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Spin density wave induced disordering of the vortex lattice in superconducting La2−xSrxCuO4
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We use small-angle neutron scattering to study the superconducting vortex lattice in La2−xSrxCuO4 as a
function of doping and magnetic field. We show that near optimally doping the vortex lattice coordination and
the superconducting coherence length ξ are controlled by a Van Hove singularity crossing the Fermi level near
the Brillouin zone boundary. The vortex lattice properties change dramatically as a spin-density-wave instability
is approached upon underdoping. The Bragg glass paradigm provides a good description of this regime and
suggests that spin-density-wave order acts as a source of disorder on the vortex lattice.
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I. INTRODUCTION

A commonality across the borocarbides,1–4

cuprates,5 ferropnictides,6 heavy-fermion,7 and organic
superconductors8 is the coexistence of magnetism and
superconductivity. The corresponding order parameters
typically compete9 and often a small perturbation is sufficient
to tip the balance between the two. For example, the magnetism
carried by the rare earth ions R in the borocarbides RNi2B2C
can lead to nearly reentrant superconducting phase diagrams,
and spontaneously forming superconducting vortices at zero
applied field.1–4 Equally, vortices induced under applied
fields may permit enhanced magnetic correlations in the
core regions where the superconducting order parameter
is suppressed.10–13 This idea was put forward to explain
field-induced and field-enhanced magnetic correlations
observed in the cuprate superconductor La2−xSrxCuO4

(LSCO).5,14

Although the effect of static magnetism on moving vor-
tices was recently considered theoretically,15 little is known
about how the presence of magnetic correlations affects
the arrangement of vortices. Here we address the problem
from an experimental point of view. When magnetism and
superconductivity coexist there are at least four relevant length
scales: the penetration depth λ, the vortex core size ξ , the
vortex spacing a0, and the magnetic correlation length ζ . The
vortex spacing a0 ∝ H−0.5 scales with the applied magnetic
field μ0H and in LSCO the magnetic correlation length can be
tuned by varying the doping concentration. Using small-angle
neutron scattering (SANS) we have studied two different
regimes (see Fig. 1); (i) far away from the magnetic ordering
where ξ,ζ � a0 and (ii) entering the magnetic phase where
ζ ∼ a0. In the first regime, where static magnetism is absent,
the vortex lattice (VL) structure and core size are understood
from pure fermiological considerations. In the second regime

with static long-range magnetism, the vortex arrangement
exhibits increasing disorder. We find these regimes to be well
described within the topical Bragg glass paradigm, where
disorder results in an algebraic decay of the translational order
of the vortices.16,17 VL disordering is usually driven by effects
extrinsic to superconductivity such as rare earth magnetism
in RNi2B2C,1–4,18–20 or sample impurities and crystalline
defects.21 In contrast, magnetic and SC order parameters are
intertwined in LSCO; we show that this provides a tunable
source of VL disorder.

As shown in Fig. 1, the appearance of magnetism is, in
essence, concomitant with the suppression of SANS intensity
with field and underdoping. Drawing upon results from the
literature22–24 and observations reported herein, we are also
able to plot the VL structure at low temperature T versus
magnetic field H and doping x.

II. EXPERIMENTAL METHODS

Single crystals of La2−xSrxCuO4 with x = 0.105−0.22
were grown by the traveling solvent floating zone method.25

The static and dynamic magnetic properties of the samples
were characterized using both neutron diffraction and neutron
spectroscopy and good agreement was found between our
data26–28 and previously published results.5,29–32

The SANS experiments reported here were carried out
over a series of experiments using the SANS-I instrument
at SINQ,36 and the D11 and D22 instruments at Institut
Laue-Langevin (ILL). In all experiments we adopted the
experimental geometry where external magnetic fields μ0H

are applied parallel to the crystal c axis, and almost parallel to
the neutron beam. The scattered neutrons are recorded using a
position-sensitive detector placed behind the sample. For each
doping, up to three different neutron wavelengths spanning the
range λn = 5–16 Å were used in order to cover the applied
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FIG. 1. (Color online) Phase diagram of (a) the (T < 3 K) vortex
lattice structure and (b) the magnetism in La2−xSrxCuO4, both
revealed by neutron diffraction. Data points in (a) for x = 0.12,
0.145, 0.16, and 0.22 are from this work whereas x = 0.105, 0.17,
and 0.20 are from Refs. 22,23,33. Circular points are defined by
the onset of a square VL coordination. The field-doping plane in (b),
adapted from Ref. 26, shows schematically the ordered SDW moment
normalized to that at the 1/8 doping. Field-induced order was
reported by Khaykovich et al.31 and later confirmed in Ref. 26. The
temperature-doping plane shows the superconducting dome together
with the onset of static incommensurate SDW order TSDW as seen by
neutron diffraction.26,34 We remark that a similar phase diagram was
proposed for YBa2Cu3Oy .35 The dashed lines indicate the samples
studied in this paper.

