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Alternating superconductor-insulator transport characteristics in a quantum vortex chain
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Experimental studies of magnetoresistance in thin superconducting strips subject to a perpendicular magnetic
field B exhibit a multitude of transitions, from superconductor to insulator and vice versa. Motivated by this
observation, we study a theoretical model for the transport properties of a ladderlike superconducting device
close to a superconductor-insulator transition. In this regime, strong quantum fluctuations dominate the dynamics
of the vortex chain forming along the device. Utilizing a mapping of the vortex system at low energies to
one-dimensional fermions at a chemical potential dictated by B, we find that a quantum phase transition of the
Ising type occurs at critical values of the vortex filling, from a superconducting phase near integer filling to an
insulator near half filling. The current-voltage (I-V) characteristics of the weakly disordered device in the presence
of a d.c. current bias I is evaluated, and investigated as a function of B, I , the temperature T , and the disorder
strength. In the Ohmic regime (I/e � T ), the resulting magnetoresistance R(B) exhibits oscillations similar
to the experimental observation. More generally, we find that the I-V characteristics of the system manifests a
dramatically distinct behavior in the superconducting and insulating regimes.
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I. INTRODUCTION

In superconducting (SC) systems of reduced dimensionality
(i.e., thin films and wires), transport properties are strongly af-
fected by fluctuations in the superconducting order parameter.
The most prominent manifestation of the role of fluctuations
is the appearance of a finite dissipative resistance below the
mean-field critical temperature Tc of the bulk superconductor.
This failure of the hallmark of superconductivity—the zero-
resistance character—may persist to very low temperatures
T � Tc, where pair breaking is negligible and the electronic
state can still be described in terms of complex order parameter
field representing the bosonic degrees of freedom. In this
regime, while fluctuations in the amplitude of the order
parameter are suppressed, fluctuations in the phase field play a
dominant role. In particular, when topological defects (vortices
and phase slips) develop dynamics, a dissipative voltage is
generated in response to a current bias. In the T → 0 limit,
their quantum dynamics dominates and may lead to the
formation of a liquid phase, characterized by a metallic or
insulating behavior of the electronic system.1,2

In the one–dimensional (1D) case (i.e., in SC wires of
width and thickness smaller than the coherence length ξ ) the
resistance essentially never vanishes at finite T due to thermal
activation of phase slips3,4 (for T � Tc) or their quantum
tunneling at lower T .2,5,6 In contrast, in the two-dimensional
(2D) case (SC films), superconductivity is well established at
sufficiently low T . However, by tuning an external parameter,
which leads to proliferation of free vortices, it is possible to
drive a quantum (T → 0) superconductor-insulator transition
(SIT).1,7 Employing the concept of charge-flux duality,8 one
may relate the conduction properties of the electronic system
to the various phases of vortex matter by interchanging the
roles of current and voltage. Thus the SC phase is associated
with a vortex solid, while the insulator can be viewed as a
vortex superfluid.

Experimentally, one of the most convenient ways to induce
a tunable SIT in SC films is by application of a perpendicular
magnetic field B. At fixed T , a positive magnetoresistance

R(B) is typically observed in a wide range of B. The SIT is
then identified in the data as a crossing point of these isotherms
at a critical field Bc, separating a SC phase for B < Bc from
an insulating phase for B > Bc. At finite T , in both phases the
resistance is typically finite, and the distinction between the
phases is deduced from the trend of R vs T : dR/dT > 0
indicates a superconductor, and dR/dT < 0 an insulating
behavior.

Recent experimental studies of InO devices characterized
by a strip geometry,9 namely, a SC wire of width comparable
to ξ, offer an opportunity to probe the crossover from a 1D to
2D quantum dynamics of the topological phase defects. The
prominent observation is that in the presence of a perpendicular
field B, the magnetoresistance R(B) exhibits oscillations
whose amplitude is sharply increasing at low T , in striking
resemblance to the behavior of Josephson arrays10 and SC
network systems.11 Moreover, the SIT at a high field Bc

appears to be preempted by a multitude of transitions at
lower fields, from a SC to an insulator or vice versa. These
are indicated by multiple crossing points between different
isotherms R(B).

