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Fluxon dynamics of a long Josephson junction with two-gap superconductors
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We investigate the phase dynamics of a long Josephson junction (LJJ) with two-gap superconductors. In this
junction, two channels for tunneling between the adjacent superconductor (S) layers as well as one interband
channel within each S layer are available for a Cooper pair. Due to the interplay between the conventional and
interband Josephson effects, the LJJ can exhibit unusual phase dynamics. Accounting for excitation of a stable
2π -phase texture arising from the interband Josephson effect, we find that the critical current between the S layers
may become both spatially and temporally modulated. The spatial critical current modulation behaves as either
a potential well or barrier, depending on the symmetry of the superconducting order parameter, and modifies the
Josephson vortex trajectories. We find that these changes in phase dynamics result in emission of electromagnetic
waves as the Josephson vortex passes through the region of the 2π -phase texture. We discuss the effects of this
radiation emission on the current-voltage characteristics of the junction.
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I. INTRODUCTION

Recently discovered1 iron-based superconductors have
renewed much interest in the Josephson tunnel junctions
involving multigap superconductors.2,3 Both experimental
and theoretical studies indicate that several other supercon-
ductors, including MgB2,4,5 NbSe2,6 heavy fermion UPt3,7

organic8 (TMT SF )2X, and κ − BEDT , may have multiple
pesudo-order parameters. As the appearance of a phase
texture and unusual Abrikosov vortex properties9 in two-
gap superconductors are considered as manifestations of the
multicomponent order parameter, the tunneling property of
a Josephson junction with these superconductors may exhibit
important differences from that with one-gap superconductors.
This difference is attributed to the two tunneling channels
for electrons in two-gap superconductor junctions due to the
presence of two condensates. This internal freedom reflects the
number of electronic bands participating in superconductivity.
Consequently, dynamics of the relative phase of the order
parameters for the two-gap superconductor tunnel junction
differ from that of the one-gap superconductor junction.

The presence of two tunneling channels indicates that
there are two types of relative phase dynamics in a long
Josephson junction (LJJ) with two-gap superconductors. These
phase dynamics may be understood in terms of the interplay
between the interband and conventional (intraband) Josephson
effects. The interband Josephson effect describes tunneling
between two electronic bands in each superconductor (S)
layer. On the other hand, the conventional Josephson effect
describes tunneling between two adjacent S layers. These
effects determine the dynamics of the phase difference between
the condensates within the same S layer and across two
adjacent S layers, respectively.

The relative phase of the two condensates is fixed in
the ground state. This relative phase is locked to the value
of 0 and π when the order parameter symmetry is S++
and S+−, respectively. However, when the fluctuations about
these phase-locked states are small, the interplay between
the two Josephson effects can yield interesting phenomena.
One such example is a collective excitation3 known as
the Josephson-Leggett (JL) mode. This JL mode had been

observed10 in MgB2 by Bloomberg and coworkers, using
Raman scattering. Also, theoretical studies of superconductor-
insulator-superconductor junctions between one- and two-gap
superconductors suggest that the ground state may violate11

the time reversal symmetry and that the phase dynamics of
LJJ may depend on the symmetry of the superconducting
order parameter.12,13 This hetero-Josephson junction may be
fabricated14 by using Nb (one-gap) and either MgB2 or
iron-based superconductors (two-gap). Ota and coworkers
suggested that the gap symmetry can affect12 the Josephson
current across the grain boundaries in polycrystalline samples
as well as the current-voltage (I-V) characteristics of the
multigap intrinsic LJJ stacks. Recent theoretical studies of
hetero-Josephson junction suggest that the phase dynamics of
LJJ are affected by the JL mode. The effects due to availability
of two tunneling channels in LJJ may appear in measurable
physical quantities, including the drastic enhancement of the
macroscopic quantum tunneling rate and the presence of an
extra step structure,15 in addition to the conventional Shapiro
steps, in the I-V characteristics.

A deviation from the phase-locked state in LJJ may not
be limited to a small amplitude. The experimental data from
the magnetic response of a superconducting ring with two
pseudo-order parameters indicate that a stable soliton-shaped
phase difference between the two condensates (i.e., i-soliton)
is attainable.16 This observation is consistent with a suggestion
that the phase fluctuations can grow and produce a stable 2π -
phase texture.17 Excitation of i-soliton represents large phase
fluctuations due to the interband Josephson effect and is taken
as a hallmark of the multigap superconductors.

Soliton states in two-gap superconductors had been ex-
plored by a number of authors. Kupulevaksky and coworkers
examined18 this soliton state in mesoscopic thin-walled cylin-
ders in external magnetic fields by using the Ginzberg-Landau
approach. Tanaka and coworkers suggested19 that interesting
excitations, including a phase domain surrounded by the
i-soliton wall, can arise in two dimensions (i.e., D = 2) since
an i-soliton may be considered as a D-1 dimensional quantum
phase dislocation. The i-soliton wall may carry a fractional
flux quantum when one end of the soliton wall is terminated
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by the fractional vortex9 while the other end is attached to
a sample edge. Also, a vortex-molecule may be formed20

when two fractional vortices, with a unit fluxoid quantum as
the total magnetic flux, are connected by the i-soliton bond.
These fractional vortices have been observed in a multilayered
superconductor21 by using both magnetic force and scanning
Hall probe microscopy.

The i-solitons differ from the Josephson vortices (i.e.,
fluxons) since they do not carry magnetic flux and do not
interact with either magnetic field or supercurrents. However,
an i-soliton may be formed and driven22 by nonequilibrium
charge density or by sufficiently strong superconducting
currents. Gurevich and Vinokur suggested22 that spontanteous
appearance of a solitonlike phase texture represents the
breakdown of the phase-locked state. This breakdown can arise
when the applied current density along the superconductor
layers exceeds the critical value. The phase fluctuations may
appear as either an additional resonances in the AC Josephson
effect or a static 2π -kink in the phase difference. If the
2π -phase texture exists in each S layer, then this i-soliton may
change the phase dynamics of the LJJ by inducing a critical
current density modulation.

Earlier studies on the effects of critical current modu-
lation indicate that both spatial and temporal dependence
of Josephson current amplitude may be obtained by using
experimental techniques such as Ohmic heating, quasiparticle
injection, and illumination with an intensity modulated beam
of light.23 In addition, a spatially periodic modulation of the
critical current may be obtained from a periodic array of
microresistors in the insulator (I) layer.24 As the microresistors
behave as pinning centers for moving Josephson vortices (i.e.,
fluxons), the speed of the fluxon becomes modulated near each
microresistor. The effects of a small periodic critical current
modulation23,25–27 created by an array of microresistors can
yield a number of interesting properties, including emission of
electromagnetic (EM) radiation and Josephson steps in the I-V
characteristics.23,25 This suggests that the spatial and temporal
periodic modulation of the critical current due to excitation of
the i-solitons may exhibit the same interesting property.

Emission of EM radiation from an inhomogenous LJJ
had been studied by using a number of different theoret-
ical approaches, including the Green function perturbation
technique,25 inverse scattering perturbation theory,26 and
numerical simulation.27 These studies reveal that a moving
fluxon can radiate EM waves when its speed is larger
than the critical value υth. In addition, the interference
between the emitted EM waves can give rise to well-
discernible steps in the I-V characteristics. This suggests that, if
the critical current modulation is generated by large amplitude
fluctuations of the phase difference, this may affect the
junction property through the changes in the phase dynam-
ics. These changes may be measured from the I-V curves.
However, the effects of the interband Josephson current on
the phase dynamics of a LJJ with two-gap superconductors
have not yet been explored.

