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Renormalization-group exponents for superconducting phases in two-leg ladders
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In previous studies, we proposed a scaling ansatz for electron-electron interactions under renormalization group
transformation. With the inclusion of phonon-mediated interactions, we show that the scaling ansatz, characterized
by the divergent logarithmic length ld and a set of renormalization-group exponents, also works rather well. The
superconducting phases in a doped two-leg ladder are studied and classified by these renormalization-group
exponents as demonstration. Finally, nontrivial constraints among the exponents are derived and explained.

DOI: 10.1103/PhysRevB.85.134502 PACS number(s): 74.20.−z, 71.10.Fd, 71.10.Hf, 71.27.+a

I. INTRODUCTION

Even though superconductivity has been observed1 for
100 years, the mechanism turning electrons into pairs re-
mains an open question. In conventional superconductors,
phonons mediate effective attractions2 between electron in
the low-energy limit and lead to Cooper pair formation near
the Fermi surface. On the other hand, for unconventional
superconductors3 like cuprates, phonon-mediated interactions
seem to play a secondary role while the electronic correlations
are believed to reign. It is speculated that the spin fluctuation
is the key to the pairing mechanism (and perhaps the pairing
symmetry as well). However, it hasn’t been fully understood
how Coulomb repulsion eventually glues electrons into pairs.

The discovery of iron-based superconductors keeps the
puzzling charm going.4–7 Collecting from experimental ob-
servations, it is believed that electronic correlations in these
materials are important but much weaker than those in
cuprates. Though the renormalization-group (RG) analysis8–16

for electron-electron interactions delivers the correct pairing
symmetry, the isotope effects measured in laboratories show
conflicting results. In addition, the iron-based superconductors
are distinct from the cuprates due to the presence of multiple
active bands.

Inspired by the anomalous isotope effects in iron-based
superconductors, it is helpful to investigate the compe-
titions between electron-electron17,18 and electron-phonon
interactions19–22 by RG analysis. The major difficulty lies
in the enormous couplings for all allowed interactions.
Besides, as the number of couplings grow, reading out the
desired messages from RG flows can be challenging as well.
Recently, we found a scaling ansatz,23 characterized by a
set of RG exponents, for electron-electron interactions in
many correlated systems. These RG exponents build a clear
hierarchy of relevant couplings and serve as an unambiguous
indicator for the ground-state instabilities. We are curious
whether similar scaling ansatz exists even when the retarded
interactions mediated by phonons are included.

II. TWO-LEG LADDERS

In this paper, we show that the scaling ansatz works in
the presence of both electron-electron and electron-phonon
interactions, and the patterns of the extracted RG exponents
describe the ground states and also the quantum phase
transitions between them. To make the discussions concrete,
we study the exemplar two-leg ladder shown in Fig. 1.

The low-energy excitations are described by four pairs of
chiral fields ψRiα,ψLiα , where R/L denotes the chirality and
i = 1,2, α =↑ , ↓ are the band and spin indices. The generic
interactions can be classified into two categories: forward and
Cooper, described by the effective action24–32
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where fij and cij denote the forward and Cooper scattering
between the ith and j th bands. To avoid double counting, the
diagonal parts of the forward scattering are set to zero, fii ≡ 0.
The superscripts �,s stand for large and small momentum
transfer between chiral fields of the same spin index.

The ground state of the doped two-leg ladder23,25,33 depends
on the filling n, i.e., average number of electrons per lattice site.
For 0.54 � n < 1, electrons form pairs and the ground state is
an unconventional superconductor (with power-law correla-
tions). The wave functions in different bands reveal opposite
signs, resembling the pairing symmetry in iron-based super-
conductors. That is to say, the pairing wave functions at ky = 0
(band 2) and ky = π (band 1) are opposite in signs and thus
referred as “d-wave” unconventional superconductor (d-USC).
In the filling interval, 0.5 < n � 0.54, the pairing instability
disappears and the ground state is a two-channel Luttinger
liquid. Bellow the filling n < 0.5, only one band remains
active and the low-energy physics is well described by the
single-channel Luttinger liquid. Despite the simplicity of the
phase diagram, it is worth mentioning that RG exponents for
the relevant couplings help to clear up some confusion in the
literature.