field μ0H range of 0.03–10 T. In all cases, a zero-field cooled
background was subtracted from the field-cooled data in order
to leave just the VL signal.

Our experimental setup is shown in Fig. 2 where we
also illustrate the relationship between the VL in the sample
and the quantities extracted at the position-sensitive detector.
Typically, to observe the signal due to the VL, the sample
and cryomagnet are rotated together by angles (such as that
shown by ω in Fig. 2) in order to bring a reciprocal lattice
vector onto the Bragg condition at the detector. Due to both
the finite resolution of the instrument, and the mosaic spread
or imperfection of the VL, the Bragg spots occupy a finite
volume in reciprocal space, and can be described, in a first
approximation, by three widths w�, wq, and w⊥ as shown
in Fig. 2. These three lengths correspond to the angular
widths τω, τr, and τA respectively measured in the SANS
experiment. τr and τA describe the finite size of the Bragg
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FIG. 2. (Color online) A schematic diagram illustrating the
experimental geometry chosen for our experiments. A square VL
in real space forms a two-dimensional reciprocal VL, the properties
of which are recorded by SANS using a position-sensitive detector.
The Bragg spots in reciprocal space exhibit finite widths w�, wq,
and w⊥ that are dependent on both the instrumental resolution
and properties of the VL. These three lengths are estimated at the
detector by recording the angular widths τr and τA within the detector
plane, and τω perpendicular to the detector plane. τω is determined
experimentally by recording the rocking curve, and corresponds to
the rocking curve width.

spot on the detector plane, and τω is the width of a rocking
curve, measured by recording the Bragg spot intensity as a
function of rotation angle ω. In the geometry shown in Fig. 2,
τA (and w⊥) provide a measure of the VL orientational order
about the field axis, while τr (and wq) is dominated by the
SANS instrumental resolution function. The contribution due
to the resolution function is smallest for τω (and w�), which is
sensitive to the VL correlation length along the field direction
(vortex straightness). In each of our measurements, the sample
and the field were rotated together through a wide range of
rocking angles ω spanning ± 5◦ about the neutron beam. Note
that this angular rotation range is typically narrower than the
width of rocking curve in our samples. However, by summing
over the measured rocking angles, diffraction patterns such as
those shown in Figs. 3(a) and 3(b) are obtained, allowing a
determination of the VL properties.

III. RESULTS AND DISCUSSION

A. Vortex lattice morphology

Our observations of the VL structure and coordination
can be quantified in terms of a dimensionless parameter
σ = 4π2μ0H/(
0|G|2) where |G| is the magnitude of the
reciprocal VL vector. For a regular hexagonal VL coordination
σ = √

3/2, while for a square coordination σ = 1. The
definition of σ is useful because it does not require details
of the positions G of Bragg peaks; only the magnitude |G| is
needed. At low fields, the VL is susceptible to orientational
disorder due to impurities or defects in the sample, but
|G| can still be measured. For example, in Fig. 3(a) the
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FIG. 3. (Color online) (a), (b) Vortex lattice diffraction patterns,
recorded using a position-sensitive detector (see Fig. 2), of LSCO
x = 0.145 under applied magnetic fields of 0.2 T and 1.3 T,
respectively. Notice that the Cu-O axes are along the diagonal.
(c), (d) Azimuthally averaged momentum |q| dependence of the
scattered intensity, summed over rocking angles, for dopings x =
0.145 and 0.12, and applied magnetic fields as indicated. For visibility,
the 0.2 T data in (c) have been divided by a factor of ten. Inset of (c) is
a zoom on the 0.2 T data. The vertical bars above the diffraction peaks
indicate the expected positions for square and regular hexagonal VL
coordinations. The solid black lines in (c) and (d) are Lorentzian fits
to the data.

