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Luttinger-volume violating Fermi liquid in the pseudogap phase of the cuprate superconductors
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Based on the NMR measurements on Bi2Sr2−xLaxCuO6+δ (La-Bi2201) in strong magnetic fields, we identify
the nonsuperconducting pseudogap phase in the cuprates as a Luttinger-volume violating Fermi liquid (LvvFL).
This state is a zero-temperature quantum liquid that does not break translational symmetry, and yet, the Fermi
surface encloses a volume smaller than the large one given by the Luttinger theorem. The particle number enclosed
by the small Fermi surface in the LvvFL equals the doping level p, not the total electron number ne = 1 − p.
Both the phase string theory and the dopon theory are introduced to describe the LvvFL. For the dopon theory,
we can obtain a semiquantitative agreement with the NMR experiments.
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I. INTRODUCTION

When the high-Tc cuprate superconductor was first discov-
ered, everyone knew what is the key issue for solving the
high-Tc problem: finding a right pairing mechanism that gives
rise to high Tc. This point of view is based on the strong belief
that the normal metallic state above Tc is described by Fermi
liquid theory1 and the superconductivity is caused by a pairing
instability of the Fermi liquid. After 25 years of intensive
research on high-Tc superconductors, a lot of progress has been
made. One sign of the progress is that it is no longer clear, or
people no longer agree on, what is the key issue for solving the
high-Tc problem. This is because for the underdoped cuprates,
it is not clear whether the normal metallic state above Tc is
described by Fermi liquid theory. It is also not clear whether
the superconductivity is caused by the pairing instability of the
Fermi liquid, since we may not have a Fermi liquid above Tc.

In this paper, we take a point of view that the key issue for
solving the high-Tc problem is not to find a pairing mechanism,
but first, is to understand the normal metallic state above Tc.
Only after well understanding the normal metallic state above
Tc, we can start to address the secondary question: what causes
the instability of the normal metallic state above Tc toward
superconducting state. For example, if the normal state did
not even have quasiparticles, then it would be impossible to
understand the high-Tc superconductivity via the pairing of
quasiparticles.

The standard Landau Fermi liquid has two key features:1

(i) it has well defined low-energy quasiparticles, and (ii) the
particle number enclosed by the Fermi surface equals the total
electron number ne satisfying the Luttinger’s theorem.2,3 For
overdoped cuprates, it appears that the normal metallic state
above Tc is a Fermi liquid. It has well defined low-energy
quasiparticles and larger Fermi surface enclosing the total
number of the electrons ne.4–6 So the key issue for the
overdoped cuprates is to understand the pairing mechanism
of the superconducting instability. In underdoped samples,
the normal metallic state is a pseudogap (PG) state. The
quasiparticles with sharp peaks are observed near the nodal
region in the angle-resolved photoemission spectroscopy
(ARPES) experiments above Tc.7,8 The quasiparticles are also

well defined enough to have the quantum oscillations in strong
magnetic fields.9 However, the PG state in the underdoped
cuprates does not have large Fermi surface enclosing the
total number of electrons ne. Instead, it has small Fermi
surfaces observed in the quantum oscillation measurements.9

Low-energy quasiparticles are also found only around the
nodal region in the ARPES.7 The normal state above Tc for the
underdoped samples is no longer the standard Fermi liquid.
It has well defined low-energy excitations but small Fermi
surfaces with the volume violating the Luttinger’s theorem.
So the key issue is to understand such a new normal metallic
state, which is called the PG metallic state (PGMS) in this
paper.

In the experiment, the robust d-wave superconductivity
conceals the PGMS at low temperatures. The experiments
at finite temperatures near Tc contain too many excitations
that also conceal the low-energy properties of PGMS, such
as if Fermi surface and/or quasiparticles exists or not.
To sharpen the issue on PGMS in the experiments, we
achieve the nonsuperconducting normal state at zero tem-
perature by applying high magnetic fields (up to 44 T) on
the low-Tc cuprate Bi2Sr2−xLaxCuO6+δ (La-Bi2201).10,11 All
the measurements are performed in the magnetic fields along
the c axis. In T = 0 K limit, the PGMS has a reduced
finite DOS and appears to violate the Luttinger’s theorem.
Many efforts have been made trying to rescue the Luttinger’s
theorem in the PGMS. Most among them introduce long-
range orders breaking the translational symmetry to cut
the large Fermi surface into small pieces. However, no
translational symmetry breaking is found in the PGMS in our
measurements.