III. ELECTRON-PHONON INTERACTIONS

Electron-phonon interactions are different in nature and
retardation effects must be taken care of. To include both
electron-electron and electron-phonon interactions, it requires
turning the couplings gi into frequency-dependent functions
gi(ω), making the RG analysis challenging. The old trick in
the original Bardeen-Cooper-Schrieffer (BCS) theory comes
to rescue—we assume the phonon-mediated interactions only
occur within a thin shell, roughly the order of Debye frequency
ωD , near the Fermi surface. Within this approximation, the

134502-11098-0121/2012/85(13)/134502(4) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.134502


YIWEI CAI, WEN-MIN HUANG, AND HSIU-HAU LIN PHYSICAL REVIEW B 85, 134502 (2012)

kx

ε

1L
2L

a b

1R
2R

10

0.54LL d-USC

n=

1

LL2

0.5

FIG. 1. (Color online) (a) Band structure for a two-leg ladder at
filling 0 < n < 1. The hopping amplitudes along (t) and across (t⊥)
the chains are chosen to be equal, t⊥ = t . The low-energy excitations
are described by four pairs of chiral fields ψRiα,ψLiα , with i = 1,2
and α =↑ , ↓. (b) Phase diagram for a doped two-leg ladder. In
the filling regime 0.5 < n � 0.54, the interband Cooper scattering
becomes irrelevant and the superconducting phase decomposes into
the two-channel Luttinger liquid.

frequency-dependent couplings take the form
gi(ω) = gi + 	(ωD − ω)g̃i , (2)

where gi and g̃i are the (instantaneous) electron-electron and
the (retarded) phonon-mediated interactions. The step-like
shape is invariant under RG transformation. Let 1 and 	

represent the shapes of constant and step, respectively. It is
clear that the algebra of the shapes is closed: 1 × 1 = 1,
1 × 	 = 	 × 1 = 	, and 	 × 	 = 	. As a consequence, the
renormalized couplings maintain the same step-like shapes and
make the approximate frequency dependence self-consistent.

Following standard derivations, the RG equations for the
retarded interactions are
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The other set of retarded interactions c̃s
ij ,f̃

s
ij does not renor-

malize at all within the approximation. The renormalized
couplings gi(l) and g̃i(l) are solved numerically. It was found
before that gi(l) is well captured by a scaling ansatz. It is rather
remarkable that the numerical solutions for g̃i also follow a
similar scaling ansatz,

g̃i ≈ G̃i

(ld − l)γg̃i

, (4)

where ld is the divergent (logarithmic) length, γg̃i
is the

RG exponent for the retarded coupling g̃i , and G̃i is some
nonuniversal order-one constant. We shall elaborate the im-
portance of the divergent length ld and the RG exponents in
later paragraphs. It is worth emphasizing that all renormalized
couplings remain in the perturbative regime even though the
ansatz mysteriously contains the divergent length scale ld .

IV. RG EXPONENTS

For numerical analysis, we choose the ratio g̃i/gi = −0.1,
where the minus sign indicates the attractive nature of
the phonon-mediated interactions. As shown in Fig. 2, an
interesting critical filling nc ≈ 0.57 separates two types of
superconductors driven by different pairing mechanisms. In
the regime nc < n < 1, the instantaneous couplings gi(l) grow
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FIG. 2. (Color online) Phase diagram for a doped two-leg ladder
with both electron-electron and electron-phonon interactions. The
critical filling nc ≈ 0.57 separates two types of superconducting
instabilities driven by electron-electron interactions and phonon-
mediated ones.

faster than the retarded ones g̃i(l), and the divergent length
ld is dictated by the bare values of the electron-electron
interactions. Compared with the phase diagram in Fig. 1, the
superconducting ground state is qualitatively the same with
unconventional pairing symmetry between different bands. In
the regime 0 < n < nc, the RG flows are different. Despite the
smaller bare values, the retarded couplings g̃i(l) reign and
flow toward strong coupling first. The pairing mechanism
is the well-known BCS theory, and the isotope effect is
expected to be significant. This regime is further divided
into two parts34 because there is only one active band at
lower fillings. In the two-band regime, 0.5 < n < nc, Van
Hove singularity develops in the almost empty band and the
phonon-mediated Cooper scattering (c̃11) drives the ground
state superconducting. Compared with the phase diagram in
Fig. 1, inclusion of the electron-phonon interactions causes
the instability in the two-channel Luttinger liquid and only
one channel (in the majority band) survives. Further reduction
in electron filling to the regime n < 0.5, only the bottom
band remains active. This is where our common intuitions
work—the repulsive electron-electron interactions (though
with larger bare values) renormalize to zero while the attractive
interactions mediated by phonons reign, rendering the ground
state to the conventional BCS superconductor.

The critical density nc not only separates two different
pairing mechanisms but also marks different trends of the
divergent length ld at different fillings. In the regime nc < n <

1, ld remains more or less constant when the filling varies.
The constancy partially comes from the smooth evolution of
Fermi velocities in this regime and is partially attributed to
the steady changes of the interband Cooper scattering. On the
other hand, the divergent length ld shows sensitive dependence
in the regime 0 < n < nc. This is expected because the (mean-
field) transition temperature is roughly Tc ∼ e−ld by standard
scaling argument. Compared with BCS theory, ld is inverse
proportional to the density of states and thus proportional to
the Fermi velocity (in quasi-one dimension). The almost-linear
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FIG. 3. (Color online) RG exponents of intraband Cooper scatter-
ing in different superconducting phases for the (a) antibonding band
and (b) bonding band. The pattern of the RG exponents provides a
simple yet unique indicator to classify different ground states.

dependence of ld in Fig. 2 just reveals the underlying velocity
evolution.