In this paper, we consider a quasi-one-dimensional LJJ (i.e.,
D = 1) with the dimensions, compared to the Josephson length
λJ , of Lx � λJ and Ly � λJ (see Fig. 1). We assume that
there are no fractional vortices and investigate the effects of
large phase functuations (i.e., i-soliton) on the phase dynamics

FIG. 1. A LJJ with two-gap superconductor represented by two
pseudo-order parameters �so exp(iθ s) and �do exp(iθd ) is shown
schematically. Here, Lx and Ly denote the dimensions in the x and
y direction, respectively. JB is the bias current density and B is the
externally applied magnetic field. ds and d denote the thickness of
the superconductor (S) and insulator (I) layer, respectively.

of the LJJ. We note that, here, a weak external magnetic
field, applied parallel to the insulator layer, penetrates the
junction in the form of fluxons. Before proceeding further,
we outline the main result. We find that (i) large fluctuations
in the relative phase of the two condensates in each S layer
via the interband Josephson effect may be described by the
sine-Gordon equation. (ii) The soliton-like excitation (i.e.,
2π -phase texture) can generate both a spatial and temporal
modulation of the critical current between the adjacent S
layers. (iii) The critical current modulation yields emission
of EM waves which radiate along the junction layer in a form
of quasilinear wave. The strength of the critical modulation is
characterized in the I-V curve as a discontinuous structure.

The outline of the remainder of the paper is as follows. In
Sec. II, we describe the phase dynamics of a LJJ with two-gap
superconductors by using a set of two sine-Gordon equations.
In Sec. III, we derive the equation of motion for the relative
phase of the two condensates in each S layer. In Sec. IV,
we discuss the effects of the interband Josephson current on
the phase dynamics by computing the radiation correction to
the bare soliton solution. In Sec. V, we compute the trajectories
of fluxon in the velocity-position phase plane and calculate the
current-voltage characteristic curves. Finally, we summarize
the result and conclude in Sec. VI.

II. THEORETICAL MODEL FOR PHASE DYNAMICS

In this section, we derive the equation of motion for the
phase differences. Here, we describe the phase dynamics of
the LJJ by neglecting the dissipation effect, for simplicity, but
this effect is included later in the calculation of the fluxon
trajectories in Sec. V. In addition, we neglect the boundary
effect by considering a region away from the junction boundary
in the x direction (see Fig. 1), where the Josephson critical
current density J oc in the absence of i-soliton is spatially
not uniform.28 We discuss the boundary effect of vanishing
Josephson critical current on the I-V curves in Sec. V.

We start with the following model Hamiltonian: Ĥ =∑
� ĤTB,� + ĤT . Here the Hamiltonian ĤTB,� accounts for

the two-gap superconductivity in the �th S layer, while the
Hamiltonian ĤT accounts for electron tunneling between the
two adjacent S layers. First, we consider these Hamiltonian
contributions in the absence of electromagnetic fields. We
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write the two-gap Hamiltonian ĤTB,� as

ĤTB,� =
∫
dr

(∑
i=s,d

εic
i†
σ,�c

i
σ,� + Ĥpair

�

)
, (1)

where εi describes the energy of electrons in the i-band (i =
s,d) about the Fermi energy. For definiteness, we denote the
two electronic bands involved in superconductivity as s and d
bands. The pairing interaction between electrons in the �th S
layer is described by the Hamiltonian Ĥpair

� written as

Ĥpair
� = −Vsscs†↑,�cs†↓,�cs↓,�cs↑,� − Vddcd†↑,�c

d†
↓,�c

d
↓,�c

d
↑,�

−Vsd (cs†↑,�c
s†
↓,�c

d
↓,�c

d
↑,� + H.c.), (2)

where ci†σ,� (ciσ,�) denotes the operator which creates (destroys)
an electron with spin σ in the i-band, and Vij denotes the
strength of pairing interaction between electrons in the i and
j bands. On the other hand, the Hamiltonian ĤT describes the
electron tunneling between the two adjacent S layers that are
separated by the I layer. This Hamiltonian is given by

ĤT =
∑
i �=j,σ

(
Tij c

i†
σ,1c

j

σ,2 + H.c.
)
, (3)

where Tij denotes the tunneling matrix element for an electron
from the j to i band.

Following Leggett,3 we consider the subspace spanned by
the BCS type function and introduce pairing operators,

�̂i� = ci†↑,�ci†↓,�, (4)

to account for the two (i.e., s and d) condensates. Using
the eigenvalues of the pairing operator �̂i�, we rewrite the
Hamiltonian ĤTB,� as

ĤTB,� = f s�
(∣∣�s� ∣∣2) + f d�

(∣∣�d� ∣∣2) − Vss
∣∣�s� ∣∣2 − Vdd

∣∣�d� ∣∣2

−Vsd
(
�s∗� �

d
� +�d∗� �s�

)
, (5)

where f i� (|�i�|2) corresponds to the kinetic energy of the
electrons in the i-band. In the absence of contribution from
the interband pairing (i.e., Vsd = 0), the electrons in the two
bands (i.e., s and d) do not interact. The independent one-band
gap equation for the parameter �i = Vii�i may be obtained
by minimizing Eq. (5). We may account for the phase effects
of the two condensates by writing the complex pesudo-order
parameter �a� as

�i� = �io,�eiθ
i
� . (6)

In this representation, the interband pairing interaction term
in Eq. (5) depends explicitly on the relative phase of the two
condensates (i.e., s and d):

χ� = θs� − θd� . (7)

The interband pairing contribution describes the Josephson
effect within each S layer due to tunneling of the condensates
between the two bands. Similarly, the conditions for the energy
extremum yield the two coupled gap equations of the form,

�i� =
∑
j

Vij�
j

� . (8)

The coupled gap equations of Eq. (8) have two nontrivial
solutions: χ� = 0 (i.e., θs� = θd� ) and χ� = π (i.e., θs� = θd� +
π ) corresponding to the S++ and S+− symmetry, respectively.
When Vsd > 0, χ� = 0 is the stable solution. On the other
hand, when Vsd < 0, χ� = π is the stable solution.

In addition to the phase-locked state, soft modes associated
with fluctuations of χ�, representing a phase texture, may
appear as a 2π kink in χ�. These soft modes can modify
the phase dynamics of LJJ. For example, these modes can
manifest as resonances in the AC Josephson effect when the
two electronic bands are out of equilibrium. In addition, they
may appear as 2π kink representing an i-soliton.

We now investigate the effects of these soft modes by
starting with the partition function Z = Tr exp[−βH] for
the LJJ with two-gap superconductors29 in the presence of
electromagnetic fields,

Z =
∫

D[Ao,A]D
[
�io

]
D[θ i]e−S[�io,θ

i ,Ao,A], (9)

where β = 1/T and T denotes temperature. Here, we set h̄ =
c = kB = 1 for convenience. The scalar and vector potential
in the �th layer are denoted by Ao� and A� = (Ax,Ay,Az)�,
respectively. The effective actionS = Sgap + Sfield − TrĜ−1 is
obtained by carrying out the imaginary-time functional integral
over the Grassmann fields ci†σ,� and ciσ,�. The contributions from
the pseudo-order parameter and electromagnetic fields are
denoted bySgap andSfield, respectively. The expression forSgap

may be found in the Appendix andSfield is included in the phase
contribution, Sphase, to the action below. In addition, we do not
write the explicit expression of the inverse Green function
Ĝ−1 here but note that it is an 8× 8 matrix which consists of a
4×4 matrix for each two-gap superconductor layer. We extract
the superconducting phase degree of freedom by performing
the unitary transformation for the Green function and follow
the standard procedure30 of retaining only the second-order
tunneling processes arising from the Josephson effect. The
usual imaginary-time functional integral approach31 in this
approximation allows us to obtain the phase contributionSphase

to the effective action S, which includes the phase terms, in an
external magnetic field B applied in the y direction (see Fig. 1)
as

Sphase =
∫ β

0
dτ

∫
dxLp. (10)

The effective Lagrangian density Lp for the superconducting
phases31,32 is given by

Lp = ds

8πē2

∑
i,�

[
1

μ2
i

(
∂θ i�

∂τ
+ ēAo�

)2

+ 1

λ2
i

(
∂θ i�

∂x
− ēAx�

)2 ]

