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We report on the formation of a complete band gap for spin waves in a two-dimensional magnonic crystal
consisting of a periodic hole lattice. We go beyond the partial band gaps observed so far in that we apply a
magnetic field perpendicular to the permalloy thin film. We explore the relevant geometrical parameters using
micromagnetic simulations. In nanopatterned devices we obtain complete band gaps of up to 1.4 GHz. The
magnetostatic forward volume waves addressed here overcome in particular spin-wave localization effects.
These effects have led to complicated and highly anisotropic miniband formation or Bragg reflection in in-plane
fields for a long time. We demonstrate how direct band-gap tailoring via geometrical lattice symmetries becomes
possible in nanostructured magnetic antidot lattices.
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I. INTRODUCTION

Modern information technology relies mainly on the stor-
age, movement, and processing of charge carriers. Here, phys-
ical limits in both miniaturization and processing speed might
be reached in the near future, therefore further technologies
need to be explored to advance current devices.1,2 Spin waves
in magnetic materials in particular offer advantages for data
processing at gigahertz frequencies due to their short wave-
length being in the 100 nm range.3 Magnonic devices therefore
hold great promise in downscaling microwave devices.4 The
downscaling argument is similar to surface acoustic wave
based gigahertz filters and delay lines which are an integral part
of the telecommunications market.5 However, spin waves go
beyond that in that the functionality can be reprogrammed via
the magnetic history.6,7 Magnonic crystals (MCs) consisting
of a periodic lattice of nanoholes [i.e., the so-called magnetic
antidot lattices (ADLs)] have generated in particular great
interest.8 Such devices are the magnetic analog of photonic
crystals making use of air holes in a dielectric layer.9 So far the
magnetic devices have been investigated almost exclusively in
magnetic fields H applied in the plane of the ferromagnetic
thin film being mostly Ni80Fe20 (permalloy).10–24 Allowed
minibands and partial band gaps have been observed but
only for specific directions of the wave vector k (Refs. 25
and 26). The dispersion relations have been found to depend
crucially on H because the inhomogeneous demagnetization
fields created by the holes varied significantly the refractive
index of the spin waves in the permalloy thin films.18,24 This
provoked a spin-wave localization counteracting miniband
formation. Nanostructured ADLs and in particular spin-
wave propagation therein have been investigated far less in
perpendicular magnetic fields.27 Theoretical approaches such
as the plane wave method, dynamical matrix method, and
micromagnetic simulations have already been shown to model
the experimentally observed dispersion relations.25,26 Micro-
magnetic simulations in magnonics29,30 offer the perspective
to model nonperiodic defects such as missing holes and local
lattice constant variations in a more straightforward manner.
Such intentional defects have provoked functional photonic
crystal devices.9 In magnonics, however, the inhomogeneous

demagnetization fields created by the holes are a severe draw-
back. At the same time, magnetostatic forward volume waves
(MSFVWs) are particularly interesting for coherent mode
formation in MCs as they exhibit the lowest propagation loss
per unit time.31,32 In this paper we show that a perpendicular
magnetic field applied to a magnetic antidot lattice improves
the performance of magnetic antidot lattices considerably.
It avoids spin-wave localization. In particular, the allowed
minibands and forbidden frequency gaps are formed for the
MSFVWs which are less anisotropic compared to the previous
studies. This allows us to provoke complete band gaps (stop
bands) in the two-dimensional (2D) magnonic device. Such 2D
devices go beyond previously published one-dimensional MCs
based on the resonant backscattering of spin waves33,34 and
open intriguing perspectives for the control and manipulation
of spin waves.

The paper is organized as follows. In Sec. IIA we introduce
micromagnetic simulations and outline our simulation geom-
etry and all relevant parameters used throughout this paper. In
Sec. IIB we present our results obtained from micromagnetic
simulations. In Sec. III we discuss our findings on band
formation in the two-dimensional magnonic crystals.