Based on the NMR measurements, in this paper, we
propose that the PGMS in the underdoped high-Tc cuprates
is a metal with properties as follows: (1) the PGMS has
few low-energy excitations, as reflected by a low but finite
effective “density of states” (DOS) in the T = 0 limit. (2) The
PGMS is a quantum liquid at zero temperature. (3) The PGMS
does not break the translation symmetry. (4) The low-energy
excitations associated with small effective DOS are described
by quasiparticles with small Fermi surfaces that are not large
enough to enclose large Fermi volume.
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Such a new quantum metallic state of electrons is not
a standard Landau Fermi liquid. It has few low-energy
quasiparticle excitations in T = 0 limit and small Fermi
surfaces with the volume violating the Luttinger’s theorem.
We call the PGMS a Luttinger-volume violating Fermi liquid
(LvvFL) in this paper.

To give a theoretical description of the LvvFL state, we start
from the Mott insulator at half-filling (that does not break the
translation symmetry) and describe the underdoped cuprate
as a doped Mott insulator.12 If the dopant holes/electrons do
not interact too strongly with underlying spins, the dopant
holes/electrons may form small Fermi pockets whose volume
is equal to the doping density. Different from the Fermi
liquid, the Mottness leads to the sparse fermionic signs:13

the Mottness at half-filling is robust and doesn’t carry the
fermionic signs; only the dopant holes in the cuprates carry
the fermionic statistics and these fermions occupy small Fermi
pockets resulting in small DOS in the NMR experiments.

In this paper, we employ two different theories (the phase
string theory14–16 and the dopon theory17,18) as two examples to
describe the LvvFL in the PGMS. Both theories describe the
LvvFL in terms of two different components: a background
resonating valence bond (RVB) state (robust Mottness at
half-filling) and a Fermi liquid with small Fermi pockets (the
dopant holes). In this paper, we mainly focus on the dopon
theory and describe the LvvFL in terms of two different
fermions: “spinons” are charge neutral spin-1/2 excitations
of the background RVB and “dopons,” which have the charge
+e and spin-1/2 degrees of freedom, the same as the dopant
holes. At the mean-field level, the spinons and dopons do not
hybridize in the LvvFL. The dopon sector has the hole pockets
strongly renormalized by the background antiferromagnetic
spin background similar to the numerical results in Ref. 19. At
the mean-field level, the dopon theory gives a semiquantitative
result in a good agreement with the NMR experiment.

II. EXPERIMENTAL ASPECTS

A. The PGMS has few low-energy excitations

The doping regime for the PG state in La-Bi2201 is
0.10 < p < 0.21 with the corresponding La concentration
0.2 < x < 0.95.10,11 A large PG in the single-particle spectrum
was also confirmed in the ARPES7,8 and STM/Scanning
Tunneling Spectroscopy (STS)20 experiments. The resistivity
in the PG regime was measured under a high pulsed magnetic
field (60 T) when the superconductivity was completely
suppressed.21 A crossover from metal to an “insulating” state
was found near pc = 1/8 (x = 0.65): for the larger doping
p > pc, the in-plane resistivity remains finite in T = 0 limit;
such a metallic behavior changes into ln (1/T )-type insulating
behavior in the lower doping regime at p < pc.21 Here, the
insulating behavior is not due to a full gap opening in the
DOS, but some peculiar charge localization. So we will use
the term “PGMS” for the whole PG regime.

The optimal La-Bi2201 (p = 0.16 with x = 0.4 and Tc =
32 K) has a PG temperature T ∗ ∼ 150 K. Below T ∗, the Knight
shift (proportional to the DOS) starts to decrease with decreas-
ing temperature, see Fig. 4(c). Such a PG-type decreasing in
DOS is independent of the magnetic field before entering the
superconducting state [T > Tc(H )]. When the magnetic field

increases beyond Hc2 � 26 T, the superconductivity is killed
completely and the PGMS is realized in T = 0 limit. A finite
DOS in PGMS declares the existence of low-energy excitations
at zero temperature.