+
∑
i,j

J ij

ē
cosϕij +

∑
�

Jinter

ē
cosχ� + LEM, (11)

where ē = 2e, and ds is the superconductor layer thickness.
The phase difference of the superconducting order parameter
in the magnetic field is ϕij = θ i1 − θj2 − ēAz1,2, where Az1,2 =∫ �=2
�=1 A

z(z)dz. The charge screening length μi = √
λ2

TF/4πεi
is a constant related to the Thomas-Fermi screening length
λFT = √

πao/4kF , and the dielectric constant εi of the S layer.
Here, ao is the Bohr radius and kF is the Fermi vector. The
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magnetic penetration depth of the S layer are denoted by λi =√
moi /4πni ē

2 where moi is the mass of the i-band electron,

ni =
∑

k

4εik
3Eik

{
tanh

Ēik

2
+ Ēikf

(
Eik

)[
1 − f (

Eik
)]}
, (12)

Eik = √
ε2

k +�ik, Ēik = βEik, and f (E) is the Fermi function.
Here, we make a local approximation and consider μ and λ
as constants.30,31 The Josephson critical current J ij between
the electronic bands i and j in two adjacent S layers may be
written30,31 as

J ij = − 2ē

dsβ

∫
dτ

∑
n

e−iωnτ
∑
k,k′
T 2
ij

�ik�
j

k′

EikE
j

k′

×
{

Eik − Ejk′(
Eik + Ejk′

)2 + ω2
n

[
f

(
Eik

) − f (
E
j

k′
)]

+ Eik+Ejk′(
Eik + Ejk′

)2 + ω2
n

[
1 − f (

Eik
) − f (

E
j

k′
)]}

, (13)

where ωn = 2nπ/β with n = 0,±1,±2, . . . is the Matsubara
frequency. The interband Josephson critical current Jinter =
2ēVsd�so�

d
o /(VssVdd − V 2

sd ) between the two bands within the
same S layer does not represent charge transfer, as in J ij . The
Lagrangian density for the electromagnetic field LEM in
the insulator layer is given by

LEM = d

8π

[
ε
(
Ez1,2

)2 − (
B
y

1,2

)2]
, (14)

where d is the I layer thickness, and ε is the dielectric constant.
The electric and magnetic field between two adjacent S layers
(i.e., � = 1 and � = 2) are defined as

Ez1,2 = −∂A
z
1,2

∂t
− 1

d

(
Ao1 − Ao2

)
, (15)

B
y

1,2 = 1

d

(
Ax1 − Ax2

) − ∂Az1,2

∂x
, (16)

respectively.
We now derive the equations of motion for the phase

difference ϕij by following the usual approach of minimizing
the action Sphase of Eq. (10). Here, noting that τ = −it ,
we examine the phase dynamics of both ϕss and ϕdd

since we may write that ϕsd = θs1 − θd2 + ēdAz1,2 = ϕss + χ2

and ϕds = θd1 − θs2 + ēdAz1,2 = ϕss − χ1. Using the Euler-
Lagrange equation for the scalar and vector potentials (i.e.,
Ao� and Az�), we obtain the following two coupled equations of
motion for the phase differences ϕss and ϕdd :

ηsμ
∂2ϕss

∂t2
− ηsλ

∂2ϕss

∂x2
− ζμ ∂

2ϕdd

∂t2
+ ζλ ∂

2ϕdd

∂x2

+ 2J ss

ē
sinϕss + J sd

ē
[sin(ϕss + χ2) + sin(ϕss − χ1)]

+ Jinter

ē
(sinχ1 − sinχ2) = 0, (17)

and

ηdμ
∂2ϕdd

∂t2
− ηdλ

∂2ϕdd

∂x2
− ζμ ∂

2ϕss

∂t2
+ ζλ ∂

2ϕss

∂x2

+ 2J ss

ē2
sinϕdd + J sd

ē
[sin(ϕdd − χ2) + sin(ϕdd + χ1)]

− Jinter

ē
(sinχ1 − sinχ2) = 0. (18)

The coefficients in the above two equations of motion (for ϕss

and ϕdd ) are

ηiξ = ds

4πē2ξ 2
i

(
1 − dsd

4πξ 2
i κξ

)
, (19)

and

ζξ =
(

ds

4πēξsξd

)2
d

κξ
, (20)

where

κξ = dsd

4π

(
1

ξ 2
s

+ 1

ξ 2
d

)
+ κoξ . (21)

Here, ξi denotes either the screening length (μi) or the
magnetic penetration depth (λi) of the i-band, κoμ = ε/2π and
κoλ = 1/2π .

By noting that the phase difference ϕsd may be written
as either ϕsd = ϕss + χ2 or ϕsd = ϕdd + χ1, we may see
straightforwardly that the phase dynamics for both ϕdd and
ϕss are closely related through the soft modes χ1 and χ2 in
the two adjacent S layers. We simplify the equation of motion
for ϕss by writing that ϕdd = ϕss − χ1 + χ2. This substitution
yields a familiar form of the equation of motion for both ϕss

and ϕdd . Here, we focus on the phase dynamics of ϕss given
by

ds

4πē2

(
κoμ

μ2
s κμ

∂2ϕss

∂t2
− κoλ

λ2
s κλ

∂2ϕss

∂x2

)
+ 2J ss

ē
sinϕss

+ J
sd

ē
[sin(ϕss + χ2) + sin(ϕss − χ1)]

+
2∑
�=1

(−1)�+1

[
ζμ
∂2χ�

∂t2
− ζλ ∂

2χ�

∂x2
+ Jinter

ē
sinχ�

]
= 0.

(22)

As indicated by Eq. (22), the phase dynamics of ϕss depend
strongly on the relative phases (i.e., χ1 and χ2) of the two
condensates. As the phase χ� depends only on the interband
Josephson effect, it is not influenced by the dynamics of
the phase difference ϕss across the junction. Hence we may
separate the phase dynamics described by Eq. (22) into two
separate equations. Assuming that χ1 = χ2 = χ , we write
these equations as

∂2ϕss

∂x̄2
− ∂2ϕss

∂t̄2
−

(
1 + J sd

J ss
cosχ

)
sinϕss = 0, (23)

∂2χ

∂x̃2
− ∂2χ

∂t̃2
− sinχ = 0, (24)

where (t̄ , x̄) and (t̃ , x̃) are the dimensionless coordinates for the
phases ϕss and χ , respectively. Here, it is noted that we may
assume that ϕss = ϕdd when χ1 = χ2. This suggests that the
two tunneling channels (i.e., ϕss = ϕdd ) become equivalent.
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III. INTERBAND JOSEPHSON EFFECT

In this section, we derive the equation of motion for the
interband phase difference χ of Eq. (24) from the two-band
Hamiltonian ĤTB,� of Eq. (1). It is noted that this Hamiltonian
accounts for excitation of an i-soliton due to the interband
Josephson effect. By following Leggett,3 we write the two-
band Hamiltonian in the k-space representation as

ĤTB,� =
∑
i=s,d

Ĥi
OB,� − Êo + Ĥpair

inter,� + Eng + Ĥci
� , (25)

where the Hamiltonian Ĥi
OB,� for the electronic band i is given

by

Ĥi
OB,� =

∑
k,σ,�

εikc
i†
kσ,�c

i
kσ,� − Vii

∑
k,k′
c
i†
k↑,�c

i†
−k↓,�c

i
−k′↓,�c

i
k′↑,�.

(26)

Here, we introduce Êo so that the ground-state energy of∑
i Ĥi

OB,� − Êo in the normal state vanishes for an arbitrary
value of Ns and Nd , which denote the number of electrons
in the s and d band, respectively. The interband pairing
interaction between the electrons in s and d band is described
by the Hamiltonian Ĥpair

inter,� which may be written as

Ĥpair
inter,� = −Vsd

∑
k,k′,i �=j

c
i†
k↑,�c

i†
−k↓,�c

j

−k′↓,�c
j

k′↑,�. (27)

The termEng denotes the ground-state energy of the system in
the normal state. This energy Eng is fixed by the total number
of electrons N = Ns +Nd in the system. The Hamiltonian
Ĥci
� accounts for the effects of charge fluctuations from the

equilibrium state. These charge fluctuations may arise from
either the boundary conditions, various residual scattering
processes, or the chemical potential fluctuations and lead to the
charge imbalance between the s and d band. The Hamiltonian
Ĥci
� may be approximated3 as

Ĥci
� = γo

[(
N̂s − N̂os

) − (
N̂d − N̂od

)]2
�

= γ (δN̂�)
2, (28)

when the deviation from the equilibrium is small. Here, γo =
(ρ−1
s + ρ−1

d )/8, ρi = moi kF /π2 denotes the density of states
for the i-band electrons at the Fermi surface, and N̂oi denotes
the number operator for the i-band electrons in the equilibrium
state.

