordon equation

We assume that a system of N interacting junctions can be
described by the perturbed CSGE:7

ϕ′′
i = Aij[ϕ̈j + αϕ̇j + sin ϕj − γ ]. (4)

Here, i,j = 1,2, . . . ,N is the junction index and Aij is the
coupling matrix, off-diagonal elements of which describe
interaction between different junctions. In what follows, we
will consider the simplest case of nearest-neighbor interaction,
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described by a symmetric tridiagonal matrix the only nonzero
elements of which are

Ai,i = 1 and Ai,i−1 = Ai,i+1 = −S. (5)

Here, S < 0.5 is the coupling strength. The CSGE can be also
written in the equivalent inverted form

A−1
ij ϕ′′

i − ϕ̈j − αϕ̇j = sin ϕj − γ. (6)

Apparently, for N = 1, it reduces to the perturbed SG
Eq. (1). In case of two coupled chains N = 2, the system
of unperturbed CSGE α = γ = 0 reads

1

1 − S2
ϕ′′

1 − ϕ̈1 = sin ϕ1 − S

1 − S2
ϕ′′

2 , (7)

2

1 − S2
ϕ′′

1 − ϕ̈2 = sin ϕ2 − S

1 − S2
ϕ′′

1 . (8)

It is easy to verify by direct application of the Lorentz
transformation that the CSGE is not Lorentz invariant, unlike
the SG equation (2).

Physically, the considered type of coupling corresponds,
e.g., to magnetic (inductive) interaction of stacked Josephson
junctions.7 In this case, space and time in the dimensionless
equations are normalized by the Josephson penetration depth
λJ and the Josephson plasma frequency ωp, respectively, the
velocity is normalized by the Swihart velocity c0 = λJ ωp and
γ by the Josephson critical current γ = I/Ic. More details on
the normalization and the formalism can be found in Refs. 9
and 10. As mentioned in the introduction, coupling terms as in
Eqs. (4) and (6) are also relevant for other objects, like atomic
chains2 and magnetic multilayers.6

The energy density of the coupled system is9,10

∂E(x)

∂x
= 1

2
ϕ′

j A−1
ij ϕ′

i +
N∑

i=1

(1 − cos ϕi) + 1

2
ϕ̇2

i . (9)

Here the first, second, and third terms represent correspond-
ingly the magnetic/elastic, the Josephson/potential, and the
electric/kinetic energies for the case of a junction/chain.

Coupling leads to splitting of the dispersion relation of
small oscillations into N eigenmodes with different symme-
tries and propagation velocities:8,14

cn =
[

1 − 2S cos
πn

N + 1

]−1/2

, (n = 1,2, . . . ,N ). (10)

The slowest mode n = N corresponds to out-of-phase (anti-
symmetric) oscillations in neighbor junctions and the fastest,
n = 1, to the in-phase (symmetric) oscillations in all the
junctions.18

B. A single soliton in the unperturbed CSGE

For the solitonic motion with a constant velocity u, ϕ(x,t) =
ϕ(x − ut), the unperturbed CSGE Eq. (6) with α = γ = 0 can
be written in the simple vector form:10[

A−1
ij − u2E

]
ϕ′′ = sin ϕ. (11)

Here, E is the unitary matrix. This equation is essentially
similar to the static CSGE, for which the first integral is
known.9 Therefore we can in a similar manner write the first

integral for the solitonic motion:

1

2
ϕ′

j

[
A−1

ij − u2E
]
ϕ′

i −
N∑

i=1

[1 − cos ϕi] = C. (12)

For a single soliton, the constant C = 0 because at the infinity
ϕi = ϕ′

i = 0. From comparison with the general expression
for the energy density Eq. (9), it is easily seen that the soliton
energy is twice the magnetic/elastic energy:

Esol = 2Em =
∫

dxϕ′
j A−1

ij ϕ′
i , (13)

as is also the case for the soliton in the SG equation.4

The exact soliton solution in the CSGE is not yet known.
However, an approximate composite soliton solution has
been proposed, verified by numerical simulations and by
perturbation correction calculations.9,10 It is represented by a
linear superposition of solitonic waves Eq. (3), corresponding
to different eigenmodes:

ϕi �
N∑

n=1

κn,iFn, (i = 1,2, . . . ,N ), (14)

Fn = 4 arctan

[
exp

(
x − ut

λn

√
1 − u2/c2

n

)]
. (15)

Here, i is the junction number, λn is the characteristic length
scale of the eigenmode n:

λn =
[

1 − 2S cos
πn

N + 1

]−1/2

(n = 1,2, . . . ,N ). (16)

Note that λ−2
n are eigenvalues of the coupling matrix Aij and

coefficients κn,i are components of the eigenvectors of Aij,
normalized so that

∑N
n=1 κn,i = 1 in the junction containing

the soliton and zero in all other junctions.10,18 Thus the soliton
consists of a 2π kink in one junction and ripples in all other
junctions. The soliton shape (coefficients κn,i) does depend
on the junctions number and is, for example, different for the
soliton in the outmost and in the central junctions of the stack.
Amplitudes of ripples in the neighbor junctions depend on the
coupling strength and can be significant in the strong-coupling
case S � 0.5. The ripples decrease with the distance from the
soliton both along and across the junctions.

