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Universal low-temperature tricritical point in metallic ferromagnets and ferrimagnets
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An earlier theory of the quantum phase transition in metallic ferromagnets is revisited and generalized in
three ways. It is shown that the mechanism that leads to a fluctuation-induced first-order transition in metallic
ferromagnets with a low Curie temperature is valid, (1) irrespective of whether the magnetic moments are
supplied by the conduction electrons or by electrons in another band, (2) for ferromagnets in the XY and Ising
universality classes as well as for Heisenberg ferromagnets, and (3) for any systems with a nonzero homogeneous
magnetization, such as ferrimagnets or canted ferromagnets. This vastly expands the class of materials for which
a first-order transition at low temperatures is expected, and it explains why strongly anisotropic ferromagnets,
such as UGe2, display a first-order transition as well as Heisenberg magnets.

DOI: 10.1103/PhysRevB.85.134451 PACS number(s): 75.50.Cc, 64.70.Tg, 05.30.Rt, 75.50.Gg

I. INTRODUCTION

Quantum phase transitions are a subject of great interest.1,2

In contrast to classical or thermal phase transitions, which
occur at a nonzero temperature Tc > 0 and are driven by
thermal fluctuations, quantum phase transitions occur at zero
temperature, T = 0, as a function of some nonthermal control
parameter and are driven by quantum fluctuations. In this paper
we will focus on quantum phase transitions in metallic systems.
For reasons discussed below, these transitions are especially
interesting.

A prototypical quantum phase transition is the one from
a paramagnetic metal to a ferromagnetic metal. Indeed,
the earliest theory of a quantum phase transition was the
Stoner theory of ferromagnetism.3 Stoner assumed that the
conduction electrons are responsible for the ferromagnetism
and developed a mean-field theory that describes both the
classical and the quantum ferromagnetic transition. In an
important paper, Hertz later derived a Landau-Ginzburg-
Wilson (LGW) functional for this transition by considering
a simple model of itinerant electrons that interact only via
a contact potential in the particle-hole spin-triplet channel.1

Hertz analyzed this (dynamical) LGW functional by means of
renormalization-group (RG) methods. He concluded that the
critical behavior in the physical dimensions d = 2 and d = 3 is
mean-field-like. That is, as far as the static critical exponents
of the transition at T = 0 are concerned, he concluded that
Stoner theory is exact in d = 2 and d = 3.

In the mid 1990s, it was realized that the above conclusion
is not correct. The problem is that in metals at T = 0 there are
gapless particle-hole excitations that couple to the magnetic
order-parameter fluctuations and influence the quantum critical
behavior for all dimensions d � 3. In Hertz’s theory, this
coupling is taken into account only in an approximation that
does not suffice for yielding the leading critical behavior.
Technically, Hertz theory treats the fermionic soft modes in
a tree approximation, whereas describing their influence on
the critical behavior requires taking into account fermionic
loops. Physically, a correct description of any phase transition
must treat the order parameter fluctuations and all soft modes
that couple to them on equal footing.

A theory that takes into account these effects was developed
by the present authors and T. Vojta. In Ref. 4, it was shown
that the quantum phase transition from a metallic paramagnet
to an itinerant ferromagnet in the absence of quenched
disorder in d = 2 and d = 3 is generically discontinuous, or
of first order, in contrast to the second-order transition with
mean-field critical behavior predicted by Hertz theory.5 The
mechanism behind this phenomenon is analogous to what
is known as a fluctuation-induced first-order transition in
superconductors and liquid crystals.6 There, soft fluctuations
of the electromagnetic vector potential (in superconductors) or
the nematic order parameter (in liquid crystals) couple to the
order parameter and effectively change the sign of the cubic
term in the equation of state, leading to a first-order transition.
In the quantum magnetic case, the role of the additional soft
modes is played by the fermionic particle-hole excitations
mentioned above that are massless at T = 0. Since these modes
acquire a mass at T > 0, the tendency toward a first-order
transition diminishes with increasing temperature. This leads
to a tricritical point at a temperature Ttc > 0 that separates a line
of continuous transitions at T > Ttc from a line of first-order
transitions at T < Ttc. In a later paper with Rollbühler, the
effects of a magnetic field H were investigated.7 It was found
that in the space spanned by T , H , and the control parameter,
tricritical wings, or surfaces of first-order transitions, emanate
from the tricritical point and terminate in a pair of quantum
critical points in the T = 0 plane. The wing boundaries at
T > 0 are given by lines of critical points that are reminiscent
of a conventional liquid-gas critical point and connect the
tricritical point with the quantum critical points at T = 0.
The resulting generic phase diagram is shown in Fig. 1. This
general picture is in good agreement with experimental results
for low-Curie-temperature metallic ferromagnets, including
ZrZn2,8 UGe2,9 URhGe,10, MnSi,11,12 and CoS2.13

In this paper we generalize our previous theory in three
important ways. First, we show that our previous results, which
had been derived under the same assumption made by Stoner
and by Hertz, namely, that the magnetism is caused only by
itinerant electrons, remain valid in metallic systems where the
magnetism is caused by electrons in a different band than the
conduction electrons.
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FIG. 1. (Color online) Generic phase diagram of a metallic
magnet in the space spanned by temperature (T ), magnetic field
(H ), and the control parameter (t). Shown are the long-range ordered
magnetic (LRO) and paramagnetic (PM) phases, lines of second-order
transitions, surfaces of first-order transitions (“tricritical wings”), the
tricritical point (TCP), and the two quantum critical points (QCP).
The long-range order can be of ferromagnetic or ferrimagnetic type,
and the electrons causing the long-range order can be in the same
band as the conduction electrons, or in a different band. See the text
for further explanation.