diffracted intensity measured in LSCO x = 0.145 at 0.2 T
does not show well-defined Bragg spots. This indicates a
large τA and poor orientational order of the VL about the c

axis. Nevertheless we can determine the VL coordination by
averaging over the azimuthal angle ϕ so that the diffracted
intensity I (|q|) becomes a function of |q| only [see Fig. 3(c)].
|G| is determined from the peak position in the |q| dependence.
Fitting a Lorentzian line shape to these 0.2 T data, yields
σ = 0.88(2) very close to the value expected for a hexagonal
VL. At μ0H = 1.3 T in Fig. 3(b), we find four Bragg spots with

FIG. 4. (Color online) (a) Dimensionless constant σ , defined in
the text, as a function of magnetic field for LSCO x = 0.145, 0.16
0.17 (Ref. 22), 0.20 (Ref. 23), and 0.23. σ = √

3/2 is expected
for a hexagonal lattice and a square vortex lattice has σ = 1. The
change form σ = √

3/2 to 1 therefore reveals the a hexagonal-to-
square transition of the vortex lattice structure (see also Fig. 1).
(b) SANS intensity I versus applied magnetic field for NCCO
x = 0.15 (Ref. 53) and La2−xSrxCuO4 with x = 0.105 (Ref. 54),
and 0.145–0.23, (this work). For clarity, the intensities for each of the
compositions have been given an arbitrary vertical offset. Solid lines
are fits to the Clem model form factor where the superconducting
coherence length ξ is the only parameter (see Fig. 5). Dashed lines
indicate power-law dependencies; I ∼ H−0.5 and I ∼ H−2. Notice
that the Bragg glass paradigm for vortices in the presence of disorder
is consistent with a crossover from I ∼ H−0.5 to I ∼ H−2 (see text).

G along the Cu-O bond directions and σ = 0.99(1), indicating
not only an improved VL orientational order but moreover
a square coordination. As shown quantitatively in Fig. 4(a),
the VL coordination in underdoped LSCO x = 0.145 changes
steadily from hexagonal to square over the range μ0H = 0.2 to
0.8 T. In contrast, on the optimally doped and overdoped side
of the phase diagram (x � 0.17), the VL structure becomes
square by μ0H ≈ 0.4 T [Fig. 4(a)].

A minimum in either the Fermi velocity vF (k) or the
superconducting gap �(k) are well-known sources of field-
driven hexagonal-to-square VL transitions.37–40 In both LSCO
and YBa2Cu3Oy (YBCO) the band structure is predominantly
two dimensional but with some c-axis dispersion near the
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k = (π,0) point.41,42 It was previously suggested that the VL
morphology should be understood from the Fermi surface
topology near the (π ,0) point.39 A crucial difference between
the band structures of LSCO and YBCO is that in LSCO, a
Van Hove singularity crosses the Fermi level (εF ) at (π ,0)
somewhere between x = 0.17 and 0.22,42,43 leading to a huge
vF anisotropy. This offers an explanation as to why the square
VL is oriented along the (π ,0) direction in LSCO as opposed
to the nodal (π ,π ) direction in YBCO.37–39,44–46 As LSCO is
underdoped, the Van Hove singularity is pushed further away
from εF ,43 leading to a smaller vF anisotropy and consequently
a larger field is required to form the square VL, as indeed
observed for LSCO x = 0.145 [Fig. 4(a)].

B. Diffracted small-angle neutron scattering intensity

We define the VL intensity of the first-order diffraction peak
I as the sum of the area under I (|q|), which is itself a sum over
rocking angles. Overlap measurements of I vs μ0H , shown
in Fig. 4(b) for x = 0.105–0.23, were done whenever the
neutron wavelength λn was changed. For x � 0.16, intensity
could be observed up to the highest applied field 10 T. By
contrast, for x = 0.145 no intensity was observed above the
quantum critical field (μ0H = 7 ± 1 T in our sample) for
SDW order.26,27,31 It is, however, still possible that the VL
extends slightly into the SDW-ordered phase. This is the
case in LSCO x = 0.105,33 where a three-dimensional (3D)
vortex lattice exhibits I ∝ H−2 [Fig. 4(b)] over two decades
of intensity and coexists with short-range SDW order26 at
very low fields Hc1 < μ0H � 0.2 T. VL intensity is also
observed in LSCO x = 0.12; a compound where long-range
SDW order exists already in zero field.26 At μ0H = 0.05 T, the
|q| dependence of the intensity I (|q|) [Fig. 3(d)] suggests a
hexagonal VL coordination. This provides evidence by SANS
of a VL coexisting with SDW order at the 1/8 anomaly. The
field range of coexistence is small; on increasing the field to
just μ0H = 0.1 T, Fig. 3(d) shows that the VL signal has
already fallen to the background level. Notice that the fields
0.1–0.2 T are much smaller than those required to decouple
3D superconductivity.47