The periodicity of the above-mentioned oscillations is
consistent with a single flux penetration to the sample. This
suggests that the observed SC or insulating behavior of the
system is determined by commensuration of vortices within
the strip area. In particular, when an integer number of vortices
can be fitted along the strip forming a uniformly spaced
chain, superconductivity may be supported even at sufficiently
high B such that a large fraction of the sample area turns
normal. However, deviation from commensurability of the
vortex filling forces a frustrated vortex configuration, thereby
weakening superconductivity. In this case, the quantum me-
chanical character of vortices is manifested by the formation
of delocalized vortex states, facilitating their mobility across
the width of the strip.12 As a consequence, the tuning of vortex
filling away from commensurability can possibly induce a
quantum phase transition to a liquid state, of a metallic10

or insulating character. This commensurate-incommensurate
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FIG. 1. (Color online) (a) Top view on a chain of vortices in a
superconducting strip. (b) The line-junction model for the system;
purple dashed lines represent the Josephson coupling gJ , and brown
dotted lines the Coulomb interaction U between the two SC wires.

effect may also be manifested as magnetization plateaus, as
was predicted in a theoretical study of bosonic ladders.13

In a recent paper14 we have studied this phenomenon
within a theoretical model for a quantum vortex chain in a
ladderlike SC device (see Fig. 1), which particularly addresses
the strongly quantum fluctuation regime where the parameters
are close to a SIT. It was shown that such system may exhibit
multiple quantum phase transitions of the Ising type, man-
ifested as SC-insulator oscillations of the Ohmic resistance
R(T ,B). This reflects an intimate correspondence between
charge-flux duality across a SIT, and the order-disorder duality
characterizing the Ising transition at 1 + 1 dimensions.

In this paper we present a detailed theory for the electric
transport properties of the quantum vortex chain in a weakly
disordered SC ladder. In particular, we derive the current-
voltage (I-V) characteristics of the device in the presence
of a d.c. current bias I , and investigate their behavior as
a function of B, I , the temperature T , and the disorder
strength. We find that the I-V characteristics of the system
manifest a dramatically distinct behavior in the SC and
insulating regimes. In the Ohmic regime (I/e � T ), this yields
an oscillatory magnetoresistance R(T ,B) which exhibits T

dependence compatible with the experimental data.
The paper is organized as follows. In Sec. II we construct

the line-junction model for the SC strip, and derive its mapping
to 1D fermions and consequently to the quantum Ising chain.
In Sec. III we provide a detailed calculation of the dissipative
voltage in a current-biased strip, and derive expressions for the
nonlinear I-V characteristics and T -dependent magnetoresis-
tance in the various regimes (the SC phases, insulating phases,
and critical regions). Our conclusions and a discussion of the
relation to further experiments are summarized in Sec. IV.

II. MODEL

We consider a thin SC strip of length L � ξ and width
w � ξ , subject to a strong perpendicular magnetic field below
the 2D SIT (i.e., B � Bc). A 1D chain of vortices is formed

along the central axis of the strip, which can be viewed as a
1D system of particles in the presence of a self-organized
effective potential dictated by the combination of vortex-
vortex interaction and the boundary conditions [Fig. 1(a)].
In particular, the interface with the vacuum at the strip
edges induces an effective image charges potential,15 and
bulk superconductor contacts connected to both ends of the
strip enforce a fixed phase of the SC order parameter at
x = ±L/2. As a result, the effective potential acquires the
form of a periodic 1D lattice of pinning sites separated by
a uniform spacing a = L/N , where N = I[BwL/�0] (with
�0 = hc/2e the flux quantum, and I[z] the integer value of
z) denotes the total number of vortices.10 Assuming further
that the high vortex density in this case leads to near merging
of their cores along the central axis of the strip, the system
becomes essentially equivalent to a line-junction formed by
a pair of parallel SC wires separated by a normal barrier
[Fig. 1(b)], subject to a magnetic field B perpendicular to
the junction plane.

In the low-T regime (i.e., far below Tc), pair breaking is
negligible and the properties of this system are dominated by
quantum phase fluctuations of the collective SC condensate. It
is therefore possible to model it as a two-leg bosonic ladder13

(or, equivalently, a ladderlike Josephson array),10 where a
coordinate x = ja (j integer) denotes the locations of vortex
cores in the continuum limit. The dynamics of the phase field
in the wires [φn(x,t) with n = 1,2] is governed by the effective
1D Hamiltonian

H0 = H1 + H2 + Hint, (1)

in which (using units where h̄ = 1)

Hn = 1

2

∫ L/2

−L/2
dx

[
U0ρ

2
n + ρs

4m
(∂xφn)2

]
, (2)

Hint =
∫ L/2

−L/2
dx [−gJ cos(φ1 − φ2 − qx) + Uρ1ρ2] . (3)

Here the operator ρn(x) denotes density fluctuations of Cooper
pairs in wire n, and can be represented as16