II. MICROMAGNETIC SIMULATIONS

A. Simulation geometry and parameters

We consider a periodic array of holes in a permalloy thin
film as shown in Fig. 1 and perform micromagnetic simulations
for different lattice parameters. In particular we assume an out-
of-plane field μ0H of 1.2 T. This is larger than the anisotropy
field of a permalloy film of about 1 T and forces the magnetic
moments to follow H. Only close to holes edges magnetic
moments are found to be canted (Fig. 1). Wave vectors k
are in the plane (i.e., we address MSFVWs). To get timely
and spatially resolved data of the magnetization dynamics we
employ micromagnetic simulations using the MICROMAGUS

software package which provides us with in particular 2D
periodic boundary conditions.35 These are essential to avoid
finite-size effects for the array.36 We simulate a stripe of several
unit cells extending either in the x direction or a direction
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FIG. 1. (Color online) Left: Schematic illustration of the periodic
lattice of holes (bright) in a magnetic film (dark). The unit cells
for simulations assuming periodic boundary conditions are marked
as follows: solid line, in-plane wave vector k is along the primitive
lattice vector; broken line, k is along the diagonal of the square
lattice. We consider an external field of 1.2 T to be applied in the
out-of-plane direction (z direction). The configuration of magnetic
moments (arrows) at 1.2 T is taken from a simulation with δ = 5.5 nm
and illustrated at the bottom on the right. In the upper right corner
we display the parameters varied in the simulations (i.e., the lattice
periodicity a and the number of simulation cells n = l/� in the x

and y directions).

which has an angle of 45◦ with the x direction. We use the
periodic boundary conditions to address the infinite lattice. The
unit cell is discretized into small simulation cells exhibiting a
volume of � = a/n × a/n × δ, where a is the lattice constant
of the ADL and n2 is the number of simulation cells in the
plane. We tested unit cell sizes δ of both 22 and 5.5 nm in the
z direction (i.e., one and four cells, respectively, for the 22-nm
thick film). The dispersion relations did not depend on δ. The
spin waves are excited using a short and localized field pulse
of μ0hrf = 0.1 mT directed 45◦ out of the xy plane and a rise
and fall time of 6 ps. The time duration for our simulation
is typically 10 ns. The simulation gives us the response in
time and space of the local magnetization and after a two-step
fast Fourier transformation (FFT) of the simulated in-plane
magnetization mx we obtain the integrated spectral response
P (f,k) providing us with the dispersion relation f (k)29 (f is
the frequency). We use the material parameters of permalloy
which has turned out to be a material relevant in the field
of magnonics. The saturation magnetization is set to 780
kA/m and the exchange constant is 1.3 × 10−11 J/m. We
assume a damping parameter α = 0.005. No intrinsic magnetic
anisotropy is considered in our simulations. In this study the
diameter of the holes is kept constant at d = 120 nm, whereas
the lattice period a is varied.

B. Results

In Fig. 2(a) we show the dispersion relation for a plain film.
Here we set the hole diameter in the simulations to zero. We
find a single branch (bright) starting at about 6.2 GHz at k = 0.
This is the MSFVW. For positive k we find a positive slope re-
flecting a group velocity vg = 2π∂f/∂k of 0.9 km/s (Ref. 37).
Along the branch data points are missing in specific regions
of k which are in particular periodic as a function of k. Such
regions are artefacts from the numerical simulations due to the
finite length of the stripe in x direction and the corresponding

FIG. 2. (Color online) Color coded spin-wave dispersion for
(a) plain film, (b) ADL with a = 800 nm and (c) ADL with
a = 240 nm when k is pointing along a primitive vector, and (d) 45
deg-rotated k pointing along the diagonal of an ADL with a = 240
nm. Here dark color means no spin-wave excitation and bright means
high spin-wave excitation. In (b), (c) and (d) the first BZ is indicated
by the white dashed line. Note that due to the discretization of the
holes edges being periodic from unit cell to unit additional spin waves
are faintly excited. In a real device we do not expect to observe such
features as the edge roughness over the MC would be irregular.

periodic boundary condition. They do not reflect a forbidden
frequency gap in the magnetic device. The branch is expected
to be continuous in such regions of k. The faintly bright regions
around k = 0 are attributed to numerical artefacts coming from
the discretization in real space due to the finite-sized simulation
cells. In the simulations of the ADLs the artefacts will partly
be even more pronounced. For the discussion we will focus on
regimes of the wave vector k where artefacts do not play a role.

In Fig. 2(b) we show the simulated dispersion of an ADL
with a periodicity of a = 800 nm. The wave vector is oriented
in the x direction. Starting from about 6.2 GHz a branch is seen
for positive k which has a slope similar to the branch observed
for the unpatterned film. In the patterned device, however,
there are further excitations at about 6.2 GHz positioned at
negative and positive wave vectors k. Analyzing their absolute
values we find that they correspond to the reciprocal lattice
vector |G| = 2π/a. The band structure has become periodic in
reciprocal space. Figure 2 thus displays the dispersion relation
in the so-called extended zone scheme where k extends beyond
the first Brillouin zone (BZ) boundary located at kBZb = π/a

(vertical broken line). At this point the resolution of the data
is not large enough to decide whether there is a crossing or
avoided crossing (anticrossing) of the different branches at the
first BZ boundary. The simulations predict further faint modes
at high frequencies which we do not address here.