C. Coherence length from the vortex lattice form factor

In the case of perfect crystalline VL order, the observed
intensity of the first-order diffraction peak I (H ) ∝ ∑

F2/|G|
where F is the form factor of a single vortex and has units
of field. The sum is over all the q vectors contributing to
the intensity near wave vector |G|, and we have assumed
that the rocking curve width remains constant with field in
obtaining I (H ). A variational solution to the Ginzburg-Landau
model, namely the Clem model for the VL form factor,48

yields F ∝ GK1(Gξ ), where K1 denotes the modified Bessel
function of first order, G = |G| = 2π

√
H/σ
0, and the

vortex core size ξ is the only fit parameter.49 We point out
that the application of the Clem model to our data yields
an upper bound for ξ ; disorder effects are, for example,
not included.50 With increasing vortex lattice disorder, the
degree by which the Clem model overestimates the coherence
length is larger. By comparing the doping dependence of
the extracted ξ with the Ginzburg-Landau coherence length

ξGL = √

0/2πHc2 estimated indirectly from specific heat51

and high-field magnetoresistance experiments,52 a reasonable
agreement is found on the overdoped side (see Fig. 5). This
suggests that our SANS data indeed provide a measure of
ξ , even though disorder is undoubtedly present. Identifying ξ

with the Pippard coherence length ξp ∼ h̄vF (k)/�(k) suggests
that the relatively short coherence length ξ around optimally
doped LSCO is not only due to the large pairing gap
�; the small Fermi velocity is also playing a significant
role.

D. Disorder effects and structure factor

On the underdoped side, we find a strong discrepancy
between the coherence length estimated from specific heat
and the SANS data fitted with the Clem model for the
form factor (see Fig. 5). For LSCO x = 0.145, we find
ξ ∼ 80 Å corresponding to an unrealistically small upper
critical field μ0Hc2 = 
0/2πξ 2 ∼ 5 T. A larger coherence
length may result from the weakening of superconductivity
due to competition with, for example, magnetism. However,
this does not explain the discrepancy between our SANS data
and the specific heat data.51 A more plausible explanation is
that the VL disorder potential increases with underdoping.
It is possible that VL disorder proliferates as the system is
tuned toward the state where magnetism and superconductivity
coexist.

The VL displacements throughout the doping range are
well described by elastic theory, namely the Bragg glass (BrG)
paradigm.16,17 In the presence of disorder, the positional order
of an elastic VL decays exponentially with a characteristic
length scale RA. (With increasing disorder RA → 0.) If such
an exponential decay were to persist at all length scales R,
a total destruction of long-range order would result.55 This

FIG. 5. (Color online) Superconducting coherence length ξ in
LSCO extracted from magnetoresistance (solid blue points),52 spe-
cific heat (open black points),51 and our SANS measurements (solid
red points) and plotted as a function of the hole concentration x. The
high-field magnetoresistance study measures the upper critical field
Hc2 at low temperatures and we used Hc2 = 
0/(2πξ 2) to estimate
the coherence length ξ . On the other hand, the specific heat and the
SANS experiments were carried out at fields smaller or comparable to
Hc2. To extract the superconducting coherence length from the SANS
data we used the Clem model for the VL form factor. Notice that in
presence of vortex lattice disorder, the Clem model will overestimate
the coherence length (see text). This may explain why the coherence
length extracted from the SANS data lies systematically above
the specific heat and magnetoresistance measurements. All lines
are guides to the eye.
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proposed destruction, even under weak disorder, presented a
longstanding puzzle with respect to experimental observations
where Bragg peaks may readily be observed. Theoretically,
the puzzle was resolved with the advent of the BrG paradigm,
in which an asymptotic regime for R > RA enters, where the
positional order decays only weakly, leading to algebraically
diverging Bragg peaks. At the crossover scale RA vortex
displacements are comparable to the lattice spacing a0 =√