ρn(x) = − 1

π
∂xθn(x) + ρ0

∑
p �=0

ei2p(πρ0x−θn) (4)

in terms of the conjugate field θn(x) satisfying
[φn(x),∂xθn(x ′)] = iπδ(x ′ − x). The first term in Eq. (2)
hence describes a charging energy; ρs is the superfluid density
(per unit length) assumed to be monotonically suppressed by
increasing B, ρ0 is the average density of Cooper pairs and m

is the electron mass. The interwire coupling Eq. (3) consists
of a Josephson term and an interwire Coulomb interaction,
of coupling strengths gJ and U , respectively. Finally, the
parameter

q = 2π
w(B − BN )

�0
, BN = NB0 , B0 ≡ �0

wL
(5)

parametrizes the deviation of the vortex density from the
closest commensurate value (i.e., it denotes vortex doping).
We note that H0 describes an ideal system, to which we later
add a disorder potential.

To further analyze the properties of this model, it is
convenient to introduce symmetric and antisymmetric phase
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and charge fields via the canonical transformation

φ± = 1√
2

(φ1 ± φ2), θ± = 1√
2

(θ1 ± θ2). (6)

In terms of these variables, the Hamiltonian (1) is separable:

H0 = H+ + H− where H+ = H
(+)
LL ,

H− = H
(−)
LL +

∫ L/2

−L/2
dx[−gJ cos(

√
2φ− − qx)

+ gc cos(
√

8θ−)]; (7)

H
(±)
LL ≡ v±

2π

∫ L/2

−L/2
dx

[
K±(∂xθ±)+

1

K±
(∂xφ±)2

]
(8)

and the parameters are given by

K± =
√

4m(U0 ± U )

π2ρs

,

(9)

v± =
√

ρs(U0 ± U )

4m
, gc = 2Uρ2

0 .

Here we have accounted for the most relevant interaction terms
dominating the low-energy theory. We hence neglect cross
terms appearing in higher powers of ∂xθ±, ∂xφ±, as well as
umklapp terms included in the charging energy of Eq. (2),
which are effectively suppressed due to the rapidly oscillating
factor in Eq. (4). The symmetric mode (corresponding to the
plasmons of total charge) governed by H+ is therefore gapless.
However, the behavior of the antisymmetric mode is dictated
by the competition between two interacting (cosine) terms,
and depends crucially on the value of the Luttinger parameter
K−. Below we focus on the regime of parameters close to a
SIT in 1D wires, where quantum fluctuations in the phase and
charge fields are maximized (i.e., K− ≈ Kc = 2) (see Ref. 6).

We next define new canonical fields

φ ≡ 1√
2
φ−, θ ≡

√
2θ− (10)

in terms of which H
(−)
LL acquires the form of a Luttinger

Hamiltonian with an effective Luttinger parameter K = K−/2.
For K− close to Kc = 2, we thus obtain K ≈ 1. This yields

H− = v−
2π

∫ L/2

−L/2
[(∂xθ )2 + (∂xφ)2]

+
∫ L/2

−L/2
dx [−gJ cos(2φ − qx) + gc cos(2θ )] . (11)

This model can be refermionized by introducing right (R) and
left (L) moving spinless fermion fields17

ψR,L = 1√
2πα

e±ikF xei(∓φ+θ), (12)

in terms of which H− becomes a free Hamiltonian. Here
the short-distance cutoff α is set by the lattice constant a

characterizing the vortex chain, and the Fermi momentum
kF = π/a + q is determined by the vortex filling factor [see
Eq. (5)]. Quite interestingly, this implies that near a SIT, it is
natural to adapt a duel representation of this system in terms

of fermionic vortex fields. This stems from the approximate
self-duality of H− (i.e., its symmetry to exchange of φ and θ ),
implying that the natural degrees of freedom are composites
of a pair charge (2e) and a unit of flux quantum.

The fermionic representation of H− is given by

H− =
∫

dx{v−[ψ†
R(x)(−i∂x)ψR(x)

−ψ
†
L(x)(−i∂x)ψL(x)]

−μv[ψ†
R(x)ψR(x) + ψ

†
L(x)ψL(x)]

− J [ψ†
R(x)ψL(x) + ψ

†
L(x)ψR(x)]

+V [ψ†
R(x)ψ†

L(x) + ψL(x)ψR(x)]}, (13)

where J = παgJ , V = παgc and the vortex chemical poten-
tial is μv = πv−q, which vanishes at commensurate fillings.
Following the analogous problem of spin-1/2 ladders,17,18 it is
useful to decompose the complex fermions Eq. (12) in terms
of the Majorana fields

η1ν = 1√
2

(ψν + ψ†
ν ), η2ν = 1

i
√

2
(ψν − ψ†

ν ) (14)

(ν = R,L). Recasting Eq. (13) in k space and using the Fourier
transformed fields ηjν,k = η