Second, we show that the results are not restricted to
Heisenberg ferromagnets, contrary to what was implied in
Refs. 4 and 14. Rather, they apply equally well to metallic
XY or Ising magnets, since the magnetic moments couple
to conduction electrons whose spins have three degrees of
freedom. This is an important point, since some of the relevant
materials are strongly anisotropic magnets, including UGe2

(easy axis) and URhGe (easy plane).
Third, we show that the phase diagram shown in Fig. 1

also applies to generic metallic ferrimagnets. Ferrimagnets are
materials that spontaneously develop both a homogeneous and
a staggered magnetization at the same critical value of either
the temperature (for a classical transition) or a nonthermal con-
trol parameter (for a quantum transition). Physically, this can
happen when magnetic moments of unequal magnitude on a
bipartite lattice align in opposite directions.15 More generally,
it applies to any system with a nonvanishing homogeneous
magnetization, for instance, canted ferromagnets.

The unifying principle behind these generalizations is the
realization that coupling a homogeneous magnetization to
conduction electrons will produce the same results irrespective
of the microscopic origin of the magetization.16 As a result,
the phase diagram depicted schematically in Fig. 1 is valid for
generic metallic ferromagnets in addition to itinerant ones, for
ferromagnets of XY or Ising type in addition to Heisenberg
magnets, and for ferrimagnets as well as for ferromagnets.17 In
all cases we also consider the effects of nonmagnetic quenched
disorder. In Ref. 4 it was shown that this type of disorder leads
to an interesting phase diagram with a number of multicritical
points and that sufficiently strong quenched disorder causes the
first-order paramagnetic-to-ferromagnetic transition in metals
to become second order. We will see that the same result

holds for metallic ferrimagnets. Experimentally, the effects of
disorder on either one of these transitions have not yet been
studied systematically.

II. THEORY

We now derive the results listed in Sec. I. To this end,
we are interested in a theory that describes the magnetization
or order-parameter (OP) field M, the fermionic degrees of
freedom described by Grassmann-valued fields ψ̄ and ψ , and
the coupling between them. Accordingly, the action will have
three parts:

A[M; ψ̄,ψ]=AOP[M]+ÃF[ψ̄,ψ]+Ãc[M; ψ̄,ψ], (2.1a)

and the partition function is given by

Z =
∫

D[M] D[ψ̄,ψ] e−A[M;ψ̄,ψ]. (2.1b)

We are, however, not interested in a complete description of
the fermionic degrees of freedom; rather, we want to restrict
ourselves to the fermionic soft modes and integrate out the
massive modes in the simplest approximation that respects the
symmetries of the problem to arrive at an effective Landau-
Ginzburg-Wilson (LGW) theory in terms of soft modes only.
If we denote the soft fermionic degrees of freedom collectively
by q, and the massive ones by P , we formally have

Z =
∫

D[M,q] e−ALGW[M,q], (2.2a)

where

ALGW[M,q] = AOP[M] − ln
∫

D[P ] e−ÃF[q,P ]

× e−Ãc[M;q,P ]

≡ AOP[M] + AF[q] + Ac[M,q]. (2.2b)

As we will see later, the q are matrices formed by bilin-
ear products of the fermion fields, qnm(x, y) = ψ̄n(x) ψm( y)
with (n + 1/2)(m + 1/2) < 0, and the P are given by the
same products with (n + 1/2)(m + 1/2) > 0. Here, ψn(x) ≡
ψ(x,ωn) is the temporal Fourier transform of the Grassmann
field ψ(x), where x ≡ (x,τ ) comprises the real-space position
x and the imaginary-time variable τ in a Matsubara formalism,
and ωn = 2πT (n + 1/2) is a fermionic Matsubara frequency.
ψ̄n(x) is defined analogously.

This separation of soft and massive fermionic modes q and
P , respectively, integrating out P in a suitable approximation,
and determining the consequences of the coupling between
q and M, is the central objective of this paper. For the
separation we will make use of the general theory developed in
Refs. 18 and 19.

A. Order parameter and coupling to fermions

We are interested in magnetic order, and, hence, the
appropriate order-parameter field is the magnetization M(x).
We write the magnetization as a part m(x) whose average is the
homogeneous magnetization and a part n(x) whose average is
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a staggered magnetization,

M(x) = m(x) + n(x)
N∑

j=1

cos(kj x). (2.3)

Here, the kj are N wave vectors that characterize the staggered
magnetic order, and both m(x) and n(x) are slowly varying in
space and time. In particular, their Fourier expansions contain
only wave numbers that are small compared to the norms of
the kj .

In a paramagnetic state, the expectation values of m and
n are both zero. At a transition to a ferromagnetic state,
the expectation value of m becomes nonzero while that of
n remains zero; at a transition to an antiferromagnetic state the
converse is true. A ferrimagnetic transition is characterized by
both m and n acquiring a nonzero expectation value at the same
point in parameter space. In this sense there is only one order
parameter field for a ferrimagnetic transition; this fact will be
important later. For the purposes of the present paper, a crucial
question is the coupling of the order-parameter fluctuations to
the soft fermionic degrees of freedom. Since the soft parts of
the latter are soft at zero wave number, the leading coupling is
to m. The fermions also couple to n, but this leads to subleading
effects since the staggered magnetization is soft at a nonzero
wave number. We will neglect this coupling in what follows.
We also mention that by the same reasoning our conclusions
still apply if the nonhomogeneous part of the magnetization
is not of a staggered type. For instance, they apply to canted
ferromagnets.

Physically, the near-homogeneous magnetization fluctua-
tions act as a magnetic field proportional to m that couples to
the electronic spin density

ns(x) =
∑
a,b

ψ̄a(x) σ ab ψb(x). (2.4a)

Here, σ = (σx,σ y,σ z) ≡ (σ 1,σ 2,σ 3) denotes the Pauli ma-
trices, and a,b = (↑ , ↓) ≡ (+1, − 1) are spin indices. The
coupling takes the form of a Zeeman term

Ãc[M; ψ̄,ψ] = c

∫
dx m(x)ns(x), (2.4b)

with c a coupling constant. As we will see, the spin density
contains both massive and massless modes, so only part of
Eq. (2.4b) contributes to Ac[M,q] in Eq. (2.2b). We will
discuss this separation next.