In Fig. 2(c) we depict the dispersion relation for a =
240 nm. Correspondingly, the Brillouin zone boundary resides
at a larger absolute value kBZb = π/a (indicated by the vertical
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broken line). Two prominent branches are seen at kBZb = π/a

that are separated by a forbidden frequency gap [i.e., a band
gap (stop band) with a width of about 1.2 GHz between 8.9
and 10.1 GHz]. The additional resonances can be viewed as
backfolded branches of the unpatterned film. At kBZb = π/a

the branches which anticross exhibit a group velocity vg = 0
reflecting standing spin waves at a finite k. The gap of 1.2 GHz
is formed for k being collinear to the primitive lattice vector in
the x direction of the assumed square lattice. Due to the specific
perpendicular-to-plane direction of H the dispersion relation
f (k) and forbidden frequency gaps are the same for the two
different in-plane directions x and y. This is different from pre-
vious investigations on antidot lattices in in-plane fields.10–24

We note that the bright regions near k = 0 in Fig. 2(c) are more
pronounced compared to Fig. 2(a). We attribute this to the
roughness of the holes introduced via the finite-sized simula-
tion cells. The cells are square-shaped such that the hole edges
are not smooth. In the short-period hole lattice of Fig. 2(c)
where a is only twice the hole diameter the edge roughness is
effective to excite spin waves with a broad distribution of wave
vectors. As a consequence, the effective linewidth is much
broader than given by the damping parameter α (Ref. 38).

It is interesting to study the width of the band gap for
different lattice constants. For this we consider k pointing
along the primitive lattice vector and vary a in discrete steps
between 180 and 800 nm. The extracted eigenfrequencies at
BZ boundaries (symbols) are summarized in Fig. 3(a). The
colored (white) regions highlight forbidden frequency regions
(allowed minibands) as interpolated from the discrete dataset
as a function of a. For the solid lines we assume exponential
fitting functions following a phenomenological approach as

FIG. 3. (Color online) (a) Symbols denote eigenfrequencies at BZ
boundaries for ADLs with different lattice constants a and k pointing
along the �M direction (see inset). The colored regions indicate
the forbidden frequency regions evaluated from the simulations. The
white areas limited by blue regions denote the widths of the allowed
minibands. The straight lines are guides to the eyes obtained by
fitting exponential functions. (b) Eigenfrequencies at BZ boundaries
(symbol) for ADLs with different lattice constants a and k pointing
along �K direction (i.e., under 45◦). The colored regions indicate the
forbidden frequency regions evaluated from the simulations. Straight
lines are guides to the eyes.

will be discussed later. The fitting functions extrapolating the
dependencies of the eigenfrequencies at small lattice constants
still suggest small gaps at a = 800 nm. For this lattice period
we are not able to resolve the forbidden frequency gaps directly
as discussed above. From Fig. 3 it is clear that in particular
nanopatterning on the 100-nm length scale is key to obtain
significant forbidden frequency gaps in the antidot lattices.
This can be realized by direct focused ion beam patterning.25

It is now interesting to explore the dispersion f (k) for the
diagonal direction, that is, the �K direction [inset of Fig. 3(a)]
where k is under an angle of 45◦ with respect to the x or
y direction. To exploit periodic boundary conditions in this
configuration we construct a conventional unit cell having an
effective periodicity c = a · √

2 along the considered stripe.
This is a centered lattice structure. In Fig. 2(d) we show
the simulated dispersion relations for a square antidot lattice
having a lattice period of 240 nm. We find a stop band near
10 GHz with a width of 0.6 GHz at the first BZ boundary
with the corresponding wave vector of kBZb = √

2 · π/a. This
forbidden frequency gap overlaps in frequency with the stop
band seen in Fig. 2(c). In Fig. 3(b) we summarize extracted
band edges for two different lattice periods which we simulated
(i.e., 180 and 240 nm). For a = 180 nm we find a forbidden
frequency gap near 12 GHz with a width of 1.4 GHz at the
first BZ boundary. The data show that ADLs exhibit a complete
stop band in the frequency range between 9.8 and 10.1 GHz for
a = 240 nm and between 12.1 and 13.5 GHz for a = 180 nm.