†
jν,−k , we obtain

H− =
∑

k

�
†
kHk�k,

Hk ≡

⎛⎜⎜⎝
v−k i�(0)

u iμv 0
−i�(0)

u −v−k 0 −iμv

−iμv 0 v−k −i�
(0)
d

0 iμv i�
(0)
d −v−k

⎞⎟⎟⎠
(15)

�
†
k ≡ ( η1R,k, η2L,k, η2R,k, η1L,k );

here
�

(0)
u,d = J ± V (16)

denote the gaps in the excitation spectrum for commensurate
vortex filling (μv = 0), in which case Hk decouples into two
independent blocks. Since J,V are positive, the u sector is
higher in energy.

We now focus on the case of interest, where the system is
assumed to be in the SC phase but close to a SIT so that the
Josephson energy J is slightly larger than V , and �

(0)
d � �(0)

u .
In this case, the high-energy sector u can be truncated, and the
low-energy properties are governed by the d-type fermions.
Most notably, the gap �

(0)
d can change sign upon tuning of J

below the critical value Jc = V where �
(0)
d = 0. Indeed, for

μv = 0 each species of free massive fermion models described
by (15) can be independently mapped to an Ising chain in a
transverse field.7,19 In particular, the low-energy sector d can
be described by the spin Hamiltonian

Hd = −j
∑

j

σ z
j σ z

j+1 − V
∑

j

σ x
j , (17)

which possesses a quantum critical point at J = V .
When finite vortex doping is introduced by tuning B away

from BN such that μv �= 0, the original d and u sectors mix.
However, the resulting long wavelength theory can still be
cast in terms of two decoupled sectors denoted d (low) and
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u (high). Moreover, the energy spectrum

εu,d (k) = [J 2 + Ṽ 2 + v2
−k2 ± 2

√
J 2Ṽ 2 + (μvv−)2k2]1/2,

Ṽ ≡
√

V 2 + μ2
v (18)

reduces in the k → 0 limit to the same form as the μv = 0
case

εu,d (k) ≈ �u,d + 1

2

v2
u,dk

2

�u,d

, (19)

with the modified velocities

v2
u,d = v−

(
1 ± μv

J Ṽ

)
(20)

and modified gaps given by

�u,d (B) = J ± Ṽ . (21)

The B dependence of �u,d is oscillatory due to the dependence
of Ṽ on the vortex doping μv [Eq. (18)]. While �u remains
positive and large for arbitrary μv , a quantum phase transition
occurs at a critical value of μv [which can be traced back to a
sequence of critical fields B(N)

c via μv(q) and Eq. (5)], where
�d changes sign. As B → B(N)

c , one expects the scaling

|�d | ∼ ∣∣B − B(N)
c

∣∣. (22)

As we show in the next section, the above-discussed Ising-like
quantum critical points correspond to SC-insulator transitions,
marked by a dramatic change in the transport properties.

III. I-V CHARACTERISTICS AND MAGNETORESISTANCE

We next study the transport properties of the system in the
presence of a weak scattering potential, generically induced
by random, uncorrelated impurities along the coupled wires.
To this end, we include a linear coupling of the density
operator ρn(x) [Eq. (4)] to a disorder potential VD(x) in the
Hamiltonian. The leading contribution to dissipation arises
from the backscattering term of the form16

HD =
∑
n=1,2

∫
dxζn(x) cos{2θn(x)} (23)

where we assume

〈ζn(x)〉 = 0, 〈ζn(x)ζn′(x ′)〉 = Dδ(x − x ′)δn,n′ . (24)

Here and throughout the rest of the section, the definition
of 〈 〉 includes disorder averaging. As a result of phase slips
generated by HD , a finite voltage will develop along the SC
strip when driven by a current bias I .

To introduce a d.c. current bias I , we add a time-dependent
term I t to the total charge operator

Q = −2e

π
(θ1 + θ2).

Using Eq. (6), this yields

θ+(x,t) = − π

2
√

2e
Q(x,t) = θ̃+(x,t) − π

2
√

2e
I t (25)

where θ̃+(x,t) describes equilibrium fluctuations (I = 0).
The induced voltage along the strip is then given by

V ≡ 〈V̂ (L/2,t)〉, where the voltage operator V̂ (x,t) is dictated
by the Josephson relation

V̂ = 1

2e
(φ̇1 + φ̇2) = 1√

2e
φ̇+, φ̇+ = i[H,φ+]. (26)

Using H = H0 + HD [Eqs. (7) and (23)] we find

φ̇+(x,t) = v+K+{∂xθ+(x,t)}
−

√
2π

∑
n=1,2

∫ x

−L/2
dx ′ζn(x ′) sin[2θn(x ′,t)]. (27)