The hyperfine coupling constant in the optimal sample is
Ahf = 194 KOe/μB . In T = 0 limit, the Knight shift in PGMS
(with H > Hc2) is Kc = 1.36% and the orbital contribution
is Korb = 1.21%.11 Therefore the residual finite DOS of the
electrons is given by

dn

dε
= Kc − Korb

Ahf a2μ2
B

. (1)

Thus we find dn/dε = 5.78 × 1026 erg−1 cm−2 = 5.78 ×
1037 J−1 m−2 by using the lattice constant a = 3.8 × 10−8 cm
and μB = 9.27 × 10−21 emu. Based on the Fermi pocket
scenario in this paper, we can also estimate the DOS by

dn

dε
= 1

2π2

Lk

h̄vF

, (2)

where the Fermi velocity vF can be obtained in ARPES8

as vF = 1.75 eV Å and the Fermi surface length has the
approximate value Lk = 2π

√
2πnfpp/a with nfp denoting

the total number of the Fermi pockets in the Brillouin zone. In
the dopon theory (see Sec. III C), nfp = 4 and one can estimate
dn/dε = 5.9 × 1037 J−1 m−2, which is very close to the above
experimental value.

B. The PGMS is a quantum liquid

Firstly, we can rule out the “d-wave
superconductor + thermal fluctuation” (dSC + TF) scenario.
In dSC + TF scenario, the d-wave superconducting gap
remains finite in the PG state and the thermal fluctuations
release the DOS near the nodal lines on the Fermi surface. In
this picture, the PG phase is a disorder dSC state and a nodal
metal. It is a thermal liquid and the finite DOS is a thermal
effect. Due to the Volovik effect,23 the DOS has a square-root
behavior dn/dε ∝ √

H when the d-wave superconducting
gap remains finite as the magnetic field is applied. For the
optimally doped La-Bi2201, the Volovik effect has been
indeed observed in the Knight shift measurement when
H < Hc2 in T = 0 limit. However, the DOS becomes
independent of the magnetic field for H > Hc2, see Fig. 1,
where the Volovik square-root behavior breaks down. So the
dSC gap in the PG state should vanish and the dSC + TF is
ruled out based on our NMR data. As shown in Fig. 1, we can
determine the upper critical field in the optimal La-Bi2201,
Hc2 � 26 T. Compared with the other experiments, this value
is very close to the melting field Hm(T ) � 25 T and much
smaller than the “upper critical field” Hc2� 50 T determined
in the Nernst measurements.24,25

Our second concern is the vortex issue in the PG state. In the
superconducting state, the applied magnetic field will create
magnetic vortices. These magnetic vortices lead to the Volovik
square-root behavior in the DOS when H < Hc2, as shown in
Fig. 1. We are concerned about whether vortices, if any, form
a thermal or quantum liquid in PG state. In Ref. 26, the vortex
thermal dynamics with slow thermal motion was observed
in the transverse nuclear magnetic relaxation rate 1/T2 in
YBa2Cu3O7. The T dependent 1/T2 under different magnetic
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FIG. 1. (Color online) H dependence of the Knight shift for the
optimal La-Bi2201. The dash line is the fitting curve Kc = 1.27 +
0.016

√
H at T = 4.2 K. The square-root behavior breaks down when

H > Hc2. The orbit contribution to the Knight shift is Korb = 1.21%.
The DOS is finite even at T = 0 and H = 0 due to impurity in the
d-wave superconductor.

fields is also measured on 63Cu in the optimal La-Bi2201.
Above Hc2, the PG-type decreasing behavior is also found
in 1/T2 and independent of the magnetic fields as shown in
Fig. 2(a), consistent with the T -independent PG-type behavior
for the Knight shift in Fig. 4(c). With decreasing the magnetic
field below Hc2, there is some signal in 1/T2 associated with
the onset of SC at low temperatures, showing a clear enhance-
ment in the SC state, possibly due to the magnetic vortices. The
low-temperature SC behavior is also observed in the full width
at half maximum (FWHM) of the intensity on 63Cu. It has a
clear drop below Tc(7 T) at 7 T as shown in Fig. 2(b). At 44 T,
there is no such a superconducting drop in FWHM indicating
that the superconductivity is killed completely under strong
magnetic fields. This is also an evidence indicating vanished
SC gap in the PGMS. So the experiment does not support
a thermal liquid of vortices in the PGMS near T = 0. At
H > Hc2, the vortices, if any, should form a quantum liquid.