As discussed in Ref. 9, the static soliton energy in the
CSGE is larger than that in the single SG equation both due
to presence of ripples in neighbor chains and reconstruction
of characteristic length scales Eq. (16). Let’s, for example,
estimate the energy in the simplest case N = 2. In this case
the multicomponent soliton, Eq. (14), becomes18

N = 2 :

{
ϕ1 = F1+F2

2 , λ1 = (1 − S)−1/2 ,

ϕ2 = F1−F2
2 , λ2 = (1 + S)−1/2 .

(17)

Substituting those into Eq. (13) and taking into account that
A−1

1,1 = A−1
2,2 = 1/(1 − S2) and A−1

1,2 = A−1
2,1 = S/(1 − S2), we

obtain

Esol(N = 2) = 2

1 − S2

[
λ−1

1 (1 + S) + λ−1
2 (1 − S)

]
= 4[(1 + S)−1/2 + (1 − S)−1/2]. (18)
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For S = 0.5, we get Esol(N = 2) � 8.92, which is �1.12 times
larger than Esol(N = 1) = 8 for a single junction, in good
agreement with numerical simulations.9 The soliton energy
increases with N and saturates at �3.6Esol(N = 1) in the
strong-coupling case, S = 0.5.19

The shape of the soliton in the CSGE experiences strong
metamorphosis in the dynamic case.9,10 Indeed, since the soli-
ton components Fn, Eq. (14), experience Lorentz contraction
at different characteristic velocities cn, Eq. (10), the relative
shape of the soliton does not remain the same as in the
static case. When u approaches the slowest velocity cN ,
the corresponding component n = N gets contracted, while
the rest of the soliton remains uncontracted. Such a
partial Lorentz contraction was confirmed by numerical
simulations.9,10 The soliton survives even at superluminal
velocity u > cN , however, in this case, the characteristic
length λN becomes imaginary due to the Lorentz factor.
This corresponds to transformation of the corresponding
soliton component FN into the out-of-phase plasma wave.9

A similar process of decomposition of soliton components
into plasma waves with corresponding symmetries occurs
when u exceeds any of the characteristic velocities cn.10

The phenomenon resembles Cherenkov emission from a
superluminal particle9,10,15 with the exception that the speed of
light is multiple valued, Eq. (10), and the dispersion relation
is different.

Multisoliton states in the CSGE are dominated by a pro-
found metastability,9,12,20 i.e., for given boundary conditions,
a large variety of metastable soliton distributions is possible.
Moving solitons interact with linear waves, which leads to
appearance of geometrical resonances (standing waves) in
finite-size systems. Note that a soliton in the CSGE can excite
all eigenmodes Eq. (10), which leads to a large variety of
geometrical resonances.8,13

C. Breathers

Breather is a bound soliton-antisoliton pair. The breather
solution of the SG equation Eq. (2) in the center-of-mass frame
is4

ϕ = 4 arctan

{
tan ν sin[(cos ν)t]

cosh[(sin ν)x]

}
. (19)

Here, 0 < ν < π/2 is determining the breather amplitude
ϕBr = 4ν. The breather is oscillating without annihilation or
decay at a frequency ωBr = cos ν, which is always less than
the plasma frequency ωBr < 1. The solution (19) is valid for
an infinite system L = ∞. A more complicated solution for
the finite size system can be found in Ref. 21. The total energy
of the breather EBr = 16 sin ν is smaller than the energy of
two static solitons EBr < 2Esol = 16, leading to binding of
the soliton and the antisoliton.

Finite dissipation α > 0 leads to decay of the breather
and facilitates soliton-antisoliton annihilation. The decay is
primarily caused by the viscous damping of the soliton-
antisoliton motion. However, minor radiative losses also
appear.1 A qualitative change of the wave form takes place
upon the soliton-antisoliton annihilation. Initially, the soliton-
antisoliton pair (4ν � 2π ) shrinks, i.e., the maximum separa-
tion between the pair �x ∼ 1/ tan ν � 1 gradually decreases

after every collision. At 4ν � π , the soliton and the antisoliton
completely merge and can no longer be distinguished. Further
decay (reduction of ν) leads to expansion of the breather.
From Eq. (19), it follows that for small ν � 1 the size of
the breather is ∝1/ sin ν. Eventually, the breather turns into
the longitudinal plasma wave with ωBr = cos ν � 1 and the
wave number kx � sin ν � 0. This accomplishes the soliton-
antisoliton annihilation.