The time evolution of φ̇+(x,t) can be expressed as

φ̇+(t) = u(t) ˙̃φ+(t)u†(t), (28)

where ˙̃φ+(t) is the operator in the interaction representation

˙̃φ+(t) = eiH0t φ̇+e−iH0t , (29)

and

u(t) ≡ ei(H0+HD )t e−iH0t . (30)

Assuming a weak disorder, which allows a perturbative
treatment of HD , u(t) is given to first order by

u(t) = 1 + i

∫ t

−∞
dt ′HD(t ′). (31)

Substituting Eq. (31) in Eq. (28), one obtains

〈φ̇+(x,t)〉 = i

∫ t

−∞
dt ′〈[HD(t ′), ˙̃φ+(x,t)]〉. (32)

Using Eqs. (23), (26), and (32), and recalling Eq. (6), we
obtain an expression for the d.c. voltage

V = V1 + V2 (33)

where

V1(2) ≡ iDLπ

e

∫ t

−∞
dt ′〈[sin (

√
2{θ+(t) ± θ−(t)})

× cos (
√

2{θ+(t ′) ± θ−(t ′)})]〉 (34)

(here θ±(t) ≡ θ±(0,t)). Introducing the operators

A1(2)(x,t) ≡ ei
√

2[θ̃+(x,t)±θ−(x,t)] (35)

where θ̃+ is defined in Eq. (25), we obtain the voltage-current
characteristic

V (I ) = DLπ

4e

∑
n=1,2

∫ ∞

−∞
dt ′i�(t − t ′){ei πI

2e
(t ′−t)

×〈[An(t),A†
n(t ′)]〉 − e−i πI

2e
(t ′−t)〈[A†

n(t),An(t ′)]〉}.
(36)

In terms of the retarded Green’s functions

χ
(n)
ret (t) = −i�(t)〈[An(t),A†

n(0)]〉 = −2�(t)�m{χn(t)} (37)

with

χn(t) ≡ 〈An(t)A†
n(0)〉, (38)
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we finally obtain

V (I ) = DLπ

2e

∑
n=1,2

∫ ∞

0
dt sin

(
πI t

2e

)
�m{χn(t)}

= DLπ

4e

∑
n=1,2

∫ ∞

−∞
dt sin

(
πI t

2e

)
χn(t), (39)

where in the last step we have used the fact that �m{χn(t)} is
the antisymmetric part of χn(t) under t → −t . This correlation
function can be evaluated utilizing the low-energy theory
developed in Sec. II.

To leading order in the perturbation HD , the expectation
value 〈 〉 may be replaced by 〈 〉0, evaluated with respect to H0.
Since the θ+, θ− degrees of freedom are decoupled in H0, the
correlation function

χ1 = χ2 ≡ χ (40)

where

χ (t) = 〈ei
√

2[θ̃+(x,t)+θ−(x,t)]e−i
√

2[θ̃+(0,0)+θ−(0,0)]〉0 (41)

decouples into

χ (t) = χC+(t)χC−(t) + χS+(t)χS−(t)

+χS+(t)χC−(t) + χC+(t)χS−(t) (42)

χC± ≡ 〈cos{
√

2θ±(t)} cos{
√

2θ±(0)}〉±,
(43)

χS± ≡ 〈sin{
√

2θ±(t)} sin{
√

2θ±(0)}〉±.

Here 〈 〉± are evaluated with respect to H±. The symmetric
mode described by H+ is a Luttinger liquid [see Eq. (7)],
hence16

χC+(t) = χS+(t) = lim
ε→0

( −(παT/v+)

sinh{πT (t − iε)}
)1/K+

. (44)

In contrast, as discussed below, the correlations characterizing
the antisymmetric mode [χC−(t) and χS−(t)] depend crucially
on the parameters of (15), and in particular on the magnitude
and sign of the masses �u,d .

To evaluate χC− and χS−, we first note that in terms of
the field θ [Eq. (10)], they correspond to correlation functions
of cos θ , sin θ , which lack a local representation in terms of
fermion fields. However, a convenient expression is available
in terms of the two species of order (σu,d ) and disorder (σ̃u,d )
Ising fields:17,19 for �d > 0,

cos θ ∼ σuσ̃d, sin θ ∼ σ̃uσd . (45)

For �d < 0, the roles of σd , σ̃d are simply interchanged. The
correlators χC−, χS− can therefore be expressed in terms of
Cλ(t) = 〈σλ(t)σλ(0)〉, C̃λ(t) = 〈σ̃λ(t)σ̃λ(0)〉 (λ = u,d), which
have known analytic approximations in the semiclassical
regime (|�λ| � T ):17,20,21

Cλ(t) ∼ |�λ|1/4K0(i|�λ|t), C̃λ(t) ∼ |�λ|1/4 (46)

[with K0(z) the modified Bessel function]. In the quantum
critical regime (|�d | � T ), Cd (t) ∼ C̃d (t) ∼ t−1/4.