B. Fermionic soft modes

In this subsection we separate the massless fermionic modes
from the massive ones by means of the technical apparatus
developed in Ref. 19. Here we will quote only as much of
this formalism as is necessary for the further development; see
Ref. 19 for additional details.

The soft fermion excitations are all two-particle excitations;
the related correlation functions are those of bilinear products
of fermion fields. The latter commute with each other, and
with individual fermion fields, and, hence, are isomorphic to
classical fields. Denoting these classical fields by Q, we define
a classical matrix field

Qnm(x, y) ∼= i

2

⎛
⎜⎝

−ψn↑(x)ψ̄m↑( y) −ψn↑(x)ψ̄m↓( y) −ψn↑(x)ψm↓( y) ψn↑(x)ψm↑( y)
−ψn↓(x)ψ̄m↑( y) −ψn↓(x)ψ̄m↓( y) −ψn↓(x)ψm↓( y) ψn↓(x)ψm↑( y)
ψ̄n↓(x)ψ̄m↑( y) ψ̄n↓(x)ψ̄m↓( y) ψ̄n↓(x)ψm↓( y) −ψ̄n↓(x)ψm↑( y)

−ψ̄n↑(x)ψ̄m↑( y) −ψ̄n↑(x)ψ̄m↓( y) −ψ̄n↑(x)ψm↓( y) ψ̄n↑(x)ψm↑( y)

⎞
⎟⎠ . (2.5)

Here, “∼=” means “isomorphic to”; technically, the isomor-
phism is implemented by means of a Lagrange multiplier field;
see below. We also define the Fourier transform of Q,

Qnm(k, p) = 1

V

∫
dx d y e−ikx+i p y Qnm(x, y). (2.6a)

It is further useful to define

Qnm(k; q) = Qnm(k + q/2,k − q/2) (2.6b)

and

Qnm(x) = Qnm(x,x) = 1

V

∑
q

eiqx
∑

k

Qnm(k; q). (2.6c)

The 4 × 4 matrix Qnm can be expanded in a spin-quaternion
basis

Qnm(x, y) =
3∑

r,i=0

(τr ⊗ si)
i
rQnm(x, y), (2.7)

where τ0 = s0 = 12 is the unit 2 × 2 matrix, and τ1,2,3 =
−s1,2,3 = −iσ 1,2,3. An explicit inspection of the 16 matrix
elements shows that r = 0,3 represents the particle-hole
channel, i.e., products of the form ψ̄ψ , whereas r = 1,2
represents the particle-particle channel, i.e., products of the
form ψ̄ψ̄ or ψψ . For our purposes we will need only the
particle-hole degrees of freedom.

It was shown in Ref. 19 (see also Ref. 20) that a crucial
criterion for separating the fermionic degrees of freedom
into soft and massive modes is given by the relative signs
of the frequency arguments of the matrix elements Qnm.
Accordingly, we write

i
rQnm(x) = i

rqnm(x) �(−ωnωm)

+ i
rP nm(x) �(ωnωm)(i = 1,2,3). (2.8)

Here, � is the step function, and we use the fact that in the
spin-triplet channel (i = 1,2,3) the expectation value of the Q

matrix vanishes (this is since the fermionic degrees of freedom
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described by Q do not by themselves have long-ranged
magnetic order; see the discussion at the end of the current
subsection), so that q and P represent fluctuations. In what
follows we will absorb the step functions into the matrix fields
q and P , i.e., writing qnm implies n � 0 and m < 0 and Pnm

implies either n � 0 and m � 0 or n < 0 and m < 0. The i
rq

are the spin-quaternion elements of a matrix

qnm(x) =
∑
r,i

(τr ⊗ si)
i
rqnm(x). (2.9a)

It is also useful to define an adjoint matrix

q+
nm(x) =

∑
i,r

(τ+
r ⊗ s+

i ) i
rqmn(x), (2.9b)

where τ+
r and s+

i are the hermitian conjugates of τr and si ,
respectively. In addition, the theory contains a field q/nm(x)
that has the same properties as qnm(x) except for different
propagators; see below. The origin of q/ is the Lagrange
multiplier field λ that constrains the bilinear products of
fermion fields to the q. In various places in the theory
q − λ ≡ q/ appears, and the λ propagator equals minus the
q propagator for noninteracting electrons, whereas cross-
correlations between q and λ vanish. The net effect of λ is
therefore to subtract the noninteracting part of the q propagator
wherever the combination q − λ occurs.

The q correlation functions are the basic soft modes in
the theory; see below. However, due to nonlinear couplings
the P couple to the q and thus have a soft component. This
effect can be expressed by expanding P in a power series in
q. To quadratic order in q and to lowest order in the fermion
interaction one finds

P12(k) ≈ −2i
∑

3

∑
p

ϕ
(3)
132( p,k − p) ϕ−1

13 ( p) ϕ−1
32 (k − p)

× [q/13( p) q/+
32(k− p)+q/+

13( p) q/32(k− p)]. (2.10)

Here and in what follows we use a simplified notation for
frequency indices, 1 ≡ n1, etc. We have dropped contributions
to P of higher order in q, and a contribution that is linear
in the interaction and linear in q (see Ref. 19); neither will
be needed for our purposes. We also have omitted a term
quadratic in q and quadratic in the interaction, which leads to
less singular contributions to the free energy than the one we
keep. Note the frequency restrictions inherent in Eq. (2.10):
sgn (ωn1 ) = sgn (ωn2 ) = −sgn (ωn3 ). Here,