Breathers play role not only in soliton-antisoliton anni-
hilation and the opposite (time-reversal) process of creation
(or penetration) of the soliton.19 Breathers also interact with
traveling waves and external forces.1 In Ref. 16, it was argued
that breathers in the CSGE can help to pump energy from the
external dc-power supply [γ term in Eq. (4)] into the oscillating
traveling waves, which leads to appearance of self-oscillations
in the dc-driven CSGE with γ > 0. The phenomenon may find
practical applications for generation of coherent (superradiant)
THz sources based on stacked intrinsic Josephson junctions in
high-temperature superconductors.17

In the CSGE, we will consider two distinctly different types
of breathers (referred to as the horizonal and the vertical):
(i) the “horizontal” breather corresponds to a direct collision
of a soliton and an antisoliton in the same junction and (ii)
the “vertical” breather corresponds to an indirect collision of
a soliton and an antisoliton in different junctions. Unlike the
horizontal breather, the vertical breather does not annihilate
even in the presence of dissipation, but leads to formation of a
stable static soliton-antisoliton pair.20,22 For N = 2, the static
“vertical” soliton-antisoliton pair has an exact antisymmetric
solution:7 ϕ1 = −ϕ2 = F2. The energy of the vertical pair

Evert(N = 2) = 2 × 8λ−1
2 = 16(1 + S)−1/2 (20)

is smaller than twice the isolated soliton energy Eq. (17),
leading to binding of the pair.

D. Numerical procedure

The system of partial differential equations Eq. (6) for
different N and junction length L is solved numerically using
an explicit finite difference method (central difference in space
and time). The spatial mesh size �x was typically 0.025 and
the temporal �t = �x/10. The absence of spurious effects
was checked by changing mesh sizes and integration times.

Static solitons and antisolitons Eq. (3) were introduced at
certain positions at the initial time. The system is then given
long enough time to relax with a large damping factor α = 2.
The large viscosity prevents significant soliton motion during
the transient period. After that calculations continued with the
desired value of α. The time count t = 0 starts from the end
of the transient period.

All simulations were made for zero external field boundary
conditions at x = ±L/2

∂ϕi/∂x = 0. (21)

Those boundary conditions are nonradiative, i.e., preclude
energy flow through the edges.23 In some cases, dynamic
radiative boundary conditions were employed (still at zero
external field) following Ref. 24. The radiation emission is
facilitated by the finite radiation impedance Z. For more details
see Ref. 24.
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All presented simulations are done for the strong coupling
case S � 0.5, close to the maximum value, relevant, e.g., for
atomic scale intrinsic Josephson junctions.10–13 It was checked
that variation of the coupling strength does not affect the
qualitative presence of the effects described below.

III. RESULTS

A. Unperturbed soliton-antisoliton dynamics

Figure 1 shows time sequence of calculated phase profiles
ϕ1 (thick lines) and ϕ2 (thin lines) for the unperturbed (α =
γ = 0) CSGE in a double junction system N = 2, Eq. (8),
for the horizontal (a) and the vertical (b) breathers. Initially,
at t = 0, the soliton and the antisoliton are well separated.
The solitons collide for the first time approximately at the
same time (t1 � 47). For a single SG equation, the breather,
Eq. (19), would continue to oscillate without decay with the
same periodicity, i.e., the subsequent collision would occur at
time intervals 2t1. This is clearly not the case in the unperturbed
CSGE. (i) First of all, subsequent collisions occur at smaller
time intervals. For example, the second collision for both
breathers occurs at t2 � 59 and t2 − t1 � 12 much shorter than
2t1 � 94. The third collision for the horizontal breather occurs
at t3 � 68 and t3 − t2 � 9 and so on. (ii) Second, the amplitude
of the horizonal breather decays with time. The soliton and
the antisoliton in the vertical breather can not change their
±2π amplitudes, instead, they slow down and eventually form
a static pair. (iii) Travelling waves are emanating from the
breather after the collision.

Figure 2 shows time dependence of ϕ2 for the horizonal
breather from Fig. 1(a). For simplification, the phase ϕ1 (thick
lines) is shown only at the moments of collisions, marked
by arrows. It is clearly seen that waves are emitted from the
breather upon the first soliton-antisoliton collision t1 � 47.
Two wave fronts can be distinguished: the faster (marked
by the lower dashed blue lines) propagate with a constant
speed c1 = 1.414, and the slower (marked by the lower dotted

green lines) with the speed c2 = 0.8165 in agreement with
Eq. (10). A comparison of ϕ1,2 clearly demonstrates that
the faster front has the in-phase ϕ1 = ϕ2 and the slower the
out-of-phase eigenmode symmetry. At the second collision
t2 � 59, two new wave fronts are emitted, marked by the upper
dashed and dotted lines, originated at the second collision point
(x = 0, t = 59). Every subsequent collision leads to a similar
emission. We emphasize that this happens in the absence of
dissipation α = 0. Therefore the breather is decaying in the
unperturbed CSGE entirely due to radiative losses.