Employing Eqs. (44) and (46), it is possible to evaluate
the retarded correlation function and thus V (I ) in either side
of the quantum critical point of the Ising model d. Below
we show that the resulting dramatically distinct behavior of
the dissipative transport in the disordered and ordered phases

of the Ising system identifies them as superconducting and
insulating, respectively.

A. Superconducting phases

We first derive expressions for the I-V characteristics near
commensurate fields BN [Eq. (5)] where �d ∼ �

(0)
d > 0, in

the low-T regime where Eq. (46) holds. Neglecting terms of
order e−�u/T and keeping the first order in D, we obtain form
Eq. (39)

V (1)(I ) = C

∫ ∞

−∞
dt sin

(
πI t

2e

)( −(παT/v+)
sinh(πT (t − iε))

)1/K+

×K0(i�dt),

where C ∝ DL|�u�d |1/4. (47)

For πI
2e

< �d , this yields a nonlinear I-V curve

V (1)(I ) ≈ V (1)
s

√
T

�d (B)
e−�d (B)/T sinh

(
πI

2eT

)
,

V (1)
s ∝ D[�d (B)]K

−1
+ (B)+1/4, (48)

which exhibits a threshold at a critical current Ic = 2e�d

π
in the

limit T → 0. In the Ohmic regime I/e � T , one obtains a
contribution to the magnetoresistance of the form

R(1)(T ,B) ≈ Rs

√
�d (B)

T
e−�d (B)/T ,

Rs ∝ D[�d (B)]K
−1
+ (B)−3/4. (49)

Superimposed on a moderate monotonic increase with B

arising from K+(B) due to the suppression of ρs [Eq. (9)],
the exponential factor leads to a strong decrease and R(1) → 0
at T → 0 as long as �d (B) > 0 is finite. The disordered Ising
phase is thus identified as superconducting: it corresponds to
a state where the phase of the SC order parameter in the two
wires is locked. This suggests that the fields σd physically
represent phase slips in the antisymmetric sector (which are
gapped in this regime).

The above analysis indicates that the first order in D yields
an exponentially small voltage for I,T → 0, suggesting that
one should examine the perturbation scheme in HD [Eq. (23)]
more carefully.22 Indeed, if we evaluate the expectation value
〈 〉 expanding to the next order in D, we find that the correlation
functions χn acquire corrections to Eq. (41) of the form

δχ ∝ D〈e±i2θ1(t)e±i2θ2(t)e∓i2θ1(0)e∓i2θ2(0)〉0. (50)

Using Eq. (6), this can be written as

δχ ∝ D〈ei2
√

2θ+(t)e−i2
√

2θ+(0)〉0. (51)

The resulting contribution to the voltage

V (2)(I ) ≈ DLπ

4e

∫ ∞

−∞
dt sin

(
πI t

2e

)
δχ (t) (52)

is associated with scattering processes, which do not involve
the antisymmetric mode, and hence are not affected by
the superconducting order. These correspond to coincidental
events incorporating two scatterers located on two different
wires simultaneously, and therefore their probability is of
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the order of D2. The gapless symmetric mode experiences
backscattering in such events, similarly to the usual plasmon
mode in a strictly 1D SC wire. Inserting the Luttinger liquid
correlation function

δχ (t) ∼ D

( −(παT/v+)

sinh{πT (t − iε)}
)4/K+

, (53)

we obtain23

V (2)(I ) = V (2)
s

{
B

(
− iI

4eT
+ 2

K+
,1 − 4

K+

)
−B

(
iI

4eT
+ 2

K+
,1 − 4

K+

)}
where V (2)

s ∝ D2 (54)

and B(x,y) = �(x)�(y)
�(x+y) is the β function.