The last concern is how we should view such a metallic
state in the presence of magnetic field. We would like to argue
that, due to impurities, such a state is very different from the
quantum Hall states. The optimal La-Bi2201 has a resistivity
ρ = 0.12 m�cm when the superconductivity is killed at 0 K.
Then the mean free path is around l = hlc

e2ρ
/4k̃F = 13a, a and

lc are the in-plane and c-axis lattice constant, respectively,
the Fermi vector is k̃F = √

πp/2. At 30 T magnetic field, the
magnetic length lB = √

2πh̄/eB = 31a. The mean distance
between dopant holes is a

√
1/p = 2.5a. We see that and

a
√

1/p < l < lB . The mean-free path is long enough to have a
well defined wave vector of the electrons and also short enough
to suppress the orbit effect of the magnetic field. So we should
view PGMS in the presence of magnetic field as a dirty metal.
There is no quantum Hall effect since l < lB .

C. The PGMS has the small Fermi surface

Below we will also rule out the large Fermi surface scenario.
Within the large Fermi surface scenario, the PG behavior of
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FIG. 2. (Color online) (a) T -dependent 1/T2 on 63Cu under
different magnetic fields for the optimal La-Bi2201 and (b) T -
dependent FWHM for the optimal La-Bi2201 under the magnetic
field 7 T under Hc2 and 44 T above Hc2. A clear SC drop is shown in
FWHM under 7 T.

the Knight shift, i.e., the decreasing DOS with decreasing
the temperature, should be caused by the Fermi velocity
increasing. However, such an increasing of the Fermi velocity
at low temperature in PGMS is not observed in the optimal La-
Bi2201. The Fermi velocity vF = 1.75 eV Å can be obtained
from ARPES8 at high temperature. In T = 0 limit, the gap
slope is v� = 0.028 eV Å extracted from the specific heat.27

The ratio vF /v� can be obtained from the thermal conductivity
measurement,28 vF /v� = 33. Thus the Fermi velocity may be
estimated as vF = 0.93 eV Å at low temperature. No Fermi
velocity increasing is found with decreasing the temperature
to support a PG behavior in the large Fermi surface scenario.

In Sec. II A, we estimate the finite residual DOS in
PGMS at T = 0 K and find a very good agreement be-
tween the experimental and theoretical data based on the
Fermi pockets. In other words, the small Fermi pockets are
more natural to account for the NMR experiment in the
PGMS.29

D. The PGMS does not break translational symmetry

If there is a translational symmetry breaking, the long-range
orders truncate the large Fermi surface into small pieces. The
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FIG. 3. (Color online) H -dependent FWHM in optimal
La-Bi2201 at T = 4.2 K.

NMR/NQR experiment10,11 is desired to investigate whether
the PGMS has the translational symmetry or not. When the
translational symmetry breaks, there will be an internal field
around Cu local environment. In the heavily underdoped
samples (x = 0.90 and 0.80), internal magnetic fields at Cu
site are very large, Hint = 7.2 T.11

In the optimal La-Bi2201, we find that there is no internal
magnetic field in the PGMS associated with the translational
symmetry breaking. Figure 3 shows the NMR FWHM as a
function of the magnetic field. The FWHM increases linearly
with increasing H , indicating that the FWHM is only due to the
electronic inhomogeneity that gives rise to a distribution of the
spin susceptibility (Knight shift), which is a typical behavior
seen in the cuprates. Namely, the good linearity indicates
that there is no additional broadening due to the internal
magnetic field associated with the ordered moment. We can
estimate an upper limit for the ordered moment, if any. At
H = 30 T, the FWHM is 0.16 T. With reasonable assumption
that we can detect an additional broadening of 1/10 FWHM,
and with the knowledge of the hyperfine coupling constant,
Ahf = 194 KOe, we conclude that the magnetic field-induced
moment, if any, should be less than 1 mμB . Likewise, we can
conclude that there is no charge order which would give rise
to a quadrupole splitting for the first satellites of the spectrum
since the distance between the two satellites is proportional
to the charge state of Cu. With a conservative assumption
that we can detect a splitting that is 1/2 FWHM, then we
can rule out a charge order that gives rise to a splitting of
γ × 0.08 T = 0.9 MHz. This is equivalent to saying that there
is no field-induced charge disproportion of 0.0075 hole or 1%
of the Cu charge state at zero magnetic field, since one Cu-3d
hole would give rise to 117 MHz of the nuclear quadrupole
frequency.30