To assess the dynamics of relative phase χ� due to the
interband Josephson effect, we rewrite the two-band Hamil-
tonain ĤTB,� in terms of the familiar Ginzberg-Landau (GL)
free energy. (See the Appendix for a detailed discussion on the
derivation of GL free energy for the two-gap superconductors.)
Here, we note that the temperature range is restricted to
(Tc − T )/Tc � 1, where Tc is the superconducting transition
temperature. In addition, we considered the zero field limit here
since the interband phase fluctuations do not carry magnetic
flux. In the absence of magnetic field, we may write the
one-band Hamiltonian Ĥi

OB,� in the form of the GL free
energy33 GiOB,� as a function of the pseudo-order parameter�i�
(i.e.,

∑
i Ĥi

OB,� − Eo → ∑
i GiOB,�). Here, �i� is the auxiliary

field representing an electron pair. For one spatial dimensional

case, we may write GiOB,� as

GiOB,� = aGL
i |�i�|2 + bGL

i

2
|�i�|4 + 1

2m∗
i

∣∣∣∣d�i�dx
∣∣∣∣
2

, (29)

where aGL
i and bGL

i are the coefficients of the GL free
energy and m∗

i is the effective mass of the electron in the
i-band. (See the Appendix.) When the order parameter �i�
is written in terms of the modulus-phase variables [i.e.,
�i� = |�i�| exp(iθ i�)], the interband pairing interaction Ĥpair

inter,�
yields the contribution,

Gpair
inter,� = − 2gsd

gsgd

∣∣�s�∣∣∣∣�d� ∣∣ cos(θs� − θd� ), (30)

where gi = (VssVdd − V 2
sd )/Vii and gsd = Vsd (VssVdd −

V 2
sd )/(VssVdd ). Here, we assumed that the intraband interaction

is much larger than the interband interaction (i.e., Vij � Vii).
With this assumption, we may approximate that |�a� | ∼ √

Na ,
which specifies that the intraband interaction is independent
of the coordinates (i.e., d|�a� |/dx ≈ 0). The charge-imbalance
contribution Ĥci

� in Eq. (25) may be expressed in a familiar
form by using the number-phase uncertainty relationship of[

δN̂�,θ̂
s
�′ − θ̂ d�′

] = −4iδ��′ , (31)

where δ��′ is the kronecker delta. Noting that the Heisenberg
equation of motion for the phase difference χ̂� = θ̂ s� − θ̂ d� is
given by

dχ̂�

dt
= i[χ̂�,ĤTB,�], (32)

we may write the charge imbalance contribution as

Gci� = 1

64γo

(
dχ�

dt

)2

. (33)

Combining the result of Eqs. (29), (30), and (33), we may
write the Gibbs free energy density ḠTB = ∑

i(GiOB − Ging) +
Gpair

inter + Gci for the two-gap superconductor in the supercon-
ducting state as

ḠTB,� =
∑
i

(
aGL
i

∣∣�i�∣∣ + bGL
i

2

∣∣�i�∣∣4 +
∣∣�i�∣∣2

2m∗
i

∣∣∣∣dθi�dx
∣∣∣∣
)

+ 1

64γo

(
dχ�

dt

)2

− 2gsd
gsgd

∣∣�s�∣∣∣∣�d� ∣∣ cosχ�. (34)

Here, we assumed that the effects of external fields are weak
inside each S layer and, thereby, their contributions in ḠTB,�

are neglected.
We now use the Gibbs free energy of Eq. (34) and

obtain the equation of motion for χ�. By noting that there
is no supercurrent J� flowing anywhere inside the bulk
superconductor, we write that

J� =
∑
i

∣∣�i�∣∣
m∗
i

dθ i�

dx
= 0. (35)

From the condition that J� = 0, it is straightforward to obtain
that

θd� = −m
∗
d

∣∣�s�∣∣
m∗
s

∣∣�d� ∣∣θs� + δoπ. (36)
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Here, δo = 0 for Jinter < 0 (S+− symmetry) and δo = 1 for
Jinter > 0 (S++ symmetry). We minimize the Gibbs free energy
density with respect to the phase variation (i.e., dḠTB,�/dχ� =
0) and obtain the equation of motion for χ� as

d2χ�

dx̄2
− d2χ�

dt̄2
− sinχ� = 0, (37)

where the dimensionless coordinates (x̄,t̄) are x̄ =
[4gsd (m∗

s |�d |2 +m∗
d |�s |2)/gsgd |�s ||�d |]1/2x and t̄ = t/

(128γogsd |�s ||�d |/gsgd )1/2. It is straightforward to see that
Eq. (37) may yield a number of soliton solutions, but, for
simplicity, we consider a single-soliton solution of

χ�(x̄,t̄ ) = 4 tan−1

[
exp

(
± x̄ − υot̄√

1 − υ2
o

)]
, (38)

which is a kink solution, known as the i-soliton. Here υo is the
speed of i-soliton. The kink solution of Eq. (38) is identical
to the functional form of the unperturbed fluxon solution.24

However, the property of i-soliton differs from that of the
fluxon. Unlike fluxon, an i-soliton does not carry a quantum
of magnetic flux and cannot be driven by the Lorentz force
due to the bias current JB as shown in Fig. 1.

The equation of motion for χ� and its solution of Eq. (38)
indicates that the perturbation effects in the two-gap super-
conductor may lead the relative phase χ� to fluctuate from
the phase-locked state of χ�. These phase fluctuations, in turn,
yield collective excitations, but they modify neither the ground
state nor the one-particle excitation spectrum. However, if
large phase fluctuations representing a 2π -phase texture can
be stabilized, then the one-particle excitation spectrum may
become modified.

IV. EFFECTS OF i-SOLITION ON PHASE DYNAMICS

We now examine the effects of large fluctuations in the
relative phase of the s and d condensates on the fluxon
dynamics. When the amplitude of these phase fluctuations
grows to the nonlinear region and becomes stabilized as
suggested by Tanaka,17 excitation of an i-soliton can change
the amplitude of critical current density. The modulation
of critical current between two adjacent S layers may be
considered as an effective potential for a fluxon. The effects
of an i-soliton excitation on the phase dynamics of the LJJ
may be described by Eq. (23). We may simplify Eq. (23) by
substituting Eq. (38). The equation of motion for the fluxon
which accounts for the interband Josephson effect in each S
layer is given as

∂2ϕ

∂x̄2
− ∂2ϕ

∂t̄2
− Jc

J oc
sinϕ = 0, (39)

where ϕ = ϕss , Jc/J
o
c = 1 + (J sd/J ss)[1 − 2sech2(αox̄ −

βot̄ )], and J oc is the critical current in the absence
of the interband Josephson effect (i.e., J sd = 0). Here
αo = [J sdλ2

d/(1 − υ2
o )J ssdsd]1/2 and βo = υo[J sdμ2

dε/(1 −
υ2
o )J ssdsd]1/2. Equation (39) indicates that a i-soliton, rep-

resenting a moving 2π -phase texture of Eq. (38), leads to
both spatial and temporal dependent modulation of the critical
current.