ϕ12(k) = 1

V

∑
p

G1( p) G2( p − k), (2.11)

with ωn1 ωn2 < 0 implied, and

ϕ
(3)
132(k1,k2) = 1

V

∑
p

G1( p) G3( p − k1) G2( p − k1 − k2),

(2.12)

where G1( p) ≡ G( p,iωn1 ) is the single-particle Green func-
tion. ϕ12 has a scaling form

ϕ12(k) = NF
2πG

k
ϕd (Gi
1−2/k)

≡ ϕ(k,
1−2), (2.13)

where G is a coupling constant whose bare value is the inverse
Fermi velocity, G = 1/vF, NF is the density of states per spin
at the Fermi level, and 
1−2 = ωn1 − ωn2 . In d = 2,3, and for
free electrons, we find explicitly

ϕd=2(z) = sgn (Im z)/
√

1 − z2, (2.14a)

ϕd=3(z) = −i

2
ln

(
1 − z

−1 − z

)
, (2.14b)

which we recognize as the hydrodynamic part of the Lindhard
function. Equations (2.13) and (2.14) reflect the soft particle-
hole excitations with a linear momentum-frequency relation in
a metallic electron system. In particular, ϕ(k,
n = 0) ∝ 1/|k|
and ϕ(k = 0,
n) ∝ 1/
n.21 For later reference, we also note
the following identities that hold for a special form of ϕ(3):

ϕ
(3)
121(k, − k) = −ϕ

(3)
212(k, − k) = − ∂

∂iωn1

ϕ12(k)

≡ ϕ(3)(k,
1−2). (2.15)

The fermionic action can be expressed in terms of q and
P , and by using Eq. (2.10) and its generalizations to higher
order, one obtains a fermionic soft-mode action entire in terms
of q. For our purposes, we need only the Gaussian part of this
action, which reads

AF[q] = −8
∑

k

∑
1,2
3,4

∑
r=0,3

3∑
i=0

i
rq12(k) �i

12,34(k) i
rq34(−k).

(2.16a)

Here, 1 ≡ n1, etc., and the Gaussian vertex is given by

�i
12,34(k) = ϕ−1

12 (k) + δ1−2,3−4 2T γ i, (2.16b)

with γ i=0 = −γs and γ i=1,2,3 = γt,i , where γs > 0 and γt,i > 0
are the spin-singlet and spin-triplet interaction amplitudes. The
fermionic Gaussian propagator is given by the inverse of the
vertex. One finds〈

i
rq12(k) j

s q34(−k)
〉

= 1

16
δrs δij

[
δ13 δ24 ϕ12(k) − 2γ iT δ1−2,3−4

× ϕ12(k) ϕ34(k)

1 − 2γ iχ
(0)
1−2(k)

]
, (2.17a)

where

χ
(0)
1−2(k) ≡ χ (0)(k,
1−2) = −T

∑
34

δ1−2,3−4 ϕ34(k). (2.17b)

We see that the q propagator is given in terms of ϕ and, hence,
is soft. The fields q/ that enter P , Eq. (2.10), are characterized
by Gaussian propagators〈

i
rq/12(k) j

s q34(−k)
〉= 〈

i
rq12(k)js q/34(−k)

〉= 〈
i
rq12(k)js q34(−k)

〉
(2.17c)

and〈
i
rq/12(k) j

s q/34(−k)
〉 = −1

8
γ iT δ1−2,3−4

ϕ12(k) ϕ34(k)

1 − 2γ iχ
(0)
1−2(k)

.

(2.17d)
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The last expression is just the interacting part of the q

propagator, Eq. (2.17a), as was mentioned after Eq. (2.9b).
The interaction amplitudes in the Gaussian fermionic

vertex, Eq. (2.16b), warrant some comments. First, we note
that the three spin-triplet amplitudes γ

1,2,3
t are in general

not identical in a cyrstalline solid, and they do not need
to be for what follows. Second, we comment on the two
cases that result from the magnetism being caused by the
conduction electrons or by electrons in a band different from
the conduction band, respectively. Let us first assume the
latter case, which is the conceptually more straightforward
one. Then, AF[q], which describes the conduction electrons, is
independent of the magnetism and contains interactions in both
the spin-singlet and spin-triplet channels. The only restriction
is that the latter are weak enough to not lead to magnetism
by themselves. The conduction electrons are affected by the
magnetization, which acts as an effective magnetic field, and
this is described by the Zeeman coupling term, Eq. (2.4b).
The other possibility, which is conceptually more complex,
is that the magnetism is caused by the conduction elec-
trons themselves. In this case, the magnetic order parameter
and the soft modes q describe degrees of freedom for electrons
in the same band. The magnetic order parameter then should be
thought of as deriving from the spin-triplet interaction between
the conduction electrons, e.g., via a Hubbard-Stratonovich
decoupling of the latter. This leaves the bare action AF

with a spin-singlet interaction only. However, as long as
the latter is present, a spin-triplet interaction will always
be generated under renormalization. The action AF will,
therefore, again contain a spin-triplet interaction amplitude,
albeit one that is much weaker than the one in the underlying
action that describes the system before the separation of
magnetic and fermionic degrees of freedom. This is the case
that was discussed, for ferromagnetism, in Ref. 14, which
used phenomenological and symmetry arguments to construct
the fermionic part of the action. Finally, we mention that we
assume the conduction electrons, in the absence of a nonzero
magnetization [i.e., with the coupling constant c in Eq. (2.4b)
put equal to zero], to indeed have three soft spin-triplet
excitations at T = 0, which are given by Eqs. (2.17) with
i = 1,2,3. This is not necessarily the case. For instance, an
external magnetic field gives two of these three channels (the
ones transverse to the field) a mass, and a small concentration
of magnetic impurities will make all three channels massive
without having significant other effects. However, in general,
the energy scales associated with these effects will be small,
and they will lead to a small reduction, but not a complete
suppression, of the tricritical temperature in Fig. 1. We will
discuss this point in more detail in Sec. III.