Although the conventional translational symmetry breaking
(SDW or CDW) can be ruled out by our NMR measurement,
the staggered flux issue31 remains unsolved. The internal field
on the Cu sites is always zero regardless of the existence of the
staggered flux in the PG state. In the recent NQR measurement
in YBa2Cu4O8, the staggered flux state is ruled out in the
PGMS.32

E. Experimental conclusions

The PG behavior of the optimal La-Bi2201 is confirmed in
the Knight shift, 1/T1T , and 1/T2. The key feature is the loss of
DOS in the PG state with decreasing the temperature. However,
the loss of DOS is not complete. When the superconductivity
is completely killed in the strong magnetic fields, the PGMS
still has few low energy excitations even in T = 0 limit. The
Volovik square-root behavior breaks down and the dSC gap
vanishes. So the PGMS is not a disorder dSC state. We measure
1/T2 to address the issue whether the vortices in the PGMS,
if any, form a thermal or quantum liquid and conclude that
the vortices should be quantum objects if they do exist in the
PGMS.

Furthermore, there is no Fermi velocity increasing with
decreasing the temperature such that a large Fermi surface
with Fermi velocity increasing is very unlikely to explain the
PG-type decreasing in the DOS. Small Fermi pockets are thus
very natural to account for the NMR data. Since the PGMS has
the translational symmetry, the small Fermi pockets should not
be due to the truncation of the large Fermi surface as the result
of the translational symmetry breaking. The PG state above
Tc in the optimal La-Bi2201 has well defined quasiparticles
near the nodal region,7,8 resembling the feature of a standard
Landau Fermi liquid. However, it has small Fermi pockets
without the translational symmetry breaking which violates
the Luttinger’s theorem explicitly. In this paper, we call the
PGMS a Luttinger-volume violating Fermi liquid (LvvFL).

The PGMS is a long-standing issue in the underdoped
high-Tc cuprates. One key point in our NMR measurements is
that the PGMS is achieved in T = 0 K limit by using the static
strong magnetic fields. It would be highly desirable if further
measurements can be done to support or falsify the present
scenario. Recently, the magnetic-field-induced charge-stripe
order was found in underdoped YBa2Cu3Oy .33 But Tc is
too high for the SC phase in YBCO to be fully suppressed
and the stripe order still coexists with the SC order. There
is also evidence for charge-density wave in the underdoped
La-Bi2201, although none for the optimal La-Bi2201.34 The
identification of a specific phase remains elusive in these
experiments. To our best knowledge, it still safe for us to
conclude that the PGMS in the optimal La-Bi2201 is an LvvFL.

III. THEORETICAL DESCRIPTIONS

There are two main different approaches to understanding
the LvvFL: one starts from the Fermi liquid at the overdoped
side (Fermi-liquid approach) and the other one is from
the Mott insulator at half-filling (Mott-insulator approach).
The Fermi-liquid approach tries to understand the transition
from the large Fermi surface to the PG-type behavior. The
large-Fermi-surface normal state with the pairing fluctuations
can give an explanation of the appearance of the Fermi arc
at finite temperatures in the ARPES measurements.35,36 In
the Luttinger’s original paper,2 the fluctuations (not only the
pairing ones) may reduce the spectral weight near the Fermi
surface, but cannot modify the volume of the Fermi surface. To
rescue the Luttinger’s theorem, long-range orders that break
translational symmetry are needed to cut the large Fermi
surface into small pieces.36 Yang, Rice, and Zhang introduced
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Yang-Rice-Zhang (YRZ) ansatz for the single electron Green’s
function to solve such a problem.37,38 The YZR Green’s
function satisfies the Luttinger’s theorem in a different way in
which the electron density is related not to the Fermi surface
volume, but to the volume of singularities of logarithm of the
Green’s function at zero frequency.1 YZR approach can result
in small Fermi pockets with the quantized volume enclosing
the number of the dopant holes p.

The Mott-insulator approach considers the effect of in-
troducing holes into the Mott insulator state at half-filling
and describe the underdoped cuprates as the doped Mott
insulator. Sachdev and collaborators39,40 phenomenologically
model the doped Mott insulator in the underdoped insulator
as a Fermi liquid of holes moving in a background with
local antiferromagnetic order. They describe the PGMS as
the fractional Fermi liquid proposed by Senthil et al. in the
Kondo lattice model for heavy fermions.41,42 Tesanovic and
collaborators describe the PGMS as the quantum disordered
d-wave superconducting state.43,44 They model the PGMS as
the algebraic Fermi liquid in which the Fermi surface has
four points just like the d-wave superconductor and a branch
cut with a small anomalous dimension due to the quantum
fluctuations.45–47

In the following, we use another two theories, the phase
string and the dopon theories to describe the LvvFL identified
in our NMR measurements. Similar to Refs. 39 and 40,
both theories describe the LvvFL in terms of two different
components: a background resonating valence bond (RVB)
state (robust Mottness at half-filling) and a Fermi liquid with
small Fermi pockets (the dopant holes).