Figure 3(a) shows time dependence (counted from the first
collision t1) of the total energy Etot (top black line), the electric
energy Ee, given by the third term in Eq. (9) (middle red
line), and magnetic energy Em, given by the first term in Eq.
(9) (bottom blue line) for the case of a horizontal breather
in the middle i = 5 of N = 10 coupled junctions with the
length L = 100. Calculations are made for the unperturbed
CSGE α = γ = 0 and without radiation emission at the edges
Z = ∞. It is seen that Etot is conserved because there are
no dissipative or radiative losses. Maxima in Ee and minima
in Em occur upon soliton-antisoliton collisions. It is seen
that the period of collisions is decreasing with time and the
magnetic energy Em, related to the breather amplitude, is
rapidly decreasing after the first collision. This is similar to the
N = 2 case shown in Fig. 1(a). At t − t1 > L/cn, the emitted
waves from the breather reflect back from the edges and come
back to the breather. This leads to a very complicated phase
pattern consisting of a breather and bouncing waves from all
N = 10 eigenmodes.

In order to avoid a complication associated with the reflec-
tion and bouncing of the emitted waves, we made simulations
for the same parameters with a finite radiative impedance
Z.24 In this case, the waves partly transmit through the edges
and leave the system. This leads to a decay of propagating
waves, except for the destructively interfering out-of-phase
mode n = N , which can not be emitted (see Ref. 24 for a
discussion of emission efficiency of different eigenmodes).
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FIG. 1. (Color online) Snapshots of time evolution of phase distributions upon soliton-antisoliton collision in the unperturbed (α = γ = 0)
double-junction CSGE for (a) direct collision of a soliton and an antisoliton in the junction 1 and (b) indirect collision of a soliton in the
junction 1 and an antisoliton in the junction 2. Thick and thin lines represent ϕ1 and ϕ2, respectively. It is seen that both the horizontal (a) and
vertical (b) breathers are decaying due to emission of plasma waves, even in the absence of perturbations.
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α

FIG. 2. (Color online) Detailed view of the time evolution of ϕ2

(thin lines) for the horizontal breather from Fig. 1(a). The phase ϕ1

(thick lines) is shown close to the moments of collisions, marked by
arrows. It is seen that emission of two wave fronts occurs at every
collision: the fast front (marked by blue dashed lines) has an in-phase
symmetry ϕ1 = ϕ2 and propagates with the fast velocity c1, the slow
front (marked by green dotted lines) has an out-of-phase symmetry
ϕ1 = −ϕ2 and propagates with the slow velocity cN .

Figure 3(b) presents the results of simulations for the same
case as in (a) but with the finite radiative impedance. It is
seen that initially the total energy is conserved until t − t1 =
L/2c1 � 10 when the fastest in-phase (n = 1) wave front
reaches the edges. After that, the energy starts to decay due to
radiative losses through the edges. At large times the decay of
the breather energy Etot(t) slows down. Simultaneously, long
period beatings in Em due to slow flexural oscillations of the
breather become obvious.

Do the soliton and the antisoliton completely annihilate
upon direct collision in the unperturbed CSGE, or do they
eventually form a stable nondecaying breather? To answer
this question, we performed long-time calculations. In order
to avoid possible radiative losses at the edges from the tail of
the breather itself, we studied even longer systems. Figure 3(c)
shows such simulations for L = 300 and the rest of parameters
the same as in panel (b). A peculiar logarithmic time decay is
clearly seen:

Etot(t) � Etot(0) − β ln(t/t1), (22)

where β depends on the strength of radiative losses at the
edges. Thus unlike in the unperturbed sine-Gordon equation,
in the unperturbed coupled sine-Gordon equation the soliton-
antisoliton pair does annihilate upon the direct collision even
in the absence of dissipation, but the annihilation takes an
exponentially long time. Therefore, for all practical cases, the
breather would appear stable at the time of the experiment,
just like the circulating current in type-II superconductors.25

The indirect soliton-antisoliton collision, shown in
Fig. 1(b), does not lead to annihilation, but to formation of
a static bound pair. The vertical breather, produced upon the
indirect collision decays in a similar way as the horizontal
breather discussed above. The total radiative losses upon the
indirect collision is the difference between the energy of two
isolated solitons and the static vertical soliton-antisoliton pair.
For the double junction, shown in Fig. 1(b), those are given by
Eqs. (18) and (20):

�E(N = 2) = 8[(1 − S)−1/2 − (1 + S)−1/2]. (23)

For S = 0.5, as in Fig. 1(b), about 27% of the initial energy is
lost into radiation.