C. Coupling between the order parameter and the fermionic
soft modes

We are now in a position to separate the Zeeman term,
Eq. (2.4b), into parts where the order parameter couples to
soft and massive fermionic modes, respectively. If we define a
temporal Fourier transform of the magnetization field m by

mn(x) =
√

T

∫ 1/T

0
dτ ei
nτ m(x,τ ), (2.18)

with 
n = 2πT n a bosonic Matsubara frequency, then we can
write Eq. (2.4b) in the form

Ãc[M; Q] = 2c
√

T

∫
dx

∑
n

3∑
i=1

mi
n(x)

×
∑
r=0,3

(−1)r/2
∑
m

tr [(τr ⊗ si) Qm,m+n(x)].

(2.19)

By expressing Q in terms of q and P by means of Eq. (2.8), and
P in terms of q/ by means of Eq. (2.10), we obtain the desired
coupling Ac[M,q] between the order-parameter fluctuations
and the fermionic soft modes q.

D. Generalized mean-field theory

An effective action,Aeff[M] in terms of the order parameter
alone can be obtained by integrating out the fields q,

Aeff[M] = ln
∫

D[q] eALGW[M,q]. (2.20)

In general, the evaluation of this expression is very difficult.
However, it can be evaluated exactly within a generalized
mean-field approximation that was first employed in the
context of liquid crystals and superconductors6 and is defined
as follows. First, we ignore temporal and spatial variations of
the order parameter; i.e., we treat the fields m(x) and n(x) in
Eq. (2.3) as numbers. If we assume ordering in the 3-direction,
we have

Mi(x) ≈ δi3

[
m + n

N∑
j=1

cos(kj x)

]
, (2.21a)

which implies

mi
n(x) ≈ δi3 δn0 m/

√
T . (2.21b)

This mean-field approximation for the order parameter
means that only the part of Q that is diagonal in frequency
space, i.e., Pmm, contributes to Eq. (2.19). This in turn means
that the contribution to P that is linear in q, which we
had dropped from Eq. (2.10), does not contribute. Second,
we restrict ourselves to quadratic order in q. That is, we
treat the fermionic soft modes in a Gaussian approximation
with a fixed magnetic order parameter. The validity of these
approximations will be discussed in Sec. III B.

With these approximations, the action Ac that couples q

and the order parameter is quadratic in q and can be written

Ac[m,q] = 8
∑

r,s=0,3

∑
i,j

i
rq12(k) ij

rs�
c

12,34(k) j
s q34(−k).

(2.22a)

Here,

ij
rs�

c

12,34(k) = δ13 δ24 4 c m

(
0 1

−1 0

)
rs

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞
⎟⎠

ij

×ϕ
(3)
121(k, − k) ϕ−2

12 (k), (2.22b)
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and we have used Eq. (2.15). The matrices give the values
of ij

rs�
c

for the 4 possible values of (r,s) and the 16 possible
values of (i,j ).

The integral over q in Eq. (2.20) can now easily be carried
out. For the free-energy density f = −TAeff/V , we obtain

f = f0(m,n) + �f (m). (2.23a)

Here, f0 = −TAOP/V is the mean-field free energy in the
absence of a coupling to the fermionic soft modes. For �f (m),
which is the contribution to the free energy due to this coupling,
one finds

�f (m) = 2

V

∑
k

′
T

∑
n

ln N (k,
n; m), (2.23b)

where
∑′

k denotes a wave vector sum such that |k| < � with
� an ultraviolet cutoff, and

N (k,
n; m) = −16 c2 γt,1γt,2 m2 
2
n [ϕ(3)(k,
n)]2ϕ−4(k,
n)

+ϕ−4(k,
n)
∏
i=1,2

[1 − 2γt,iχ
(0)(k,
n)].

(2.23c)

The equation of state is obtained by minimizing the free-
energy density. In the absence of a coupling between the
order parameter and the fermionic soft modes, this amounts to
minimizing f0, which yields the ordinary mean-field equation
of state. For a ferromagnet, the latter has the usual Landau
form. For a ferrimagnet, the equation of state depends on
details of the magnetic order. It can be complicated and
describe several different phases; see, e.g., Ref. 22. However,
generically, the first phase encountered as one approaches from
the paramagnetic state is entered via a second-order transition.
After minimizing f0 and expressing n in terms of m, one thus
has again an ordinary mean-field equation of state given by

h = r m + um3 + O(m5), (2.24)

where h is an external magnetic field in the 3-direction, u >

0, and the transition occurs at r = 0.23 In the Appendix we
recall a very simple model that leads to this result. The second
term on the right-hand side of Eq. (2.23a) gives an additional
contribution to the equation of state, which then reads

h = r m + um3 − 64 m c2γt,1γt,2

× 1

V

∑
k

′
T

∞∑
n=1


2
n [ϕ(3)(k,
n)]2 ϕ−4(k,
n)

N (k,
n; m)
.

(2.25)

This is the desired generalized mean-field equation of state,
which takes into account the coupling of the order parameter
to the fermionic soft modes.

E. Discussion of the generalized mean-field equation of state

With some effort, the integrals in Eqs. (2.23b) and
(2.25) can be explicitly performed. However, the salient
points can be seen by simple scaling considerations and
dimensional analysis. Equations (2.11) and (2.13) imply that
the frequency 
n scales as the wavenumber k, 
n ∼ k,
and that ϕ(k,
n) ∼ 1/k ∼ 1/
n, which also can be seen
explicitly from Eq. (2.23c). Equation (2.15) implies that

ϕ(3)(k,
n) ∼ 1/k2 ∼ 1/
2
n. Equation (2.23c) then shows that

there is a length scale Lm, or a corresponding frequency scale
ωm, that scales as Lm ∼ 1/ωm ∼ 1/m. If one attempts to
expand �f (m), Eq. (2.23b), in powers of m at T = 0, then
nonanalyticities will occur at next-to-leading order for all
d � 3.