The effects of spatial and temporal variation of Jc/J oc on
the fluxon depend on the shape of this modulation. In Fig. 2,

-4 -2 0 2 4

x

0.6

0.8

1

1.2

J c(x
)/

J c

J
sd

/J
ss

=  0.10
J

sd
/J

ss
= -0.10

FIG. 2. The amplitude modulation of the Josephson current
density Jc(x̄)/J oc due to excitation of static i-soliton representing
2π -phase texture with its center located at x = 0 is illustrated for the
interband Josephson current density of J sd/J ss = 0.10 (solid line)
and −0.10 (dashed line). Here, J oc is the critical current density of the
homogenous LJJ in the absence of the interband Josephson effect.

we neglect the temporal modulation and plot the amplitude of
the critical current (Jc/J oc ) versus the dimensionless spatial
coordinate x̄ for J sd/J oc = 0.1 (solid line) and −0.1 (dashed
line) to illustrate the effects of a single i-soliton excitation
in the S++ and S+− symmetry superconductor, respectively.
Here, we set αo = 1 for definiteness. The curves show that the
shape of critical current modulation depends on the symmetry
of order parameter (i.e., S++ versus S+−). However, as we
discuss in Sec. V, when J sd/J ss � 1, the symmetry of the
order parameter does not affect the fluxon motion significantly.

The critical current modulation induced by the interband
Josephson effect has two main effects. First, the shape of fluxon
may become deformed. However, for a small modulation
considered in the present work, this effect is negligible.
Second, the speed of fluxon becomes modified since the critical
current modulation behaves as an effective potential. In the
region of critical current modulation, the fluxon speed may
become significantly changed from a uniform value. These
changes imply that the EM waves can be emitted by a moving
fluxon as it decelerates.

We use the perturbation method to examine the effects of
critical current modulation on the emission of EM waves. To
obtain physical insight, we carry out the calculation in the rest
frame of the fluxon (i.e., a reference frame which is moving
with the speed of the unperturbed fluxon) as described34 by
Fogel and coworkers. To this end, we perform the Lorentz
transformation of

t̄ ′ = t̄ − υx̄√
1 − υ2

and x̄ ′ = x̄ − υt̄√
1 − υ2

, (40)

where υ is the speed of the unperturbed fluxon. With
this transformation, we rewrite the sine-Gordon equation of
Eq. (39) as

∂2ϕ

∂x̄ ′2 − ∂2ϕ

∂t̄ ′2
− J̄c

J oc
sinϕ = 0, (41)

where J̄c/J oc = 1 + (J sd/J ss)[1−2sech2(α′
ox̄

′+β ′
ot̄

′)], α′
o =

(αo − βoυ)/
√

1 − υ2, and β ′
o = (αoυ − βo)/

√
1 − υ2.
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By considering the case of the weak interband Josephson
effect (i.e., J sd/J ss � 1), we assume that a solution to Eq. (41)
may be written as

ϕ(x,t) ≈ ϕo(x) + J sd

J ss
ϕ1(x,t). (42)

Here, for convenience, we make the following changes in
the notation: (x̄ ′,t̄ ′) → (x,t). A solution to the unperturbed
sine-Gordon equation of

∂2ϕo

∂x2
− ∂2ϕo

∂t2
− sinϕo = 0 (43)

is given by ϕo(x) = 4 tan−1[exp(x)]. Following Fogel et al.,34

we may write the correction term ϕ1 due to the critical current
modulation in the most appropriate basis by separating the
spatial and temporal dependence as

ϕ1(x,t) = f (x)e−iωt . (44)

The separation of variables for the perturbative contribution
ϕ1 in the rest frame of the fluxon (i.e., υ = 0) leads to the
eigenvalue equation for f (x) as[

− d2

dx2
+ (1 − 2sech2x)

]
f (x) = ω2f (x). (45)

The eigenvalue problem of Eq. (45) yields one bound state with
ω = ωb = 0 and a continuum of scattering states with ω2 =
ω2
κ = 1 + κ2. The corresponding normalized eigenfunctions

are

f (x) =
{
fb(x) = 2sechx, with ω = ωb,
f (κ,x) = κ+itanhx√

2πωκ
eiκx, with ω = ωκ. (46)

Here we use the subscripts b and κ to denote the bound state and
continuum of scattering state κ , respectively. The bound state
fb(x) is associated with the Goldstone translation mode of the
fluxon, while the continuum eigenfunctions f (κ,x) represent
the radiation modes. The eigenfunction of Eq. (46) indicates
that the first-order correction ϕ1(x,t) due to the critical current
modulation may be separated into two parts as

ϕ1(x,t) = ϕtrans(x,t) + ϕrad(x,t). (47)

Here, ϕtrans and ϕrad represent the bound state and continuum
eigenstate contribution, respectively.

The bound state contribution ϕtrans(x,t) may be written as

ϕtrans(x,t) = 1
8φb(t)fb(x). (48)

The amplitude φb(t) of the bound state is determined straight-
forwardly from the equation of

d2φb(t)

dt2
= 4

∫ ∞

−∞
dx(1 − 2sech2ξo)

sinhx

sech2x
, (49)

where ξo = α′
ox + β ′

ot . The solution to Eq. (49) may be
obtained as

φb(t) = −8α′
o

β ′2
o

(
1 −

∫ ∞

−∞
dx

sech2x

e2β ′
ot e2α′

ox + 1

)
. (50)

We note that φb(t) may be used to evaluate the translation
mode contribution ϕtrans(x,t). This contribution has no effects
on the motion of the fluxon center.

The continuum eigenstate contribution, representing the
radiation modes, is given by

ϕrad(x,t) =
∫ ∞

−∞
dκφ(κ,t)f (κ,x). (51)

The amplitude φ(κ,t) is determined from

d2φ(κ,t)

dt2
+ (1 + κ2)φ(κ,t) = Q(κ,t), (52)

where

Q(κ,t) = 2
∫ ∞

−∞
dxf ∗(κ,x)(1 − 2sech2ξo)

sinhx

cosh2x
. (53)

In obtaining Eq. (52), we used the orthonormality condition
for the eigenfunctions [i.e.,

∫
dxf ∗(κ ′,x)f (κ,x) = δ(κ − κ ′)].

The contribution to the radiation mode of ϕ1 may be estimated
by solving Eq. (52). For a single modulation of the critical
current density as shown in Fig. 2, we may obtain a solution
to Eq. (52) more easily by using the relation,

sech2ξo =
∫ ∞

−∞

dk

2π

πk

sinhπk2
eikξo , (54)

which is the Fourier representation of the critical current
variation. Using this substitution, we rewrite Q(κ,t) by
integrating the right-hand side of Eq. (53) over x and obtain

Q(κ,t) = −iπ√
2π (1 + κ2)

{
(1 + κ2)sech

κπ

2

−
∫ ∞

−∞
dk

sechπkηκ2

2sinhπk2
[1 + κ2 − (kα)2]keikβ

′
ot

}
, (55)

where ηκ = α′
o − (κ/k). The solution φ(κ,t) may be written

as

φ(κ,t) =
∫ ∞

−∞

dω

2π

Q(κ,ω)

(1 + κ2) − ω2
eiωt , (56)

where Q(κ,ω) = ∫
dt ′Q(κ,t ′) exp(−iωt ′). It is straightfor-

ward to evaluate the integration over t ′ and ω, and write the
solution φ(κ,t) as

φ(κ,t) = −iπ√
2π (1 + κ2)

[
sech

κπ

2
−

∫ ∞

−∞
dk

sechπkηκ2

sinhπk2

× 1 + κ2 − (kα′
o)

2

1 + κ2 − (kβ ′
o)

2
keikβ

′
ot

]
. (57)

However, as indicated in Eq. (51), we need to integrate
over the continuum variable κ to compute ϕrad(x,t). This
may be evaluated by using the contour integration method.
The location of the poles for the contour integral is shown
schematically in Fig. 3. The radiation contribution ϕrad(x,t)
of Eq. (51) indicates that all poles are simple, and the residue
of each pole may be evaluated separately. The location of
the poles are the following: zo = +i, z1 = +i√1 − (kβ ′

o)
2,

zon = +i(2n+ 1), and z±n = ±kα′
o + i(2n+ 1), where n =

0,1,2, . . .. The residues of the pole structure shown in Fig. 3
yield two types of contribution: (i) exponentially localized
contribution around the fluxon center and (ii) linear traveling
wave contribution. Hence, we may decompose the radiation
mode ϕrad into the exponentially localized (ϕexp

rad ) and traveling
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FIG. 3. The pole structure for the radiation contribution of
Eq. (51) to ϕ1(κ,t) for a fixed k is shown schematically. The
solid circles represent the poles yielding the exponentially localized
contribution. The open circles represent the changes in the location
of z1 as the fluxon velocity υ changes from υ < υth (on the imaginary
axis) to υ > υth (on the real axis). The shift direction for the pole z1

is indicated by the arrows.