(a) (b)

(c)

FIG. 3. (Color online) Time dependence of the total Etot, electric Ee, and magnetic Em energies for a horizontal breather in junction i = 5
of the unperturbed N = 10 CSGE system. (a) Without radiative losses at the edges Z = ∞, (b) with radiative losses Z = 105 . Panel (c)
shows a long-time evolution of Etot(t) in the presence of radiative losses. A peculiar logarithmic time decay is seen.
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FIG. 4. (Color online) Phase amplitude of the horizontal breather
as a function of the breather frequency for perturbed SG (N = 1) and
CSGE with N = 2 and 10 for different values of the damping α and
for γ = 0. The dashed line represents the breather solution Eq. (19)
for the SG equation.

B. Soliton-antisoliton dynamics in the perturbed CSGE

Addition of viscous damping α > 0 perturbation term leads
to decay of the breather both in the single SG and in the CSGE.
As seen from Fig. 3, reduction of the amplitude of breather
oscillations is accompanied by the increment of oscillation
frequency. Figure 4 shows the amplitude of the breather as
a function of breather frequency for the SG (N = 1) and the
horizontal breather in the CSGE (N = 2 and 10) with different
damping α. It is seen that in all cases the ϕBr(ωBr) dependence
follows well the theoretical expression Eq. (19), shown by
the dashed line. The scattering of points for the CSGE case is
due to presence of the strong radiative field, which complicates
the determination of the breather frequency and amplitude, see
Fig. 3(a).

C. Collision of a driven soliton with the edge

So far, we considered the case without driving force γ = 0.
As shown above, in the CSGE, soliton and antisoliton always
annihilate due to either radiative or dissipative losses. The
driving force γ 
= 0 replenishes the energy lost in the collision
and may lead to survival of the solitons after the collision.

In a finite system, a moving soliton will inevitably collide
with the edges. For the zero-field boundary condition the
collision of the soliton with the edge is equivalent to a collision
with an image antisoliton.4 After the collision, the image
soliton continues the motion, i.e., the soliton is reflected as
an antisoliton at the edge.4 The shuttling soliton-antisoliton
motion leads to appearance of zero-field steps (ZFS) in current-
voltage (I -V ) characteristics of Josephson junctions.5,26–29 In
this case, current is the dc-driving force I = γ and dc voltage
is time-average of the velocity.

Figure 5 shows snapshots of voltage profiles Vi = ϕ̇i for
a single soliton in the junction i = 1 of a double junction
structure N = 2 for different driving terms γ and for α =
0.01 and L = 200. The time is counted relative to the first
collision t1 with the left edge. Panel (a) corresponds to a small
driving force γ = 0.01 and a slow, subluminal soliton motion
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FIG. 5. (Color online) Instantaneous voltage (velocity) V (x) =
∂ϕ1,2/∂t profiles for a driven soliton motion in a dissipative α = 0.01
CSGE with N = 2 for increasing driving currents (forces) (a) γ =
0.01, (b) γ = 0.015, and (c) γ = 0.03. Time is counted with respect
to the first collision t1 with the left edge of the system. It is seen that
the fast in-phase and the slow out-of-phase waves are emitted upon
the collision t = t1. In panel (b), the soliton velocity u is close to the
velocity of the out-of-phase wave, and the corresponding front is no
longer seen ahead of the soliton. Further increase of u in panel (c)
leads to profound Cherenkov-type radiation behind the soliton.

u = 0.57 < cN . Before the collision, t − t1 = −11, the soliton
was moving to the left. After collision, it is reflected as an
antisoliton moving to the right. Simultaneously, emission of
plasma waves from both the in-phase and the out-of-phase
eigenmodes takes place, similar to the unperturbed case in
Figs. 1(a) and 2. Panels (b) and (c) show snapshots at
larger driving forces and soliton velocities larger than the
out-of-phase plasma wave speed cN . Such superluminal soliton
motion is accompanied by Cherenkov-type radiation behind
the soliton.9,10,15,30 A comparison of snapshots at t − t1 = 144
in panels (a)–(c) indicates that the in-phase radiation front from
the collision event is similar for all shown soliton velocities,
but the out-of-phase front is not visible ahead of the soliton
when the soliton is moving faster than the out-of-phase plasma
wave.31 From this, it is also clear that it is the edge, rather than
the moving soliton that emanates the waves.