An alternative way to describe this mechanism is to say that
of the three soft fermionic spin-triplet excitations, Eq. (2.17a)
with r = s = 0,3 and i = j = 1,2,3, two (namely, the ones
transverse to the order parameter direction) acquire a mass
due to the coupling between the fermions and the order
parameter m, as can be seen explicitly from Eq. (2.22b).
This acquisition of a mass by a generic soft mode due
the spontaneous breaking of a continuous symmetry is an
example of the Anderson-Higgs mechanism,24–26 even though
the broken symmetry in this case is not a gauge symmetry;
see the discussion in Sec. III A. It implies in turn that the free
energy is a nonanalytic function of m.

At nonzero temperatures the singularities are cut off by
T according to m ∼ T . That is, a crossover occurs from m

scaling to T scaling when the Zeeman splitting is comparable
to the temperature or the thermal length scale LT ∝ 1/T is
comparable to the magnetic length scale Lm mentioned above.
Taking into account the sign of N , Eq. (2.23c), one finds
schematically, for 1 < d < 3,

�f (m) = −v m2(m2 + T 2)(d−1)/2, (2.26a)

and for d = 3

�f (m) = v

8
m4 ln(m2 + T 2), (2.26b)

where v > 0 is a positive constant.
The most important aspects of this result, as far as the order

of the transition is concerned, are the sign of v and the power
of m at T = 0. For all d � 3, there is a negative term in the free
energy that dominates the m4 in the Landau free energy and,
hence, necessarily leads to a first-order transition. Another way
to see this is by expanding �f (m), Eq. (2.26a), in powers of
m for T > 0. The leading term is proportional to −m4/T 3−d .
That is, there is a negative m4 term whose prefactor diverges
as T → 0 for all d � 3, which implies that there will be a
tricritical point at some temperature. The free energy for three
different values of r is plotted schematically in Fig. 2. For this
schematic free energy, the equation of state in the case d = 3,
for which many experimental results exist, takes the form

h = r m + v

2
m3 ln(m2 + T 2)

+m3

(
u + v

4

m2

m2 + T 2

)
, (d = 3). (2.27)

Also of interest is the other physical dimensionality, d = 2,
where the equation of state reads

h = r m − 2v m(m2 + T 2)1/2

+m3

(
u − v

(m2 + T 2)1/2

)
, (d = 2). (2.28)

Here, the analyticity is stronger than in the 3-d case, with a
negative m2 term in the equation of state at T = 0. This is
particularly interesting in the case of Ising magnets, which
display long-range order in d = 2 even at T > 0. The case of
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FIG. 2. Schematic sketch of the free energy for three values of
the parameter r . The first-order transition occurs at r = r1 > 0. It
pre-empts the second-order transition of Landau theory, which would
occur at r = 0.

Heisenberg and XY magnets, which do not show true long-
range order in d = 2 except at T = 0, is more complicated.

These are the same results that were obtained using a
more phenomenological theory of the fermionic soft modes
in Ref. 14. They were discussed extensively in that reference,
as well as in Refs. 4 and 7. There is no need to repeat this
discussion here, and the salient features are summarized by
the schematic phase diagram shown in Fig. 1. The important
conclusion of the current paper is that the validity of these re-
sults, in addition to itinerant Heisenberg ferromagnets, extends
to metallic ferromagnets where the magnetism is not due to the
conduction electrons, to metallic ferromagnets in the XY or
Ising universality class, and also to metallic ferrimagnets. The
only condition is that the conduction electrons are not subject
to strong spin-symmetry breaking effects such as magnetic
impurities. We note in passing that an interesting system is
provided by the easy-plane ferromagnet URhGe, where an
in-plane magnetic field transverse to the magnetization has
been used to tune the transition, access the tricritical point,
and map out the tricritical wings.10 This situation requires
a refinement of the theory presented above, which will be
reported elsewhere.27

III. DISCUSSION AND CONCLUSION

We now discuss our results, before concluding with a
summary.

A. The mechanism behind the first-order transition

The mechanism that leads to the first-order transition
discussed in Sec. II E is precisely analogous to the fluctuation-
induced first-order transition discussed in Ref. 6 for the
BCS-superconductor transition and the nematic-to-smectic-A
transition in liquid crystals. An important physical ingredient
is an underlying “generic” soft mode, i.e., one that is not
related to the phase transition in question, but couples to
the order parameter. In the case of liquid crystals this
soft mode is the nematic Goldstone mode, in the case
of superconductors, the vector potential, in the present
case, the spin-triplet particle-hole excitation. At the transition
of interest, this soft mode acquires a mass that is given in

terms of the nonzero expectation value of the order parameter.
This general mass-generating mechanism was first pointed
out by Anderson and is now known as the Anderson-Higgs
mechanism.24–26 This coupling of the order parameter to
underlying soft modes leads to a nonanalytic term in the
Landau free energy that is dominant over the usual quartic
term and has a negative sign, leading to a first-order transition.
It should be stressed that this is only one way to realize
a fluctuation-induced first-order transition; another one, for
instance, is realized by a φ4 theory with a cubic anisotropy.28

The current realization is analogous to the case of scalar
electrodynamics studied by Coleman and Weinberg in a
particle-physics context.29 In either case, the mass generation
eliminates the generic soft-mode fluctuations, which become
energetically more costly with decreasing dimensionality. In
the case of quantum magnets, the system takes advantage
of this option to lower the free energy for d � 3. It is also
worthwhile noting that the analogy between superconductors
on one hand, and liquid crystals and quantum magnets on
the other, breaks down in the ordered phase. In the former
case, the Goldstone mode gets absorbed into the longitudinal
component of the vector potential, which is massive, and there
is no soft mode in the ordered phase. In the latter, there are
Goldstone modes in the ordered phases, namely, a “smecton”
with an anisotropic dispersion relation in the smectic-A phase
(Ref. 30; see also Ref. 31) and magnons in the magnetic phase.