wave (ϕwave
rad ) contributions: ϕrad = ϕexp

rad + ϕwave
rad . We note that

the exponentially localized contribution ϕexp
rad does not produce

a true radiative correction. Only the traveling wave ϕwave
rad gives

rise to a true radiative contribution.
We now focus on the poles that give rise to the traveling

wave contribution to the radiation correction. As indicated
by the Fourier components of the critical current modulation
described by the (1 − 2sech2ξo) factor in Eq. (53), the
condition for the traveling wave radiative contribution depends
on k. For fixed k < (1/β ′

o), the pole at z1 lies on the imaginary
axis as shown in Fig. 3. However, as the fluxon speed υ
increases, the pole z1 moves down the imaginary axis. At
the critical value υ = υth, the pole z1 lies at the complex
plane and it becomes real when υ > υth. The changes in
the radiation contribution in Eq. (51) from this pole may
be easily identified by the contour integration since it is not
exponentially localized around the fluxon center but oscillates
with x. The oscillatory contribution only arises when υ > υth.
This leads to the radiative contribution of

ϕwave
rad (x,t) = −

∫ ∞

1
β′
o

dk

2η

πk

sinhπk2
(η + itanhx)

(
1 − α′2

o

β ′2
o

)

×
[
eik(β

′
ot+ηx)

coshπkη−
2

+ e−ik(β
′
ot−ηx)

coshπkη+
2

]
, (58)

where η = √
(kβ ′

o)2 − 1, and η± = α′
o ∓ (η/k). Equation (58)

indicates that, for a fixed k, this radiation correction is the
superposition of two linear traveling waves with different
amplitudes. The two waves travel in opposite directions. The
threshold velocity υth for the fluxon is given by

υth = υo
(
μ2
dε

λ2
d

)1/2

. (59)

The dependence of υth on the i-soliton velocity υo indicates
that, for the case of static spatial variation of the phase (i.e.,
υo = 0), EM radiation may be emitted by the fluxon whenever

it passes through a region where the critical current is affected
by the interband Josephson effect. Hence, when an array
of static i-solitons are excited to yield a spatially periodic
modulation of the critical current density, the threshold
velocity υth becomes finite. This radiative threshold is similar
to that found in earlier studies.25–27

V. CURRENT-VOLTAGE CHARACTERISTICS

Emission of EM radiation by a moving fluxon, indicated
by the linear traveling wave contribution to the radiative
correction in ϕ1(x,t) as discussed in Sec. IV, reflects the
changes in the fluxon dynamics. We now examine the effects of
a single i-soliton excitation on fluxon dynamics by considering
a static phase texture described by Eq. (39) with υo = 0 (i.e.,
βo = 0). Here, we include the perturbative effects of bias
current and dissipation to examine a realistic tunnel junction.
The bias current JB acts as a driving force for the fluxon, while
the two dissipation terms, �1(∂ϕ/∂t̄ ) and �2(∂3ϕ/∂t̄∂2x̄),
account for the interaction between the fluxon and dissipative
environment. Using the perturbed sine-Gordon equation with
the critical current density modulation, we determine the
fluxon trajectories and estimate the effects of the bias current
and dissipation (�1 and �2). These perturbation contributions
as well as the interband Josephson effect can modify the
current-voltage curve. We start with the perturbed sine-Gordon
equation of

∂2ϕ

∂x̄2
− ∂2ϕ

∂t̄2
− sinϕ = F(ϕ,x̄,t̄ ), (60)

where the perturbation term F(ϕ,x̄,t̄ ) is given by

F(ϕ,x̄,t̄ ) = J sd

J ss
[1 − sech2(αox̄)] sinϕ − JB

J oc

+�1
∂ϕ

∂t̄
+ �2

∂3ϕ

∂t̄∂2x̄
. (61)

Here, we assume that each perturbation term in F is small and
does not change the shape of the fluxon in the leading order.
The main effect of the first term of F in Eq. (61) is to provide
a potential for a moving unperturbed fluxon of

ϕo(x̄,t̄ ) = 4 tan−1(eζ ), (62)

where

ζ (x̄,t̄ ) = ± x̄ − ∫ t̄
0 υ(t ′)dt ′ − x̄o(t̄ )√

1 − υ2(t̄ )
. (63)

Here, the fluxon speed υ(t̄ ) accounts for the time dependence
induced by the critical current modulation. We now examine
the trajectories of the fluxon in an LJJ, and the effects of
an i-soliton excitation on the I-V curve in the low-voltage
regime.

By following McLaughlin and Scott,24 we examine the
fluxon trajectories by computing the fluxon speed and the
corresponding position. For this purpose, we assume that
the fluxon approaches the region of a large stable variation
of phase difference (i.e., 2π -phase texture) between the s
and d condensates from x̄ = −∞ with increasing t̄ . We write
Eq. (60) as two first-order differential equations describing the
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velocity (υ) and the position (x̄o) of the fluxon, respectively,
as

dυ

dt̄
= ∓1 − υ2

4

∫ ∞

−∞
dx̄F(ϕo,x̄,t̄ )sechζ, (64)

dx̄o

dt̄
= −υ

4

√
1 − υ2

∫ ∞

−∞
dx̄F(ϕo,x̄,t̄ )ζ sechζ, (65)

where ζ = ζ (x̄,t̄ ) is defined in Eq. (63). The perturbation
term F modifies the speed υ of the unperturbed wave form of
Eq. (62) to depend on time t̄ . By performing the integration,
we rewrite Eqs. (64) and (65), which, respectively, account for
the fluxon speed υ and position X, as

dυ

dt̄
= ±π

4

JB

J oc
(1 − υ2)

3
2 − �1υ(1 − υ2) − 1

3
�2υ

+ (1 − υ2)
3
2
J sd

J ss

∫ ∞

0
dyϒ+

sinhy

cosh3y
, (66)

and

dX

dt̄
= υ + υ − υ3

2

J sd

J ss

(
1 − 2

∫ ∞

0
dyϒ−

ysinhy

cosh3y

)
, (67)

where ϒ± = ϒ±(y,t̄,X) = sech2αo(
√

1 − υ2y +X) ±
sech2αo(

√
1 − υ2y −X) and X = ∫ t̄

0 υ(t ′)dt ′ + x̄o(t̄ ). These
two equations describe the fluxon trajectories in the (υ, X)
phase plane. We numerically integrate Eqs. (66) and (67)
to estimate the fluxon trajectories. The uniform fluxon
speed υ = υ∞ far away from the region of critical current
modulation is given by

dυ

dt̄
= ±π

4

JB

J oc
(1 − υ2)

3
2 − �1υ(1 − υ2) − 1

3
�2υ. (68)

The power-balance velocity υ∞ may be estimated by setting
dυ/dt̄ = 0. The fluxon speed υ∞ is obtained by solving the
following cubic equation:

3∑
i=0

aiz
i = 0, (69)

where z = (1 − υ∞)1/2, a3 = [π2(JB)2/16(J oc )2] + �2
1, a2 =

(2�1�2/3) − �2
1, a1 = (�2

2/9) − (2�1�2/3) and a0 = −�2
2/9.

We note that the solution is bounded by the condition that
0 � υ∞ � 1 since υ∞ is given in units of Swihart velocity.

