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Ab initio study of spin-spiral noncollinear magnetism in a free-standing Fe(110) monolayer
under in-plane strain
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We investigate the magnetic phase transition from collinear ferromagnetic (FM) ordering to noncollinear
spin-spiral (SS) ordering in an Fe(110) monolayer under in-plane strain by performing fully unconstrained
first-principles spin-density-functional calculations. The FM Fe(110) monolayer undergoes a FM-SS phase
transition on the application of in-plane compression, whereas the application of tension keeps the system FM.
The stability and wavelength of the excited SS state are further increased by compressive strains, especially
along [1̄10]. The FM-SS transition in the isotropically strained monolayer is dominated by competing exchange
interactions between the ferromagnetically coupled first neighbor and the antiferromagnetically coupled second
neighbor; the third neighbor also contributes to the transition under anisotropic strain. In addition, we demonstrate
the stabilization mechanism of SS noncollinear magnetism from the electronic band structures: The noncollinear
SS state is stabilized by a remarkable interband repulsion between the majority and minority spins, which occurs
under in-plane compression.
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I. INTRODUCTION

In recent years, nanostructured magnetic materials, such
as ultrathin films, nanowires, and nanodots, have attracted
considerable attention because of their unique magnetic prop-
erties, which differ considerably from those of their respective
bulk materials.1–7 These nanoscale magnetic materials are
promising for technological applications such as ultrahigh-
density magnetic storage devices, magnetic sensors, and
nanomotors.8–11 Both scientific interest in the unusual mag-
netic properties of nanoscale components and the increasing
demand to miniaturize magnetic devices drive researchers to
synthesize and investigate magnetic nanostructures.

Recent advances have enabled extremely thin films of a
few atomic layers to be fabricated.12–16 In particular, an Fe
monolayer that consists of a single (110) atomic layer of a
body-centered-cubic lattice was fabricated by pseudomorphic
growth on a W(110) substrate.15 It has been intensively
investigated both experimentally and theoretically.5,15–24 Sev-
eral studies have revealed that reduced dimensionality and
symmetry breaking give rise to the exotic magnetic properties
of the Fe(110) monolayer, such as an extremely narrow domain
wall (DW) with a thickness of only 0.6 ± 0.2 nm,15 and
excitation of a noncollinear spin-spiral (SS) wave.20–24

The SS structure, whose magnetization vector continuously
rotates in a certain direction in a crystal, is of great importance
and interest to both fundamental and applied physics as
a representative of noncollinear magnetism that occurs in
nanostructures. However, the detailed excitation mechanism
of the noncollinear SS state in the Fe(110) monolayer has not
been elucidated yet. In addition, previous theoretical studies
employed the local spin density approximation (LSDA) in
density-functional theory (DFT), which failed to describe
the ferromagnetic (FM) ground state of body-centered-cubic
(bcc) iron.25,26 Thus, using the LSDA functional can result
in an incorrect prediction of the magnetic ground state of
the Fe(110) monolayer, as discussed in Ref. 5. On the
other hand, epitaxial strain introduced by a lattice mismatch
between a film and a substrate often plays an important role

in determining the magnetic ground state; for example, a
FM-to-antiferromagnetic (AFM) phase transition has been
observed in Fe(001) thin films.4,27–32 Hence, the emergence
of a noncollinear SS structure in the monolayer should be
discussed by considering the effect of epitaxial in-plane strain.

Theoretical calculations based on DFT33,34 within the
generalized gradient approximation (GGA) have provided
comprehensive insight into both collinear and noncollinear
magnetism in nanostructures.2,3,5,35–37 In the present study,
we perform ab initio spin-density-functional calculations
within the GGA to investigate the magnetic ground state
and the noncollinear magnetism of the SS structure in
an Fe(110) monolayer under various in-plane strains.
Section II describes the methodologies used including the
simulation models and procedure. Section III A describes
the magnetic phase transition including the noncollinear SS
structure in an Fe(110) monolayer under in-plane strain. In
Sec. III B, the magnetic phase transition is discussed in terms of
an exchange interaction by introducing an exchange parameter
J . In Sec. III C, we demonstrate the stabilization mechanism
of the SS structure based on electronic band structure analysis.
Finally, Sec. IV summarizes the results.

II. COMPUTATIONAL DETAILS

A. Simulation method

Ab initio spin-density functional calculations are con-
ducted using the Vienna Ab-initio Simulation Package (VASP)
code.38,39 The electronic wave functions are expanded in
plane waves up to a cutoff kinetic energy of 500 eV. The
electron-ion interaction is described by projector-augmented
wave (PAW) potentials40,41 that explicitly include the Fe 3d

and 4s electrons in the valence states. Because the PAW ap-
proach has the computational efficiency of the pseudopotential
method and the accuracy of the all-electron scheme, which
avoids problems with linearizing the core-valence exchange
interaction, PAW potentials can accurately describe magnetism
in transition metal nanostructures.42 The GGA proposed by
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FIG. 1. (Color online) (a) Simulation model of an Fe(110) monolayer. The solid black box indicates the simulation cell. (b) First Brillouin
zone of an Fe(110) monolayer.