III. DISCUSSION

In addition to the above findings we observe additional
branches in the simulations for k being under 45◦ to the
x direction. An additional branch starts at 8.6 GHz at a wave
vector k = π/

√
2a and is periodic in reciprocal space. This

branch does not create an avoided crossing at k = 1
2

√
2π/a =

π/
√

2a. In the following we explain the appearance of
the additional branches in Fig. 2(d) using Fig. 4.39 First
we take a look at the simple cubic lattice in real space
[Fig. 4(a)] and construct the corresponding lattice vectors
a1 and a2 which define our primitive unit cell that was used
for the simulation. From this we construct the corresponding
reciprocal lattice [Fig. 4(b)] with the lattice vectors |b1| =
2π/a and |b2| = 2π/a. The wave vector at the first BZ
boundary is kBZb = b1/2 = π/a. The situation changes when
we construct the reciprocal lattice from a conventional unit
cell as shown in Fig. 4(c). This is relevant for our simulations
with k being under 45◦. In this case one gets additional lattice
points in the reciprocal space and the reciprocal lattice vectors
b′

1 and b′
2 are different from b1 and b2. It turns out that b′

1 is
exactly half the size of b3 defined in Fig. 4(b), which means
we should expect an additional branch at kBZb = √

2 · π/2a,
which we indeed see in the dispersion data [Fig. 2(d)]. The
fact that we use a conventional unit cell for the simulations
under 45◦ to apply periodic boundary conditions leads to
additional reflexes in the reciprocal space. This shows that the
choice of unit cell is a crucial point when simulating magnonic
crystals with micromagnetic codes applying periodic boundary
conditions. A careful analysis in reciprocal space is required.
We note that the additional lattice points seen in the simulations
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FIG. 4. Illustration of the relation between the simulated unit
cells and the reciprocal lattice. We assume (a) a primitive unit cell
for k parallel to the �M direction and (c) a conventional unit cell
for k parallel to the �K direction. In (b) and (d) we show the
corresponding reciprocal lattices and lattice vectors. In (d) shorter
reciprocal-lattice vectors exist giving rise to additional features in the
spin-wave dispersion relations (see text).

do not change the physical situation of the stop bands and
corresponding branches will not be observed in an experiment.

Recent results obtained on one-dimensional MCs suggest
the coherence length or dipolar coupling length of spin
waves to be decisive for modeling backfolded branches in
one dimension (1D) quantitatively.7 Correspondingly, we
have used a phenomenological approach and considered an
exponential fitting function to model the lattice-parameter
dependencies of eigenfrequencies in Fig. 3. Due to the long-
range dipolar coupling of spin excitations and possible spin-
wave tunneling through the air holes40 the miniband formation
and forbidden frequency gaps are not exclusively determined
by the Bragg reflection in a periodic potential. Microscopic
mechanisms becoming relevant for band structure engineering
are partly different from the photonic crystals. Micromagnetic

simulations generically consider all these mechanisms. But the
exact analytical function for describing the data in Fig. 3 still
needs to be developed. In photonics and electronics different
Bravais lattices have given rise to different band structures.9

They are decisive for widths of the allowed bands and band
gaps. In magnonics it is now interesting to explore different
lattice symmetries to further optimize the artificial crystals
based on spin waves. For this, micromagnetic simulations
need to be further developed and optimized to simulate the
translational invariance in nonsquared lattices in an efficient
manner. Optimized micromagnetic codes might then allow
one to study in detail tailored nonperiodic defects in MCs
to further manipulate the spin wave flow. To promote further
developments in magnonic crystals, design rules need to be
established for the widths of both allowed minibands and
complete band gaps in a perpendicular field, as was recently
done for an MC in an in-plane magnetic field.26

IV. CONCLUSION

In conclusion, we have shown how to create a complete
stop band in a 2D magnonic crystal consisting of periodic
holes in permalloy. To achieve this both nanotechnology and a
perpendicular magnetic field beyond the demagnetization field
of the magnetic film are important. The approach outlined here
is expected to be key to guide, manipulate, and potentially
trap spin waves in future magnonic devices by artificially
introduced point and line defects in otherwise periodic hole
lattices. Such configurations have already been powerful to
tailor the flow of electromagnetic waves in photonic crystals.
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