We now estimate the effects of bias current JB/J oc on
the fluxon trajectories in the (υ, X) phase plane. In Fig. 4,
the fluxon trajectories obtained by numerically integrating
Eqs. (66) and (67) are plotted for JB/J oc = 0.01, 0.02,
and 0.04 (from left to right) to illustrate the position X of
the fluxon as a function of velocity υ. Here, we set the
dissipation parameters �1 = �2 = 0.1. The solid (dashed)
curves represent the interband Josephson current density
J sd/J ss = 0.1 (−0.1). Here, υ∞ is the uniform initial speed of
the fluxon at a position far away from the region of 2π -phase
texture which is centered at X = 0. The value of υ∞ depends
on JB/J oc . The curve for each JB/J oc shows that, as the
fluxon approaches X = 0, the fluxon speed deviates from a
straight vertical dotted line representing a uniform speed in
the absence of the critical current modulation. The curves
also show that when the bias current is small (i.e., see, for
example, JB/J oc = 0.010) the fluxon becomes almost pinned

0 0.1 0.2 0.3
υ

-50

-25

0

25

50
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0.10
-0.10

J
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/J
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0.0400.0200.010
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B
/J
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FIG. 4. Fluxon trajectories in the (υ, X) phase plane for �1 =
�2 = 0.1 are plotted to illustrate their dependence on the strength of
both the bias current JB/J oc and interband Josephson current J sd/J ss .
Three solid (dashed) curves, from left to right, correspond to JB/J oc =
0.010, 0.020, and 0.040 for J sd/J ss = 0.10 (−0.10). The vertical
dotted lines represent the uniform fluxon speed in the absence of
critical current modulation.

since the pinning effects of the critical current modulation
reduce the fluxon speed close to zero. For JB/J oc < 0.100,
the fluxon is pinned: υ = 0 at X ≈ 6.5 for J sd/J ss = 0.10
and X ≈ −6.5 for J sd/J ss = −0.10. However, for JB/J oc >
0.010, the fluxon is not pinned since the driving force due to
the bias current is larger than the pinning force. The fluxon,
approaching from X = −∞, undergoes a notable change in
its speed in the region of the critical current modulation. The
difference between the maximum and minimum value of the
fluxon speed becomes reduced with the increasing bias current
density. This is due to the fact that the importance of the pinning
effect decreases with increasing value of υ∞ (i.e., increasing
JB/J oc ).

As its speed decreases, the fluxon radiates EM waves in the
region of critical current modulation. A variation in the fluxon
sped may be seen easily in Fig. 4 as a deviation of the fluxon
trajectories from the vertical dotted lines. For the solid lines
representing the S++ symmetry (i.e., J sd/J ss > 0), the fluxon
speed υ � υ∞ forX < 0, but υ � υ∞ forX > 0. On the other
hand, for the dashed lines representing the S+− symmetry (i.e.,
J sd/J ss < 0), the fluxon speed υ � υ∞ for X < 0, but υ �
υ∞ for X > 0. The deviation from the uniform fluxon speed
υ∞ increases with the interband Josephson current density
|J sd/J ss |. This nonuniform fluxon speed due to the critical
current modulation suggests that the fluxon absorbs energy
from the interband Josephson current to increase the speed
from υ∞, but it returns the energy back to the junction by
radiating EM waves, resulting the decrease in the speed.

As suggested by the fluxon trajectories in the (υ, X) phase
plane, the bias current density must be larger than the threshold
value JBth in order for the fluxon to pass through the region
of critical current modulation. In Fig. 5, we plot the I-V
curve for J sd/J ss = 0.10 (dotted line) and 0.20 (solid line) to
illustrate the dependence of the threshold bias current JBth on
the interband Josephson current (J sd/J ss). The fluxon speed,
according to the AC Josephson effect (1/i)(∂ϕ/∂t) = V , is
proportional to the voltage V across the junction. Here, we set
the dissipation parameters as �1 = �2 = 0.1 for concreteness.
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FIG. 5. The current-voltage curves for J sd/J ss = 0.10 (dotted
line) and 0.20 (solid line) illustrate the dependence of the threshold
bias current (i.e., the value of JB/J oc for V = 0) on the interband
Josephson current. Here, the dissipation parameters are �1 = 0.10
and �2 = 0.10.

The value of the threshold bias current JBth for a fixed J sd/J ss

may be estimated easily since the voltage across the LJJ does
not appear until the bias current reaches the threshold value.
The curves show that the threshold bias current increases with
J sd/J ss . As the critical current modulation plays the role of an
effective potential for the fluxon, a larger JB/J oc is needed to
overcome the pinning effect as J sd/J ss increases. Hence the
threshold bias current is similar to the minimum current density
needed to overcome the pinning force. In Fig. 5, for JB > JBth ,
the I-V curves show that the voltage increases steadily with
increasing JB because the boundary effects are not included
in this work. The zero-field step resonances due the boundary
current28 (i.e., a rapidly vanishing critical current near the
edges of the junction) are expected to be present along with
a smooth increase shown in Fig. 5 when the boundary effects
are included.

In Fig. 6, we plot JBth /J
o
c as a function of J sd/J ss for

�1 = 0.05 (solid line), 0.10 (dashed line), and 0.15 (dot-double
dashed line) to illustrate the dependence of the threshold bias
current on the interband Josephson effect. We set�2 = 0.10 for
concreteness, but the curves are independent of the strength of

0 0.05 0.1 0.15 0.2

J
sd

/J
ss
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0.005

0.01

0.015

0.02

0.025

0.03

J th

B
/J
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Γ1

FIG. 6. The threshold bias current density JBth /J
o
c is plotted as a

function of J sd/J ss for �1 = 0.05 (solid line), 0.10 (dashed line),
and 0.15 (dot-double dashed line) to illustrate the minimum bias
current needed to overcome the pinning effect of the critical current
modulation. Here, �2 = 0.10.

the parameter �2. The curves show that JBth increases linearly
with the interband Josephson current J sd/J ss . As indicated by
the fluxon trajectories in the (υ, X) phase plane, the JBth /J

o
c

versus J sd/J ss curves for both J sd/J ss > 0 and J sd/J ss < 0
are identical. This indicates that the symmetry of order
parameter (i.e., S++ versus S+−) may not be distinguished
directly from the I-V curves. The increase in the threshold bias
current with increasing interband Josephson current implies
that, as the critical current modulation increases, a greater
strength of driving force must be provided by the bias current to
allow the fluxon to pass through the region of a static 2π -phase
texture.

VI. SUMMARY AND CONCLUSION

In summary, we have investigated the effects of interband
Josephson current on the fluxon dynamics of an LJJ with two-
gap superconductors. Due to the multicomponent nature of
the superconducting order parameter, a 2π -phase texture may
be present in each S layer. Accounting for the charge imbalance
between the two electronic bands, say s and d bands, we
found that the dynamics of the relative phase of the s and
d condensates may be described by the equation of motion
which is similar to that for the fluxon. However, the kink
solution for the relative phase (i.e., i-soliton) differs from that
for the fluxon. Unlike fluxon, an i-soliton does not carry a
magnetic flux quantum but leads to both spatial and temporal
modulation of the critical current density.

The critical current density modulation, induced by excita-
tion of an i-soliton representing a 2π -phase texture, behaves
as an effective pinning potential for fluxon and modifies the
fluxon trajectories. These trajectories in the velocity-position
phase plane are similar to those for fluxon moving in the
presence of a single microresistor. Moreover, similar to an
array of microresistors in the insulator layer of an LJJ, a
periodic modulation of the critical current may be created
when a spatially periodic array of i-solitons is excited. This
critical current modulation can change the fluxon speed when
the bias current is applied across the junction in a dissipative
environment. In the region far away from the critical current
modulation, the fluxon motion is uniform. However, in the
region of critical current modulation, the fluxon speed can
either decrease or increase from the uniform speed as the
fluxon either receives or returns energy to the junction. The
decrease in the fluxon speed due to excitation of an i-soliton
results in emission of EM radiation (i.e., quasilinear plasma
wave).