D. Soliton resonances in finite-size systems

A shuttling soliton in a finite-size system will periodically
excite traveling waves at the edges. The emanated waves also
propagate along the chains and reflect back at the edges. The
shuttling soliton will interact with bouncing waves. Resonance
will appear if bouncing waves are in-phase with the soliton at
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the edges.32 In Josephson junctions, this leads to appearance
of fine structure of zero field steps in I -V characteristics.26,27

Figure 6(c) shows calculated dc current-voltage γ -〈∂ϕ1/∂t〉
(〈 〉 indicate averaging in time) characteristics for a moderately
short L = 5 double junction N = 2 structure for different
damping parameters α. Calculations are made for the ZFS
mode (1,0), i.e., for a single soliton shuttling in the junction
i = 1. In the second junction, 〈∂ϕ2/∂t〉 = 0. The dc ZFS
voltage is

VZFS(1,0) =
〈
∂ϕ1

∂t

〉
= 2πu

L
. (24)

A strong almost vertical velocity-matching soliton step,
marked as point A in Fig. 6(c), occurs when the soliton velocity
approaches the slowest out-of-phase eigenmode velocity u →
c2. According to Eqs. (10) and (24), for S = 0.5, N = 2
this occurs at 〈∂ϕ1/∂t〉 = 1.026. The rapid increase of the
driving force γ at u → c2 is caused both by a partial Lorentz
contraction of the F2 component of the composite soliton9

and by a rapid enhancement of dissipation due to Cherenkov
radiation, see Figs. 5(b) and 5(c).

Fine structure is seen at the ZFS below the velocity
matching step due to resonances between the shuttling soliton
and bouncing waves emanating upon every collision of the
soliton with edges. In principle, the soliton can interfere
and form resonances with any type of periodically emitted
waves. Those can be waves emitted by the fluxon upon
passing a defect32 or Cherenkov-type emission.30 However, the
resonances seen in Fig. 6(c) are different from the previously
discussed types. Indeed, we consider an ideal system without

defects and Cherenkov emission does not take place at the
corresponding soliton velocities, as demonstrated in Fig. 5(a).

The observed fine structure of ZFS is due to inelastic nature
of soliton collision in the CSGE, even in the absence of
perturbations, as shown in Figs. 1 and 2. This is specific for
the CSGE and is not present in the unperturbed SG equation,
in which the soliton collision is always elastic. Even though,
some radiation appears in the SG in the presence of dissipation
γ 
= 0, the effect is very small.1 For comparison, in Fig. 6(a),
we show ZFS in a single junction case (N = 1), calculated for
the perturbed SG with the same parameters as in Fig. 6(c). The
velocity-matching step at u → 1 and 〈∂ϕ/∂t〉 = 2π/L � 1.26
is clearly seen. Unlike the CSGE case, Fig. 6(c), it is entirely
due to relativistic Lorentz contraction of the soliton, Eq. (3).
Because in this case soliton-image antisoliton collision at
the edges is (almost) elastic, the fine structure is not visible
(a closer inspection reveals the presence of tiny wiggles at
the ZFS).

E. Radiation emission

Coupled systems are interesting from the point of view
of achieving coherent superradiant emission. In particular,
THz emission from stacked intrinsic Josephson junctions in
cuprate superconductors at zero applied magnetic field is being
actively discussed.16,17,23,24

To estimate the emission from the stack at the ZFS, we
employed the dynamic radiative boundary conditions, as in
Ref. 24. The effective radiative impedance was very large
so that radiative losses do not affect soliton dynamics. The
emission power from the left edge of the double junction stack
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FIG. 6. (Color online) Current (driving force)-voltage (velocity) characteristics of a shuttling single soliton in a moderate size systems
L = 5 for (a) a single junction (SG, N = 1) and (c) a double junction stack (CSGE, N = 2), appearance of a fine structure of the zero-field
step due to interference with emitted plasma waves is clearly seen. Panel (e) shows the continuation of I -V characteristics at large bias for
N = 2 and α = 0.02. Panels (b), (d), and (f) show the corresponding emission powers. It is seen that in the double junction system the emission
at the velocity matching part of the zero-field step [point A in (c) and (d)] is at minimum, unlike the single junction case (a) and (b), and the
maximum emission occurs at point B, corresponding to the in-phase geometrical resonance and the Fiske step in the I -V . Above the ZFS, the
system switches to another strongly emitting resonance [point C in (e) and (f)], which represents a breather-type self-oscillation.
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is shown in Fig. 6(d). Noticeably, the emission at the velocity-
matching step A is at minimum, despite a large dissipation
power P = IV , because at point A the soliton is resonating
with the (Cherenkov) out-of-phase eigenmode n = N = 2,
see Fig. 5(a). Even though the oscillation amplitude in each
junction is very large, destructive interference from the two
junctions prevents emission.24 This is qualitatively different
from the single junction N = 1 case, shown in Fig. 6(b), in
which the maximum emission occurs at the velocity matching
step and the emission power is correlated with the total
power IV .