The full I-V characteristic in the SC phases [�d (B) >

T,I/e] can finally be expressed as

V (I ) = V (1)(I ) + V (2)(I ), (55)

where V (1)(I ), V (2)(I ) represent contributions from odd and
even orders in the disorder parameter D, respectively, and can
be viewed as two resistors connected in series. To leading
order in D, they are given by Eqs. (48) and (54), yielding
the I,T dependence depicted in Fig. 2. Note that although the
second term is higher order in the scattering rate D, it becomes
the dominant contribution in the limits T ,I → 0 as the first
term is exponentially suppressed. For I/e � T , this indicates
a power-law I-V relation

V (I ) ∼ D2I κ(B)+1, κ(B) ≡ 4

K+(B)
− 2 (56)

and in the Ohmic regime (I/e � T )

R(T ,B) ∼ D2T κ(B). (57)

By definition of the Luttinger parameters K± [Eq. (9)],
K+ � K− and hence the assumption K− = 2 implies K+ � 2.
As a consequence, the exponent κ(B) [Eq. (56)] is small and
slightly negative. We therefore conclude that in spite of the
phase-locking ordering of the antisymmetric phase mode,
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0.005

0.010

0.015

I �nA�

dV
�d
I�
ar
b.
un
its
� T�0.1K

T�1K

FIG. 2. (Color online) Differential resistance vs current bias in
the superconducting phase for temperatures T = 0.1, 0.2, 0.4, 0.6,
0.8, and 1.0 K, for a fixed B such that �d = 1.0 K and K+ = 2.1
(see text); the disorder parameter is chosen such that Da3/v2

− = 0.1.

the true T ,I → 0 behavior of the electric transport exhibits
an insulating behavior. In practice, however, the insulating
character may be manifested only at extremely low T . At
moderately low T , the subleading term V (1)(I ) is expected to
be appreciable, and indicate a threshold at a critical current Ic,
directly related to an activation gap in the Ohmic resistance
Eq. (49)

ln R ∼ �d = πIc

2e
. (58)

The oscillatory nature of �d (B) as B is tuned through
commensurate and incommensurate values should be
reflected in the B dependence of Ic, which is maximized
at commensurate values BN and vanishes in the vicinity of
incommensurate regimes B ∼ BN+1/2.

B. Insulating phases

We next consider the insulating phase, realized in the
vicinity of incommensurate fields B ∼ BN+1/2 such that
�d < 0. In this case, both species of Ising models u and d

are in the ordered phase, and for T � |�d | the correlation
function characterizing the antisymmetric mode is given up to
exponentially small corrections by a constant

χ−(t) ∼ |�u�d |1/4. (59)

As a result, χ (t) = χ+(t)χ−(t) [Eq. (41)] is dominated by
the Luttinger liquid correlations Eq. (44) characterizing the
symmetric mode. Keeping the leading order in D in Eq. (39),
we thus find an expression for the I-V characteristics of the
form

V (I ) = Vi

{
B

(
− iI

4eT
+ 1

2K+
,1 − 1

K+

)
−B

(
iI

4eT
+ 1

2K+
,1 − 1

K+

)}
,

where Vi ∝ D|�u�d |1/4. (60)

Typical plots of the resulting dynamic resistance dV/dI vs I

are depicted in Fig. 3, indicating a zero-bias peak at I → 0,
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I �nA�

dV
�d

I
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ni
ts
� T�0.1K
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FIG. 3. (Color online) Differential resistance vs current bias in
the insulating phase for temperatures T = 0.1, 0.2, 0.4, 0.6, 0.8, and
1.0 K, for a fixed B such that |�d | = 1.0 K and K+ = 2.1 (see text);
the disorder parameter is chosen such that Da3/v2

− = 0.1.
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in sharp distinction from the SC phase (Fig. 1). For I/e � T ,
we obtain a diverging power law

V (I ) ∼ DI 1−γ (B), γ (B) ≡ 2 − 1

K+(B)
(61)

and in the Ohmic regime ( I
e

� T )

R(T ,B) ∼ DT −γ (B). (62)

Compared to the power-law contributions to dissipation in the
SC phase Eqs. (56) and (57), these results indicate a stronger di-
vergence at low T and I . This behavior stems from the fact that
the antisymmetric mode is in the insulating, charge-ordered
phase, and consequently backscattering processes by a single
impurity are favored. Moreover, since K−1

+ � 1
2 , the exponent

γ (B) > 3/2 indicating that the disorder potential is highly
relevant. In the truly T ,I → 0 limit (i.e., below a crossover
temperature scale Tloc, which depends on the disorder strength
D), the perturbative treatment of HD leading to Eq. (60) is not
valid and localization takes over, yielding an exponentially
diverging resistance.16 We note that at moderately low T and
I , Eq. (60) is still valid and appears to be compatible with the
experimental data.9