σ
0/H . In earlier muon spin rotation (μSR) work on a
LSCO x = 0.105 sample, an order-disorder transition was
observed and associated with a transition out of the quasi-
long-range–ordered BrG phase.33 VL correlations in the BrG
phase have been explored more directly in a study of low-purity
niobium.21 We point out that the BrG paradigm can explain
both the H−0.5 and H−2 field dependencies of intensity [c.f.
Fig. 4(b)], as well as the crossover between them. Dependent
on whether the instrumental resolution s ≈ 60a0 is larger or
smaller than RA, a different field dependence of the SANS
intensity is predicted.56 For s < RA, the contribution to the
structure factor is identical to that of a crystalline VL, hence
I ∼ 1/

√
H . In the other limit s > RA, an additional factor

H−μ contributes to the intensity. Elastic theory16 yields μ =
3/2 and hence I ≈ H−2—as indeed we observed previously in
LSCO x = 0.105 [see Fig. 4(b)].54 The intensity for x = 0.145
is also consistent with a H−0.5 to H−2 crossover (see Fig. 3).
At the crossover field (∼ 0.85 T), RA ≈ s ≈ 60a0 ≈ 3μm. By
contrast, in LSCO x = 0.105 the crossover field � 0.05 T,
implying that the disorder potential increases dramatically
with decreasing doping. This disordering seems to occur as the
static magnetic correlation length ζ approaches the VL spacing
(ζ → a0), suggesting an electronic origin to the VL disorder
effectuated by real-space competition between ζ and a0, rather
than orthorhombic twin boundaries or impurities as observed
in other superconductors.21 We noticed that the BrG model
also provides an excellent description for the field depen-
dence of intensity in Nd2−xCexCuO4 (NCCO) with x = 0.15
[Fig. 4(b)].53 More experimental studies are required on NCCO
to establish if the VL disorder therein has origins similar to
that in LSCO.

E. Real-space picture

We now consider how magnetic and superconducting order
parameters might coexist in real space. Around x = 0.12
doping in LSCO, μSR measurements revealed magnetic and
superconducting fractions that together exceed 100%. It was
therefore concluded that the magnetic and superconducting
order parameters are not phase separated but rather inter-
twined on a nanometer scale.57,58 This real-space picture is
not easily reconciled with neutron diffraction studies that
report a magnetic correlation length of several hundreds
of angstroms.26,27,29,30 One possibility is that the charge

of the muon induces magnetism in which case the μSR
technique overestimates the magnetic volume fraction.59 Here
we showed that the vortex lattice becomes more disordered
as the vortex interspacing approaches the magnetic correlation
length. This suggests that the magnetic and superconducting
order parameters are coupled. How magnetism, superconduc-
tivity, and vortices are arranged in real space when the spin
correlation length is larger than the vortex spacing (ζ > a0)
is an interesting question that is difficult to address with
the SANS technique since no observable SANS signal is
found in that region of the phase diagram (see Fig. 1). Direct
imaging techniques18–20 are undoubtedly more informative in
this regime although it may be experimentally challenging to
probe magnetism and vortices simultaneously.

IV. CONCLUSION

In summary, our studies of the vortex lattice in LSCO allow
us to draw two main conclusions. First, near optimal doping,
and far from the SDW instability, the VL structure/orientation
and the small superconducting coherence length ξ (and hence
large upper critical field Hc2) may both be rationalized as
arising from a vanishing Fermi velocity due to the Van Hove
singularity near the zone boundary. Second, we find that the
fermiological picture breaks down as the SDW instability is
approached by tuning either the doping or the applied magnetic
field. There, the vortex lattice structure factor needs to be
accounted for in the field dependence of the observable SANS
intensity. The Bragg glass paradigm, describing vortex lattices
in the presence of weak disorder, accounts for the SANS
intensity behavior across the entire phase diagram (where a
SANS signal is discernible), from the underdoped x = 0.105,
to the optimally doped x ∼ 0.16, and overdoped x = 0.23
regimes. In particular, it is able to explain the crossover as the
SDW instability is approached. Evidently, the SDW order acts
as an electronic provenience of disorder on the vortex lattice
in LSCO.
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