Perdew, Burke, and Ernzerhof (PBE)43 is used to evaluate
the exchange-correlation energy because the GGA functional
can accurately reproduce the structural and magnetic ground
state of bcc iron.4,5,27,44 A full vector-field description of the
magnetization density that allows continuous variation in the
direction of the local magnetic moments between atoms is
required to accurately identify the noncollinear SS state. To this
end, we perform fully unconstrained noncollinear magnetic
calculations within the PAW formalism, as implemented in
the VASP code by Hobbs et al.45 In addition, we apply the
generalized Bloch equations to analyze the incommensurate
SS state.46,47 The spin-orbit coupling (SOC) is explicitly
included in the present calculations. The convergence criterion
for self-consistent total-energy calculations is taken to be
1.0×10−6 eV/atom as the SS excitation energy and the
magnetic configuration do not change further if a stricter
convergence criterion is applied.

B. Simulation model and procedure

Figure 1(a) shows the simulation model of an Fe(110)
monolayer, in which the in-plane x and y axes are [1̄10] and
[001̄], respectively. Since a three-dimensional periodic bound-
ary condition is applied, a vacuum thickness of lv = 2.0 nm is
introduced in the z direction (perpendicular to the monolayer)
to prevent undesirable interactions from neighboring mono-
layers. Thus, the simulation cell dimensions in the x, y, and
z directions are initially set to Lx = √

2a, Ly = a, and Lz =
2.0 nm, respectively, where a is the lattice constant of bulk
bcc iron (a = 0.287 nm).48 Brillouin-zone (BZ) integrations
are performed with a 18 × 18 × 1 Monkhorst-Pack k-point
mesh.49

To systematically investigate the effect of in-plane strain,
small strain increments, �εxx and �εyy , are applied to the
monolayer step by step. Here, we consider both isotropic
(εxx = εyy) and anisotropic (εxx �= εyy) strains. Noncollinear
SS calculations are performed at each strain by varying the SS
wave vector q within the first Brillouin zone, as illustrated in
Fig. 1(b).

III. RESULTS AND DISCUSSION

A. Magnetic phase transition under in-plane strain

Figure 2 shows the SS excitation energy, �E = ESS −
EFM, as a function of the SS wave vector q along the �-S-
H-�-N path in the Brillouin zone (i.e., the magnon dispersion
relation) under various isotropic in-plane strain conditions,
εxx = εyy . The SS structure with the wave vector q = (0,0)
(� point) corresponds to the collinear FM state, while that
with q = (2π/Lx,0) (N point) corresponds to the collinear
AFM state. Under the strain-free condition and tensile strains
(εxx = εyy � 0.0), the minimum-energy point, Emin, along the
q path is located at � (i.e., the FM state is stable). On the other
hand, negative SS excitation energies are found along the �-S,
�-H, and �-N lines under compression (εxx = εyy < 0.0).
The minimum energy structure is located along the �-N line
[q = 2π

Lx
(qx,0)], which indicates that the noncollinear SS state

becomes energetically favorable with the wave vector along the
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FIG. 2. (Color online) SS excitation energy, �E = ESS − EFM,
as a function of SS wave vector q, along the �-S-H-�-N path in the
Brillouin zone. Under various isotropic in-plane strains, εxx = εyy .
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of Fe atom m, as functions of in-plane strains (εxx , εyy). The white lines indicate the FM-SS magnetic phase transition. For �E, the minimum
energy in the Brillouin zone is taken at each strain.

x direction ([1̄10]). Thus, the compressive strain involves the
FM-SS magnetic phase transition in the Fe(110) monolayer.

Figure 3(a) plots the SS excitation energy, �E = Emin −
EFM, for both isotropic and anisotropic strains. Here,
the minimum SS excitation energy within q in the Brillouin
zone is denoted by Emin. Thus, the negative �E indicates
the existence of a stable noncollinear SS ground state and the
white line represents the FM-SS phase transition. The SS state
also appears under anisotropic compression at approximately
εxx < −0.10 or εyy < −0.10. However, the effects of εxx and
εyy are not equivalent: �E under εxx < −0.10 is lower than
that under εyy < −0.10. This indicates that the compression
along [1̄10] (the x direction) contributes more to the stability
of the noncollinear SS state. [1̄10] corresponds to the direction
of the excited SS wave, as described below.