A. Sparse fermionic signs and small Luttinger’s volume

For the overdoped samples, the normal metallic state in
La-Bi2201 is the Fermi liquid. As the Fermi gas, the Fermi
liquid has the full fermionic statistics: when two of the
electrons exchange with each other, there is a negative sign
in the partition function

ZFL =
∑
{c}

(−1)Nex[c]Z0[c], (3)

where {c} contains all the closed loops of the spatial trajectories
of the fermions and Z0[c] > 0 is the classical partition function
on the loop c. The fermionic statistics is determined by the
total number of electron exchanges Nex[c]. The Fermi liquid
has the well defined Fermi surface with the quantized volume
determined by the Luttinger’s theorem2,3

2
VF

(2π )2
= nemod 2, (4)

where VF is the Fermi volume occupied by the electrons in the
k space.

In the doped Mott insulator, Wu et al. derived the sign
structure of the t−J model upon doping.13 In this case, the
partition function is

Zt−J =
∑
{c}

τcZ[c], (5)

where Z[c] > 0. For a given closed loop c, the sign structure
is now written as

τc = τps τh (6)

with the phase string signs in τps = (−1)N
↓
h [c] and the fermionic

signs in τh = (−1)N
h
ex[c]. Here, N

↓
h [c] is the total number

of exchanges between the dopant holes and down spins
and Nh

ex[c] denotes the total number of exchanges among
dopant holes. The phase string signs in τps are the dynamical
frustrations turning the long-range antiferromagnetic state into
short range spin liquid state.14 Unlike the full fermionic signs
in the Fermi liquid state, the fermionic statistics in τh is only
activated for the dopant holes that has the particle number
p instead the total number of the electrons ne = 1 − p. The
Luttinger’s theorem is now modified as

−2
VF

(2π )2
= ne − 1 mod 2. (7)

The minus sign on the left represents the hole pockets. This
modified Luttinger theorem is also obtained by using the
elegant Oshikawa argument3 in Refs. 41 and 42.

B. The phase string theory of the LvvFL

To capture the sign structure, the phase string theory
describe LvvFL as a projected product state15

|LvvFL〉ps = P
(|R̃VB〉b

⊗
|
〉a

)
. (8)

Here, the phase string signs, τps in Eq. (6), are embedded
in a half-filled (n = 1) bosonic resonant-valence-bond state
|R̃VB〉b, described by the mutual Chern-Simons theory.15,48

The spare fermionic signs in Eq. (6) are carried by the Fermi
pockets described by |
〉a .

Here, |
〉a is naturally an LvvFL state in the PGMS when
the pairing of the fermions aiσ is destroyed, say, by a strong
magnetic field.15 It will lead to a residual DOS as observed
in the NMR experiment. On the other hand, the neutral
spin background |R̃VB〉b, which evolves from a long-range
antiferromagnetic state to a short-range spin-liquid state at
finite doping, will be responsible for the PG behavior of the
NMR Knight shift, 1/T1 and 1/T2, as have been previously
shown in Ref. 49 (cf. Fig. 7).

C. The dopon theory for the LvvFL

The dopon theory developed in Refs. 17 and 18 can
also describe the LvvFL. In the dopon theory, the LvvFL is
described by the following many-body trial wave function:

|LvvFL〉dopon = P
(|RVB〉f

⊗
|
〉d

)
. (9)

Here |RVB〉f is the half-filled (n = 1) fermionic RVB state
(spinons) and |
〉d describes the Fermi pockets (dopons). In
the dopon theory, the phase string signs are simply treated by
the projected short-range spin liquid. Both the spinons and
dopons are fermions.
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In this paper, we will give some mean-field quanti-
tative calculations. The dopon theory has the mean-field
Hamiltonian17,18

HMF = ( f
†
k d

†
k )

(
αz

kσz + αx
k σx βkσz

βkσz γkσz

) (
fk
dk

)