From Fig. 6(d) it is seen that the main emission occurs at
the lower resonance B, which corresponds to the voltage of the
in-phase cavity (Fiske) mode (m,n) = (2,1) in the stack:13,24

Vm,n = m
πcn

2L
. (25)

At this point, the shuttling soliton excites the in-phase
standing wave in both junctions, which leads to constructive
interference and to significant superradiant emission outside
the stack.24 Note that the emission power at the resonance B is
rapidly increasing with decreasing α, unlike for the rest of the
ZFS. This is a clear indication that the geometrical resonance
is indeed taking place at point B, because the emission at the
Fiske step depends on the quality factor of the geometrical
resonance and increases with decreasing α.24

The appearance of the Fiske step at the ZFS provides a clear
evidence that the shuttling soliton in the CSGE can indeed
strongly interact with cavity modes and traveling waves due
to strong emission upon soliton-image antisoliton collisions at
the edges. In a similar manner, the soliton also interacts with
Josephson oscillations when one or several junctions are in the

running (McCumber) state with 〈∂ϕi/∂t〉 � γ /α. This leads
to a large variety of resonant states22 and may lead to self-
oscillation phenomena at geometrical resonance conditions.16

Figure 6(e) shows the continuation of the I -V for the
same N = 2 double junction with α = 0.02 up to higher
bias current. It is seen that at γ > 0.33 the system switches
from the ZFS (1,0) to another strong resonance C before it
goes into the Ohmic (free running) state. At this resonance,
both junctions have the same voltage and are synchronized
in phase. This leads to a large emission, as shown in panel
(f). Such resonances were discussed in Refs. 16,22, and 23.
They may combine 2π soliton kinks with a similarly large
amplitude waves, which may be difficult to disentangle by
just looking at the shapes of phase profiles ϕi(x). However, we
observed that high-order ZFS can be clearly distinguished from
geometrical resonances by comparing the emission frequency:
ZFS emit at the subharmonics of the Josephson frequency28 or
even at non-Josephson frequency,29 while self-oscillations at
geometrical resonances emit at the harmonics of the Josephson
frequency.16

To conclude, we have studied soliton-antisoliton collisions
in the coupled sine-Gordon equation. It was shown that in
contrast to the sine-Gordon equation, a soliton-antisoliton pair
annihilates in the CSGE even in the absence of perturbations.
The annihilation occurs via a logarithmic-in-time decay of a
breather caused by emission of plasma waves. In a dissipative,
dc-driven case, a similar phenomenon leads to a strong cou-
pling between the coupled soliton-antisoliton pairs, breathers,
and propagating waves, which may lead to self-oscillations at
the geometrical resonance conditions. This phenomenon may
be useful for achieving superradiant emission from coupled
oscillators.

*vladimir.krasnov@fysik.su.se
1Yu. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61, 763 (1989).
2O. M. Braun, Yu. S. Kivshar, and A. M. Kosevich, J. Phys. C 21,
3881 (1988).

3S. Lukyanov and A. Zamolodchikov, Nucl. Phys. B 493, 571 (1997).
4D. W. McLaughlin and A. C. Scott, Phys. Rev. A 18, 1652 (1978).
5N. F. Pedersen, M. R. Samuelsen, and D. Welner, Phys. Rev. B 30,
4057 (1984).

6A. K. Zvezdin and V. V. Kostyuchenko, J. Exp. Theor. Phys. 89,
734 (1999).

7S. Sakai, P. Bodin, and N. F. Pedersen, J. Appl. Phys. 73, 2411
(1993).

8S. Sakai, A. V. Ustinov, H. Kohlstedt, A. Petraglia, and N. F.
Pedersen, Phys. Rev. B 50, 12905 (1994).

9V. M. Krasnov and D. Winkler, Phys. Rev. B 56, 9106 (1997); V. M.
Krasnov, ibid. 60, 9313 (1999); V. M. Krasnov and D. Winkler, ibid.
60, 13179 (1999).

10V. M. Krasnov, Phys. Rev. B 63, 064519 (2001).
11R. Kleiner and P. Müller, Phys. Rev. B 49, 1327 (1994).
12S. O. Katterwe and V. M. Krasnov, Phys. Rev. B 80, 020502(R)

(2009).
13S. O. Katterwe, A. Rydh, H. Motzkau, A. B. Kulakov, and V. M.

Krasnov, Phys. Rev. B 82, 024517 (2010).

14R. Kleiner, Phys. Rev. B 50, 6919 (1994).
15G. Hechtfischer, R. Kleiner, A. V. Ustinov, and P. Müller, Phys.

Rev. Lett. 79, 1365 (1997).
16V. M. Krasnov, Phys. Rev. B 83, 174517 (2011).
17L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li,

M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi,
T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, Science 318,
1291 (2007).

18Note a different numeration of eigenmodes in Refs. 9 and 10 m =
N − n.