The changes in the fluxon speed due to critical current
modulation may be reflected in the I-V characteristics. When
the bias current is less than the critical value, the fluxon
becomes trapped and its speed will be reduced to zero, resulting
zero voltage across the junction. This is similar to a fluxon
trapped by a microresistor in the I layer. The result suggests
an interesting possibility that a double-well potential for a
fluxon, which is a necessary condition for a Josephson vortex
quantum bit, may be created by exciting two i-solitons in
each S layer of the LJJ, rather than implanting two closely
spaced microresistors.35 In addition, the I-V curves reveal the
dependence of fluxon motion on the bias current. The threshold
bias current needed for the fluxon to overcome the critical
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current modulation appears as a discontinuous jump in the
I-V curve at V = 0. Hence, this discontinuity may serve as a
way to verify the excitation of an i-soliton. Since the size of
this discontinuity depends on the interband Josephson current,
the I-V curves may be used to estimate the strength of the
interband Josephson effect. However, the I-V curves for both
the S++ and S+− symmetry superconductors are expected to
be similar since the threshold bias current does not depend on
the symmetry of the order parameter.

The present work indicates that the changes in the fluxon
dynamics due to excitation of an i-soliton in a single LJJ may
become amplified in a multiple LJJ stack where the collective
motion of fluxon is known to arise.36 Furthermore, as recent
studies of three-band superconductors indicate, excitation of
i-solitons37 which break38 the time reversal symmetry is pos-
sible when the interband Josephson couplings are frustrated.39

The fluxon dynamics of an LJJ with three-band superconduc-
tors may lead to a more interesting junction property than that
described in the present work.
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APPENDIX: DERIVATION OF GINSBERG-LANDAU
ENERGY FOR A TWO-GAP SUPERCONDUCTOR

For completeness, we derive the Ginsberg-Landau free
energy from the two-gap Hamiltonian ĤTB of Eq. (1) by
writing the partition function Z as

Z =
∫

D[c̄s ,cs]D[c̄d ,cd ]e−S[c̄s ,cs ,c̄d ,cd ], (A1)

where the action S is given by

S =
∫ β

0
dτ

[∑
i,k,σ

c̄ik,σ ∂τ c
i
k,σ + ĤTB

]
, (A2)

∂τ = ∂/∂τ , and c̄ikσ (cikσ ) is the Grassmann variable represent-
ing the creation (annihilation) operator for the i-band electron
in the (kσ ) state. Here, we suppress the S layer index �,
for simplicity. We proceed by introducing Nambu notation
of C̄ik = (c̄ik↑c

i
−k↓) and by writing the pair fields Āik and Aik as

Āik = C̄ikτ+Cik = c̄k↑c̄−k↓, (A3)

Aik = C̄ikτ−Cik = c−k↓ck↑, (A4)

where τ± = (τ1 ± iτ2)/2 and τi are Pauli matrices. The action
S of Eq. (A2) may be rewritten as

S =
∫ β

0
dτ

∑
i,k

[
C̄ik

(
∂τ I + εakτ3

)
Cik +

∑
j,k′
Vij ĀikA

j

k′

]
. (A5)

We introduce the Hubbard-Stratonovich transformation to map
the interacting system to noninteracting fermions moving
in an Hubbard-Stratonovich field � (i.e., auxiliary field)
representing electron pairing. We rewrite the partition function

of Eq. (A1) as

Z =
∫

D[C̄,C]D[�̄,�]e−S[C̄,C,�̄,�], (A6)

where the action S is given by

S =
∫ β

0
dτ

[ ∑
i,k

C̄ik
(
∂τ I + εikτ3

)
Cik

+
∑
k,k′

(
�̄k

1

V
�k′ − Āk

1

V
Ak′

)]
. (A7)

Here, we note that �̄k = (�̄sk,�̄
d
k), Āk = (Āsk,Ādk), and V

denotes the pairing interaction matrix,

V =
(
Vss Vsd
Vsd Vdd

)
. (A8)

We shift the � field (i.e., �̄k → �̄k + ĀkV and �k → �k +
VAk) and obtain

S =
∫ β

0
dτ

[ ∑
i,k

C̄ik
(
∂τ I + εikτ3

)
Cik

+
∑
k,k′

(
�̄k

1

V
�k′ + Āk�k′ + �̄kAk′

)]
. (A9)

We integrate out the fermion variables C̄ and C by using the
Grassmann integrals and obtain

S =
∫ β

0
dτ

∑
k,k′

[∑
i

�̄ik�
i
k′

gi
− gsd

gsgd

(
�̄sk�

d
k′ + �̄dk�sk′

)]

− Tr lnG−1
s − Tr lnG−1

d , (A10)

where gi = (VssVdd − V 2
sd )/Vii and gsd = Vsd (VssVdd −

V 2
sd )/(VssVdd ). We note that the first term in Eq. (A10) may be

considered as the pesudo-order parameter contribution Sgap to
the action. The interacting Green function Gi for the i-band
electron is given by

G−1
i = (

Goi
)−1 +�i, (A11)

where the noninteracting Green function Goi is given by

(
Goi

)−1 =
(
∂τ + εik 0

0 ∂τ − εik

)
, (A12)

and the pair interaction �i is given by

�i =
(

0 �ik
�̄ik 0

)
. (A13)

We may simplify Eq. (A10) by expanding the terms Tr lnG−1
i

as

lnG−1
i = ln

(
Goi

)−1 −
∞∑
n=1

(−1)n

n

(
Goi �i

)n
. (A14)

In the expansion, all odd order terms vanish when the trace of
lnG−1

i is taken. Assuming that the pair field �ik is uniform,
we may write the fourth-order contribution in the expansion
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of lnG−1
i as

1

β
Tr

(
Goi �i

)4 = 1

β

∑
ν

∫
d3k

(2π )3

2|�i |4[
ω2
ν + (

εik
)2]2

= 7ζ (3)ρi
4π2T 2

|�i |4, (A15)

by making the high density approximation. Here, ων =
(2ν + 1)π/β with ν = 0,±1,±2, . . . denotes the Matsubara
frequency, and ζ (x) is the zeta function The second-order
contribution to the expansion yields

1

β
Tr

(
Goi �i

)2 = 2

β

∑
ν,k,k′

∣∣�ik−k′
∣∣2(

iων − εik
)(
iων + εik′

) . (A16)

We may simplify the calculation by introducing new momen-
tum variables: p = (k + k′)/2 and q = k − k′. We make a
Taylor expansion in q up to second order, in the high-density
limit, and obtain

1

β
Tr

(
Goi �i

)2 = 2

β

∑
ν,q

|�iq|2
∑

p

{
1

ω2
ν − (

εip
)2 + p2q2

12
(
moi

)2

×
[

−3(
ω2
ν + (

εip
)2)2 + 4

(
εip

)2

(
ω2
ν + (

εip
)2)3

]}
.

(A17)

Here, we used the dispersion relation of εik = k2/2moi , where
moi is the band mass of the electron. In addition, we used
the relation pipj → δijp

2/3 when the angular average is
performed. In Eq. (A17), the first term yields the quadratic
term (i.e., |�i |2) in the GL free energy, while the second term

leads to the gradient part of the quadratic term (i.e., |∇�2|2).
Combining these terms, we obtain

1

β
Tr

(
Goi �i

)2 = −2ρi ln
2β eγ

π
|�i |2

+ 7ζ (3)k2
Fβ

2ρi

24
(
moi

)2
π2

∫
d3r|∇�i(r)|2, (A18)

where  is the cutoff energy for the boson which mediates
pairing interaction and γ ≈ 0.5772. Here, we approximated
that p2 ≈ k2

F . We now combine the result and write the
coefficients to the GL free energy expansion for ḠiOB =
GiOB − Ging for one dimension in the superconducting state as

ḠiOB = aGL
i |�i |2 + bGL

i

2
|�i |4 + 1

2m∗
i

∣∣∣∣d�idx
∣∣∣∣
2

, (A19)

where the coefficients of the expansion are

aGL
i = 1

gi
− ρi ln

2β e−γ

π
, (A20)

bGL
i = 7ζ (3)β2ρi

16π2
, (A21)

and the effective mass m∗
i is

m∗
i = 24

(
moi

)2
π2

7ζ (3)k2
Fρi

. (A22)

The GL free energy of Eq. (A19) may be used to estimate
the interband phase dynamics by noting that the Hubbard-
Strotonovich field may be expressed in terms of modulus-
phase variables as�i = |�i | exp(iθ i), as discussed in Sec. III.
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