+3Jeff

4
N (χ2+ �2) − Nμd (1− p) − 2Nb0b1, (10)

where αz
k = −( 3Jeff

4 χ−t1p)(cos kx +cos ky) −μf , αx
k = − 3Jeff

4
�(cos kx − cos ky), and γk = 2t2 cos kx cos ky + t3(cos 2kx +
cos 2ky) − μd and βk = 3b0

8 [t1(cos kx + cos ky) + 2t2 cos kx

cos ky + t3(cos 2kx + cos 2ky)] + b1. f
†
k = (f †

k↑f−k↓), d
†
k =

( d
†
k↑ d−k↓ ), and σz, σx are the Pauli matrices. The mean-field

Hamiltonian has the eigenvalues ±εk1 and ±εk2 with the
definitions

εk1 =
√

ρk − √
τk, εk2 =

√
ρk + √

τk. (11)

Here, ρk = β2
k + 1

2 [(αz
k)2 + (αx

k)2 + γ 2
k ] and τk = β2

k[(αz
k +

γk)2 + (αx
k)2] + 1

4 [(αz
k)2 + (αx

k)2 − γ 2
k ]2. Therefore the mean-

field free energy is given as

FMF = − 1

β

∑
k

ln{[1 + cosh(βεk1)][1 + cosh(βεk2)]}

+3Jeff

4
N (χ2 + �2) − Nμd (1− x) − 2Nb0b1. (12)

To obtain the proper phase diagram, the parameters in the do-
pon theory are tuned as follows: Jeff = (1 − p)2J , t1 = 1.5J ,
t2 = p

0.3J , and t3 = J − p

0.6J . The order parameters χ , �,
b0, b1, μf , and μd are determined by minimizing the free
energy.18 The spectral weight in ARPES and local DOS in
STM/STS extracted from the electron Green’s function are
calculated in the previous works17,50 and are not repeated
here.

There are two different normal states above Tc: the LvvFL in
the upderdoped regime and the Fermi liquid in the overdoped
regime. When the magnetic fields drive the normal states
in the T = 0 K limit, we simply set b0,b1 = 0 and � = 0
in the LvvFL and the Fermi liquid, respectively. Under
magnetic fields h, the mean-field eigenvalues are changed
into εk(1,2)(h) = εk(1,2) − h. The mean-field spin susceptibility
χs

0 = − ∂2FMF
∂h2 is given as

χs
0 = 1

2

∑
k

[βsech2(βεk1/2) + βsech2(βεk2/2)]. (13)

The mean-field results of T -dependent uniform spin sus-
ceptibility χs

0 for p = 0.075 (underdoped) and p = 0.225
(overdoped) are shown in Figs. 4(a) and 4(b). To compare
with the NMR measurements, we also plot the T -dependent
Knight shift Kc for the optimal sample (p = 0.16) and 1/T1T

for the overdoped sample (p = 0.22) in Figs. 4(c) and 4(d).
The mean-field results coincide semiquantitatively with the
experimental data. There are some unphysical nonanalytic
peaks in the mean-field spin susceptibility around T/J ∼ 0.16
in Figs. 4(a) and 4(b) not observed in the NMR data. They are
able to be removed by including the gauge field fluctuations,
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FIG. 4. (Color online) The mean-field T dependence of the uni-
form spin susceptibilities from the dopon theory in superconducting
(SC) and nonsuperconducting (non-SC) states for (a) underdoped case
x = 0.075 and (b) overdoped one x = 0.225. (c) The experimental
Knight shift for optimal La-Bi2201 under different magnetic fields
and (d) the experimental 1/T1T for overdoped Bi-La2201 p = 0.22.
The experimental data under strong magnetic fields above 26 T are
for nonsuperconducting (non-SC) states.

which is beyond the mean-field calculation and is not our
concern in this paper.

IV. SUMMARY

We study the normal metallic state at zero temperature in
the underdoped cuprates, which we call the PGMS in this
paper. Based on the NMR measurements, we identify the
PGMS as an LvvFL. The LvvFL has well defined low-energy
excitations but with the Fermi pockets of smaller volume
violating the Luttinger’s theorem in the standard Landau
Fermi liquid. The LvvFL is a quantum liquid and has the
translational symmetry. To understand the LvvFL, we describe
the underdoped cuprates as the doped Mott insulator and
employ two different theories, the phase string theory and
the dopon theory, to capture the physics of the LvvFL. Both
theories are in terms of two components: a background RVB
state and a Fermi liquid with small Fermi pockets embedded in
the short-range antiferromagnetic spin background. We mainly
focus on the dopon theory and obtain some semiquantitative
results on the mean-field level in a good agreement with the
experimental data.
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5M. Platé, J. D. F. Mottershead, I. S. Elfimov, D. C. Peets,
R. Liang, D. A. Bonn, W. N. Hardy, S. Chiuzbaian, M. Falub,
M. Shi, L. Patthey, and A. Damascelli, Phys. Rev. Lett. 95, 077001
(2005).