19V. M. Krasnov, Phys. Rev. B 65, 096503 (2002).
20V. M. Krasnov, V. A. Oboznov, V. V. Ryazanov, N. Mros,

A. Yurgens, and D. Winkler, Phys. Rev. B 61, 766 (2000).
21G. Costabile, R. D. Parmentier, B. Savo, D. W. McLaughlin, and

A. C. Scott, Appl. Phys. Lett. 32, 587 (1978).
22R. Kleiner, T. Gaber, and G. Hechtfischer, Phys. Rev. B 62, 4086

(2000).
23X. Hu and S. Z. Lin, Supercond. Sci. Technol. 23, 053001

(2010).
24V. M. Krasnov, Phys. Rev. B 82, 134524 (2010).
25M. Tinkham, Introduction to Superconductivity (Dover, 2004).
26J. J. Chang, J. T. Chen, M. R. Scheuermann, and D. J. Scalapino,

Phys. Rev. B 31, 1658 (1985).

134525-8

http://dx.doi.org/10.1103/RevModPhys.61.763
http://dx.doi.org/10.1088/0022-3719/21/21/011
http://dx.doi.org/10.1088/0022-3719/21/21/011
http://dx.doi.org/10.1016/S0550-3213(97)00123-5
http://dx.doi.org/10.1103/PhysRevA.18.1652
http://dx.doi.org/10.1103/PhysRevB.30.4057
http://dx.doi.org/10.1103/PhysRevB.30.4057
http://dx.doi.org/10.1134/1.559035
http://dx.doi.org/10.1134/1.559035
http://dx.doi.org/10.1063/1.353095
http://dx.doi.org/10.1063/1.353095
http://dx.doi.org/10.1103/PhysRevB.50.12905
http://dx.doi.org/10.1103/PhysRevB.56.9106
http://dx.doi.org/10.1103/PhysRevB.60.9313
http://dx.doi.org/10.1103/PhysRevB.60.13179
http://dx.doi.org/10.1103/PhysRevB.60.13179
http://dx.doi.org/10.1103/PhysRevB.63.064519
http://dx.doi.org/10.1103/PhysRevB.49.1327
http://dx.doi.org/10.1103/PhysRevB.80.020502
http://dx.doi.org/10.1103/PhysRevB.80.020502
http://dx.doi.org/10.1103/PhysRevB.82.024517
http://dx.doi.org/10.1103/PhysRevB.50.6919
http://dx.doi.org/10.1103/PhysRevLett.79.1365
http://dx.doi.org/10.1103/PhysRevLett.79.1365
http://dx.doi.org/10.1103/PhysRevB.83.174517
http://dx.doi.org/10.1126/science.1149802
http://dx.doi.org/10.1126/science.1149802
http://dx.doi.org/10.1103/PhysRevB.65.096503
http://dx.doi.org/10.1103/PhysRevB.61.766
http://dx.doi.org/10.1063/1.90113
http://dx.doi.org/10.1103/PhysRevB.62.4086
http://dx.doi.org/10.1103/PhysRevB.62.4086
http://dx.doi.org/10.1088/0953-2048/23/5/053001
http://dx.doi.org/10.1088/0953-2048/23/5/053001
http://dx.doi.org/10.1103/PhysRevB.82.134524
http://dx.doi.org/10.1103/PhysRevB.31.1658


RADIATIVE ANNIHILATION OF A SOLITON AND AN . . . PHYSICAL REVIEW B 85, 134525 (2012)

27N. F. Pedersen and D. Welner, Phys. Rev. B 29, 2551
(1984).

28B. Dueholm, O. A. Levring, J. Mygind, N. F. Pedersen,
O. H. Soerensen, and M. Cirillo, Phys. Rev. Lett. 46, 1299
(1981).

29J. B. Hansen and J. Mygind, Phys. Rev. B 32, 178 (1985).
30E. Goldobin, A. Wallraff, N. Thyssen, and A. V. Ustinov, Phys. Rev.

B 57, 130 (1998).

31Noticeably, the speed of the out-of-phase waves �0.7 is lower
than c2(N = 2) � 0.816, Eq. (10). This may either be due to the
dispersion relation of plasma waves ωp(k) = (1 + k2)1/2, or to
nonlinearity: Eq. (10) is valid only for small amplitude waves. Due
to nonlinearity of the SG, the larger is the amplitude, the slower is
the speed of waves, see, e.g., Ref. 21.

32A. A. Golubov and A. V. Ustinov, IEEE Trans. Magn. MAG-23,
781 (1987).

134525-9

http://dx.doi.org/10.1103/PhysRevB.29.2551
http://dx.doi.org/10.1103/PhysRevB.29.2551
http://dx.doi.org/10.1103/PhysRevLett.46.1299
http://dx.doi.org/10.1103/PhysRevLett.46.1299
http://dx.doi.org/10.1103/PhysRevB.32.178
http://dx.doi.org/10.1103/PhysRevB.57.130
http://dx.doi.org/10.1103/PhysRevB.57.130
http://dx.doi.org/10.1109/TMAG.1987.1064950
http://dx.doi.org/10.1109/TMAG.1987.1064950