B. Universality of the first-order transition and the validity of
the generalized mean-field theory

Experimentally, all examples of clean low-Tc ferromagnets
(for disordered systems, see below; ferrimagnets so far have
not been systematically studied from this point of view) show
a first-order transition if the Curie temperature is suppressed
far enough. There is not a single example of a quantum critical
point in zero magnetic field. While this is consistent with
the generalized mean-field theory presented in Sec. II, it is
somewhat surprising when compared with the case of liquid
crystals, where an analogous theory also predicts a first-order
transition. In this case, in stark contrast to that of quantum
magnets, the observed transition is usually of second order,
and only recently have examples of a (weakly) first-order
transition been found.32 These observations beg the question
whether in the case of quantum magnets the generalized
mean-field approximation is more generally valid than in
classical systems.

To discuss this point, we first observe that we have made
three approximations to treat the action given by Eq. (2.1a).
First, we have integrated out the fermionic massive modes in a
saddle-point approximation that respects the Ward identity that
governs the soft-mode structure of the system.18,19 Second,
we have kept the soft fermionic degrees of freedom only
to Gaussian order in the soft modes q. Third, we have
treated the order parameter in a mean-field approximation.
These approximations are not independent of one another, and
the first two simplifications do not constitute any additional
approximation over and above the last one. This can be seen
as follows.

The mean-field approximation for the order parameter
means that the fermionic degrees of freedom describe an
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interacting electron system that is spin-polarized by the
coupling to the homogeneous magnetization, which acts as
an effective external magnetic field. The state of the fermionic
subsystem is, thus, described by a stable Fermi-liquid fixed
point. Corrections to the fermionic soft-mode action due to
massive degrees of freedom are irrelevant with respect to
this fixed point by at least one-half power of frequency or
wavenumber in all dimensions and, thus, cannot change the
properties of system.20 Similarly, only the terms quadratic in
q contribute to the fixed-point action; all higher-order terms are
irrelevant by power counting. Keeping terms of higher order in
q will therefore renormalize the parameters of the theory, but
it cannot change its structure. In particular, it cannot change
the sign of the term in the equation of state, Eqs. (2.27), (2.28),
which is due to the soft fermionic fluctuations and leads to the
first-order transition.

This leaves the mean-field approximation for the order
parameter to be discussed. If the first-order transition at r = r1

occurs far from the second-order transition at r = 0 that is
pre-empted by it (see Fig. 2), then order-parameter fluctuations
are negligible and the results of the generalized mean-field
theory are qualitatively correct. If, however, the first-order
transition occurs close to the putative second-order one, i.e.,
if the minimum in the free energy in Fig. 2 is very shallow,
then it is less clear whether order-parameter fluctuations can
be neglected.33 One key difference between classical liquid
crystals and quantum magnets is that in the former case, the
system is below the upper critical dimension d+

c = 4 for the
(unrealized) phase transition that would occur in the absence
of any coupling between the smectic order parameter and the
nematic soft modes. In contrast, the quantum magnetic systems
are above the corresponding upper critical dimension d+

c = 1
that follows from Hertz theory, and even with that coupling
taken into account, ordinary mean-field theory becomes exact,
as far as the description of the phase transition is concerned,
for d > 3.34 This strongly suggests that order-parameter
fluctuations are of much less importance in the case of quantum
magnets, and it provides a possible explanation of the fact that
the observed transition is universally of first order.

Irrespective of these observations, the role of order-
parameter fluctuations in quantum magnets is a topic that
warrants additional work. For the case where the magnetism is
not produced by the conduction electrons, this will require an
action that properly describes localized magnetic moments and
their fluctuations, e.g., the one given in Ref. 35. For itinerant
magnets, i.e., if the magnetism is due to the conduction
electrons themselves, the theory developed in Sec. II will
apply, but the order-parameter fluctuations and the fermionic
excitations both need to be kept, along the lines of the
phenomenological theory of Ref. 14. The latter reference gave
a scenario that can lead to a second-order transition in the
magnetic case. It would also be interesting to experimentally
study quantum ferromagnets or ferrimagnets in d = 2, where
order-parameter fluctuations will be stronger than in d = 3.

C. The effects of quenched disorder

So far we have discussed the case of clean or pure magnets.
Impurities, modeled by quenched disorder, have important
effects that are both needed to understand experimental
observations in certain systems and to predict effects that can

serve to ascertain that the first-order transition in pure samples
is indeed due to the posited mechanism.

Quenched disorder changes the soft-mode spectrum of the
fermions. It gives the ballistic soft modes that are represented
by Eqs. (2.17) as mass and leads to new soft modes that are
diffusive. In the context of the current theory, this change
has two principal effects. First, it cuts off the nonanalyticity
in the clean equation of state, Eqs. (2.27), (2.28). Second, it
leads to a new nonanalytic term in the equation of state that
has the opposite sign and whose prefactor vanishes in the clean
limit.34 The resulting schematic generalized Landau theory has
been discussed in Ref. 4. A more detailed model discussion
that allows for semi-quantitative predictions of the effects of
disorder will be presented elsewhere;27 here, we just present
the most pertinent aspects of such a model calculation. A good
representation of the mean-field equation of state for realistic
values of the magnetization, the temperature, and the disorder
is

h = r m + v1/4

4(kF�)3/2

m3

m3/2 + (bT )3/2

+ v

2
m3 ln[c m2 + (1/kF� + bT )2] + um3, (3.1)

which generalizes Eq. (2.27) in the presence of quenched
disorder.36 Here, the magnetic field h and the temperature T