6B. Vignolle, A. Carrington, R. A. Cooper, M. M. J. French, A. P.
Mackenzie, C. Jaudet, D. Vignolles, C. Proust, and N. E. Hussey,
Nature (London) 455, 952 (2008).

7J. Meng, G. Liu, W. Zhang, L. Zhao, H. Liu, X. Jia, D. Mu,
S. Liu, X. Dong, J. Zhang, W. Lu, G. Wang, Y. Zhou, Y. Zhu,
X. Wang, Z. Xu, C. Chen, and X. J. Zhou, Nature (London) 462,
335 (2009).

8J. Meng, W. Zhang, G. Liu, L. Zhao, H. Liu, X. Jia, W. Lu, X. Dong,
G. Wang, H. Zhang, Y. Zhou, Y. Zhu, X. Wang, Z. Zhao, Z. Xu,
C. Chen, and X. J. Zhou, Phys. Rev. B 79, 024514 (2009).

9N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B.
Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer,
Nature (London) 447, 565 (2007).

10G.-q. Zheng, P. L. Kuhns, A. P. Reyes, B. Liang, and C. T. Lin,
Phys. Rev. Lett. 94, 047006 (2005).

11S. Kawasaki, C. Lin, P. L. Kuhns, A. P. Reyes, and G.-q. Zheng,
Phys. Rev. Lett. 105, 137002 (2010).

12P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17
(2006).

13K. Wu, Z. Y. Weng, and J. Zaanen, Phys. Rev. B 77, 155102 (2008).
14Z.-y. Weng, Int. J. Mod. Phys. B 21, 773 (2007).
15Z.-Y. Weng, New J. Phys. 13, 103039 (2011).
16Z.-Y. Weng, Frontiers of Physics 6, 370 (2011).
17T. C. Ribeiro and X.-G. Wen, Phys. Rev. Lett. 95, 057001 (2005).
18T. C. Ribeiro and X.-G. Wen, Phys. Rev. B 74, 155113 (2006).
19E. Dagotto, A. Nazarenko, and M. Boninsegni, Phys. Rev. Lett. 73,

728 (1994).
20A. Sugimoto, S. Kashiwaya, H. Eisaki, H. Kashiwaya, H. Tsuchiura,

Y. Tanaka, K. Fujita, and S. Uchida, Phys. Rev. B 74, 094503 (2006).
21S. Ono, Y. Ando, T. Murayama, F. F. Balakirev, J. B. Betts, and

G. S. Boebinger, Phys. Rev. Lett. 85, 638 (2000).
22 S. Kawasaki (unpublished).
23G. Volovik, JETP Lett. 58, 469 (1993).
24Y. Wang, L. Li, and N. P. Ong, Phys. Rev. B 73, 024510 (2006).

25L. Li, Y. Wang, S. Komiya, S. Ono, Y. Ando, G. D. Gu, and N. P.
Ong, Phys. Rev. B 81, 054510 (2010).

26C. H. Recchia, J. A. Martindale, C. H. Pennington, W. L. Hults, and
J. L. Smith, Phys. Rev. Lett. 78, 3543 (1997).

27Y. Wang, Z.-Y. Liu, C. T. Lin, and H.-H. Wen, Phys. Rev. B 83,
054509 (2011).

28Y. Ando, S. Ono, X. F. Sun, J. Takeya, F. F. Balakirev, J. B. Betts,
and G. S. Boebinger, Phys. Rev. Lett. 92, 247004 (2004).

29 The Fermi arc is also possible, however, in this paper, we use the
Fermi pocket scenario.

30G.-Q. Zheng, Y. Kitaoka, K. Ishida, and K. Asayama, J. Phys. Soc.
Jpn. 64, 2524 (1995).

31T. C. Hsu, J. B. Marston, and I. Affleck, Phys. Rev. B 43, 2866
(1991).
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