Now we come to the RG exponents (shown in Fig. 3)
in these superconducting phases. In the filling range 0.57 �
n < 1, the RG exponents, γc11 = γc22 = 1, are the largest
among all and the pairing mechanism mainly arises from
the electron-electron interactions. The RG exponent γc̃11 is
around 0.6 near half filling n = 1 and remains almost constant
(but with slight decrease) upon filling reduction. On the other
hand, γc̃22 starts around 0.6 near n = 1 but increases to almost
unity when approaching n ≈ 0.57. The enhanced retarded
Cooper scattering in the bonding band c̃22 correlates with the
larger spin gap from the electronic correlations. Although the
phonon-mediated interactions are also relevant (positive RG
exponents), the exponents γc̃11 ,γc̃22 in the retarded interactions
are smaller than one and only play a secondary role in this
regime. In short, one can say that the pairing mechanism in this
regime is mainly attributed to electron-electron interactions.
However, the observed physical quantities are “dressed up” by
retarded couplings and may depend on the electron-phonon
interactions significantly.

With filling 0.5 < n � 0.57, BCS instability occurs in the
nearly empty band due to the Van Hove singularity. Note
that this regime is almost twice the size of the two-channel
Luttinger liquid phase (0.5 < n � 0.54) when the phonon-
mediated interactions are ignored. As shown in Fig. 3, all RG
exponents in this regime are zero except γc̃11 = 1. The pattern
of the RG exponents makes the analysis rather straightforward.
Electrons form pairs driven by the effective attraction in the
(almost empty) antibonding band and other couplings remain
small even at the cutoff length scale. The pairing mechanism
is further supported by the linear dependence of the divergent
length ld ∝ (n − nc) seen in Fig. 2. It is computed that the
density of states in this regime is mainly ascribed to the

antibonding band and the emergent Van Hove singularity takes
the form 1/(n − nc). Following BCS analysis, the critical
temperature for the superconducting phase is Tc ∼ e−1/g̃ =
e−const.×(n−nc). On the other hand, scaling argument gives
Tc ∼ e−ld . Comparing both approaches together, the linear
dependence of the divergent length ld is explained.

Entering the one-band regime, 0 < n < 0.5, the pattern of
the exponents is also quite simple. As shown in Fig. 3, all RG
exponents in this regime are zero except γc̃22 = 1. The pairing
instability now switches to the bonding band and the effective
action of the ground state is well captured by BCS theory. The
overall linear trend of the divergent length ld (shown in Fig. 2)
follows the inverse of the density of the states as explained in
the previous paragraph.

V. DISCUSSIONS AND CONCLUSIONS

The pattern of RG exponents build up the hierarchy of
relevant couplings and serves as an unambiguous indicator of
the ground state. Furthermore, the pattern change is quite sharp
when going through a quantum phase transition. The usage of
these exponents is not limited to the simple two-leg system.
We have applied the classification scheme to more general
correlated systems in two dimensions and the primitive results
suggest the RG exponents can also be extracted numerically.
In fact, the proposed scaling ansatz has a solid root from
mathematical aspect. For typical divergent flows studied here,
a so-called ψ series35 is shown to exist with a single divergent
length scale ld . The RG exponent represents the leading order
contribution of the infinite series expansion. Apparently, in
most parameter regimes, the leading order term seems to
grab the essential information in the RG flows. Due to the
flexibility and generality of the ψ-series expansion, it is not
yet clear whether the leading-order term can always be made
dominant. At presence, the dominance of the leading order
term is demonstrated in numerics without rigorous proof.

The dominant scaling ansatz also gives rise to nontrivial
constraints between the RG exponents. For instance, plugging
scaling ansatz for phonon-mediated intraband Cooper scatter-
ing c̃ii into Eq. (3), it would imply that either both cii and
c̃ii are irrelevant at the same time or that the exponents must
satisfy the constraint, γc̃ii

+ 1 = max{2γc̃ii
,γcii

+ γc̃ii
}. That is

to say, the RG exponents for the intraband Cooper scattering
are constrained,

γc̃ii
= γcii

= 0, or max
{
γc̃ii

,γcii

} = 1. (5)

These constraints are apparent in the extracted RG exponents
shown in Fig. 3. Other constraints on the RG exponents can
be derived in similar fashion and agree with our numerical
results at hand. Finally, we conclude that the scaling ansatz
characterized by the divergent length ld and the RG exponents
γi also works for phonon-mediated interactions. The
classification scheme proposed here is simple but powerful
without ambiguity.
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