C. Critical regime

The above analysis implies that the quantum critical
points at B(N)

c (where �d = 0) correspond to SC-I and
I-SC transitions, alternately, associated with the change of
ordering in the antisymmetric mode from phase-ordered to
charge-ordered ground state. These transitions are marked by
a dramatic qualitative change in the shape of the nonlinear
I-V curves, and in the T dependence of the Ohmic resistance,
as B crosses B(N)

c . However, note that unlike the 2D SIT,
the quantum critical points can not be easily identified in
the transport properties [e.g., as crossing points of isotherms
where R(B,T ) exhibits a metallic behavior]. In the critical
regime (T � |�d |), the antisymmetric mode is characterized
by power-law correlations χ−(t) ∼ t−1/4 and consequently

R(T ,B) ∼ T
1
4 −γ (B). (63)

This reflects once again an insulating behavior, characteristic
to the 1D nature of the system. It stems from the presence of a
gapless mode (the symmetric plasmon), which is not immune
to backscattering processes.

IV. DISCUSSION

In this study, we have shown that the low-T transport
properties of a ladderlike superconducting device subject to
a perpendicular magnetic field may signify a multitude of
quantum phase transitions from a SC to insulating phases
alternately, when its parameters are tuned close to the 2D SIT.
These transitions stem from the quantum mechanical nature
of the vortex chain accommodated along the central axis of
the device, and reflect the competition between a Josephson
coupling and a charging energy between the SC edges of the
device, which govern the antisymmetric phase-charge mode.

The former dominates near commensurate values of the vortex
density, and the latter near incommensurate (half-integer)
densities. The quantum critical points are of the Ising type:
this is a manifestation of the Z2 symmetry characterizing the
antisymmetric mode, associated with interchanging the two
legs of the ladder.

The analysis presented in Sec. III indicates, however,
that the electric transport properties are complicated by
the presence of a gapless symmetric phase-charge mode,
which provides a dissipative environment. As a result, the
voltage response to a current bias does not exhibit a strictly
superconducting behavior even in the phases classified as SC.
Nevertheless, for weakly disordered systems it is possible to
observe a clear signature of the SC nature of these phases at
finite T and I . Subtracting the contribution of backscattering
exclusive to the symmetric mode, which can be viewed as a
resistor connected in series, one obtains an activated behavior
of the I-V curve and the T -dependent resistance [see Fig. 1 and
Eq. (58)]. This behavior is sharply distinct from the insulating
phases, where the differential resistance dV/dI exhibit a
zero-bias anomaly peak [see Fig. 2]. Moreover, in principle it is
possible to detect the quantum critical points (B(N)

c ) separating
the two phases by probing the B dependence of the activated
gap Eq. (58).

It should be noted that the analysis thus far relies on some
crucial simplifying assumptions. In particular, it has been
assumed that the model for the antisymmetric mode is tuned to
a self-dual point, where K− = 2. In this special point, where
both the phase and charge fields are not well defined, the chain
of vortices is exactly describable in terms of free fermions. The
question arises, to what extent our results are robust against
a finite detuning away from the self-dual point (i.e., when
K− = 2 + δK). Such corrections induce interactions among
the Fermions. However, since in both the SC and insulating
phases the Fermions are massive and excitations are gapped,
these interactions can be treated perturbatively as long as
(v−/a)δK � |�d |. This approximation fails when |�d | → 0
and the critical point is shifted, but the Ising-type nature of the
transition is maintained.24 The phenomenology manifested by
the transport properties as discussed above would therefore be
essentially the same.

Another point of concern when adapting the model to
describe a realistic system is the role of finite size effects.
In Sec. III, the correlation functions were evaluated for finite
T assuming that the length of the system L → ∞. However,
we note that the SC nanowires studied (e.g., in Ref. 9)
typically have a finite length of the order of a few microns.
This introduces an additional low-energy cutoff TL ≡ v−/L.
Using typical values of the plasma velocity for v− (see, e.g.,
Ref. 6), we estimate TL ∼ 1 K. This implies that for sub-Kelvin
temperatures, TL effectively replaces T as the low-energy
cutoff. In the SC phases, the activated contribution to the
resistance is therefore expected to be ∼e−�d/TL . Noting that
TL is also associated with the zero-point energy of phase
fluctuations, this represents contribution due to macroscopic
quantum tunneling of vortices out of a metastable state in the
finite-size SC device.25

Finally, we wish to point out that a ladderlike SC de-
vice where the parameters are conveniently tunable (e.g., a
Josephson ladder) can serve as an interesting playground for
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the study of emergent fractional degrees of freedom. In par-
ticular, when the gap �d vanishes, the eigenstates of Eq. (15)
(at zero energy) become Majorana fermions. Therefore, as
recently proposed by Tsvelik,26 inhomogeneous SC devices
can be potentially utilized to realize localized Majorana
modes at interfaces between superconducting and insulating
segments.
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