are measured in units of the Fermi energy εF and the Fermi tem-
perature TF, respectively, and the magnetization m is measured
in units of the conduction electron density (we put μB = 1).
The dimensionless coupling constant v is proportional to the
fourth power of the effective spin-triplet interaction amplitude
of the conduction electrons. It is a measure of how strongly
correlated the conduction electrons are, and it is bounded
above by a stability criterion that requires v � 0.5. kF is the
Fermi wave number of the conduction electrons, and � is the
elastic mean-free path. Within a Drude model, and for good
metals, one has approximately kF� ≈ 1,000/(ρ0/μ
cm), with
ρ0 the residual electrical resistivity. c and b are dimensionless
constants that are equal to c = 1/45 and b = 3π in a model
calculation.27 The second factor in the second term on the
right-hand side is a reasonable representation, for realistic
parameter values, of a more complicated scaling function,

m3/2 g(kF�m,bT /m) ≈ m3

m3/2 + (bT )3/2
, (3.2)

which depends on the disorder in addition to the temperature,
and we have dropped the last term in Eq. (2.27) from Eq. (3.1)
since one generically expects v  u.

At T = 0, and in a clean system, Eq. (3.1) yields a
first-order transition at r1 = v m2

1/4, where the magnetization
discontinuously jumps from m = 0 to m = m1 = e−(1+2u/v)/2.
With u ≈ 0.14 and v ≈ 0.02, this yields m1 ≈ 4 × 10−3,
which is reasonable for a weak ferromagnet. Similarly, there is
a tricritical temperature given by Ttc/TF = (1/b) exp(−u/v);
with the same parameter values, this yields Ttc/TF ≈ 10−4,
or Ttc ≈ 10 K for TF = 100,000 K, which is also reasonable.
This tricritical point gets destroyed by quenched disorder on
the order of kF� ≈ bTtc/TF ≈ 1,000, or a residual resistivity
on the order of ρ0 ≈ 1 μ
cm. At this point, the second term
on the right-hand side of Eq. (3.1) is still very small, and
the critical behavior at the resulting quantum critical point
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is given by ordinary mean-field exponents except extremely
close to the transition, where it crosses over to the critical
behavior derived in Ref. 20. For instance, in this asymptotic
region the critical exponents β and δ, defined by m(h =
0) ∝ |r|β and m(r = 0) ∝ h1/δ , respectively, are given by
β = 2 and δ = 3/2, as opposed to the mean-field values
β = 1/2 and δ = 3. Only for substantially larger values of
the disorder, ρ0 ≈ 100 μ
cm with the above parameters, does
the asymptotic critical behavior extend over a sizable range
of r values (up to |r| ≈ 0.01). This observation explains why
an experiment on NixPd1−x , which shows a ferromagnetic
transition at a very small value of x (x ≈ 0.025) corresponding
to weak disorder, found mean-field exponents consistent with
Hertz theory,37 whereas Bauer et al.38 found nonmean-field
exponents, at least some of which were consistent with Ref. 20,
in URu2−xRexSi2, where the ferromagnetic transition occurs
at x ≈ 0.15 with the residual resistivity on the order of ρ0 ≈
100 μ
cm.39

D. Conclusion

In conclusion, we have extended a previous theory of
quantum ferromagnets in several important ways. We have
shown that the mechanism that leads to the paramagnet-to-
ferromagnet transition at low temperature in d = 3 and d = 2
to be generically of first order, which was first reported in
Ref. 4, is valid in anisotropic ferromagnets, in ferrimagnets,
and in metallic ferromagnets where the conduction electrons
are not the source of the magnetization, in addition to the case
of isotropic itinerant ferromagnets originally considered. Even
more generally, it is valid for any metal with a nonvanishing
homogeneous magnetization, e.g., canted ferromagnets. This
explains why the low-temperature transition is observed to be
of first order in highly anisotropic ferromagnets, and it much
expands the class of materials for which this phenomenon
is predicted. For clean magnets, an effective theory of soft
fermionic modes recently developed in Ref. 19 has provided a
technical basis that improves on the phenomenological theory
of Ref. 14. In the presence of quenched disorder, the theory
allows for a semiquantitative description of the suppression
and ultimate destruction of the tricritical point. A sizable
range of disorder exists where the observable critical behavior
is predicted to be mean-field like, whereas for very large

disorder the asymptotic critical region, which is characterized
by nonmean-field Gaussian critical exponents, expands and
eventually eliminates the mean-field region.
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APPENDIX: A SIMPLE MEAN-FIELD MODEL OF A
FERRIMAGNET

Here we recall a very simple mean-field model of the
transition from a paramagnet to long-range ferrimagnetic
order.15 Consider a one-dimensional chain of alternating
magnetic moments μa , μb that are antiferromagnetically
coupled. Weiss theory assumes that the a moments and b

moments are subject to effective magnetic fields

Ba = −λ Mb (A1a)

Bb = −λ Ma, (A1b)

respectively, where λ > 0. The magnetizations Ma,b are given
by the Brillouin expressions

Ma = ν μa tanh(μa H/T + μa Ba/T ), (A2a)

Mb = ν μb tanh(μb H/T + μb Bb/T ). (A2b)

Here H is an external magnetic field, T is the temperature,
and ν is the number of magnetic moments of each species.
If one defines reduced magnetic fields ha,b = H/νμa,bλ, a
reduced temperature t = T/νμaμbλ, and reduced moments
ma,b = Ma,b/νμa,b, then one sees that the Weiss mean-field
Eqs. (A1), (A2) have a solution ma = −mb = m̃, where m̃ is
the solution of the usual mean-field equation of state

h = rm̃ + m̃3/3 + O(m̃5), (A3)

where r = t − 1. This simple model thus describes a transition
at t = 1 to ferrimagnetic order where the homogeneous
magnetization is given by m = Ma + Mb = ν(μa − μb)m̃ and
the staggered magnetization n = Ma − Mb = ν(μa + μb)m̃ is
proportional to m.
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