Note that the Fe monolayer pseudomorphically grown on a
W(110) substrate15,16 corresponds to the strain of (εxx , εyy) =
(0.10,0.10) [the strain with respect to the equilibrium lattice
parameters of the free-standing Fe monolayer, Lx = 2.949 Å
and Ly = 2.408 Å, is (εxx , εyy) = (0.07,0.31)], where the
magnetic ground state is FM. This is consistent with the FM
ground state experimentally observed in the Fe monolayer on
the W substrate.15,16

Figure 3(b) shows the SS wave vector q as functions of
in-plane strains (εxx , εyy). In the present strain region, as the
minimum SS excitation energy is always located along the �-N
line in the Brillouin zone [q = 2π

Lx
(qx,0)], we show that the qx

value in the plot tends to increase smoothly as compressive
strain is applied. A larger qx(=0.4 ∼ 0.5) is found around
εxx = −0.20, whereas qx is smaller (0.1 ∼ 0.25) under εyy =
−0.20. Thus, the compressive εxx affects the SS wave vector
qx more than εyy . This trend is similar to the strain dependence
of �E [see the contour maps in Figs. 3(a) and 3(b)].

Figure 3(c) shows the magnitude of the magnetic moment
m as a function of the in-plane strains. The magnetic moment
increases smoothly with increasing tensile strain, whereas it
decreases under compression. A similar trend was observed for
thicker Fe(001) films.4 However, the magnetic moment in the

Fe monolayer seems to vary smoothly, even across the FM-SS
transition line, whereas a discontinuous change in the magnetic
moment was observed in thicker Fe(001) films that undergo a
FM-AFM phase transition under in-plane compression.4 This
characteristic corresponds to the fact that the magnitude of m

in the monolayer is less sensitive to the SS wave vector q.
Note that the spin-orbit coupling does not appreciably affect

both the FM-SS phase transition and the magnetic properties.
This is because the magnetocrystalline anisotropy (MCA)
energy of the free-standing Fe monolayer is smaller by two
orders of magnitude than the exchange energy.5

Previous theoretical studies of Fe(110) monolayers have
been performed within the LSDA on the exchange-correlation
energy.17–24 These studies found that the noncollinear SS
state was the ground state of the Fe(110) monolayer under
strain-free conditions,20–24 but this clearly conflicts with the
experimental observation that the monolayer remains in the
FM ground state.13,15 In addition, the LSDA functional gives
a negative domain wall (DW) energy in the monolayer,
EML

DW= −6.5 meV/atomic row18, whereas the GGA functional
provides a reasonable positive DW energy.5 This probably
originates from a well-known problem of the LSDA functional,
namely its failure to describe the ground state of bulk iron.
Thus, it is expected to be essential to use the GGA functional
instead of the LSDA to correctly describe the magnetic ground
state of an Fe monolayer.

B. Exchange interactions

To gain a better understanding of the FM-SS phase
transition in the Fe(110) monolayer, we introduce an ex-
change interaction parameter within the effective Heisenberg
Hamiltonian,

Heff = −1

2

∑

i,j

Jij ei · ej , (1)

where Jij denotes the exchange interaction parameter between
the ith and j th neighbors and ei is the unit vector representing
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neighbor, J0j , in the Fe(110) monolayer as a function of isotropic
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the direction of the local magnetic moment on the ith neighbor.
Using Eq. (1), the total energy of the noncollinear SS state with
q, ESS(q), is given by

ESS(q) = −1

2

∑

j

J0j exp(−iq · R0j ), (2)

where R0j denotes the position vector of the j th neighbor
with respect to the origin. In the classical frozen magnon
approach, J0j can be related to the SS wave excitation energy
(magnon dispersion relation), �E(q) = ESS(q) − EFM, by
Fourier back-transformation,

J0j = 1

Nq

∑

q

�E(q) exp(−iq · R0j ), (3)

where Nq denotes the number of q points in the Brillouin
zone. We can thus evaluate the exchange parameter of the

monolayer by summing the SS wave excitation energies for
various q vectors using Eq. (3).

Figure 4 plots the exchange interaction parameter of the
j th neighbor, J0j , in the Fe(110) monolayer as a function
of isotropic in-plane strain, εxx = εyy . Under strain-free
conditions, εxx = εyy = 0.0, J01 has a large positive value
of 75.5 meV. This indicates that the exchange interaction of
the nearest neighbor tends to align the magnetic moment in
the same direction as that of the origin (i.e., FM coupling).
In contrast, J02 exhibits a relatively small negative value of
−10.8 meV, indicating that the interaction from the second
neighbor tends to reverse the magnetic moment direction
(i.e., AFM coupling). J03 is positive (FM coupling), but its
magnitude is one order of magnitude smaller than those of
J01 and J02, indicating that the exchange interaction from
the third neighbors has a smaller influence than those from
the first and second neighbors. Since J0j (j � 4) is approx-
imately zero, the fourth and farther neighbors do not exert
a substantial influence. Therefore, the FM ground state can
be stabilized by the competing exchange interaction between
the larger ferromagnetically coupled nearest neighbors and
the smaller antiferromagnetically coupled second neighbors.
Under tensile strains, the positive J01 tends to decrease,
whereas the negative J02 tends to increase. This suggests
that both the FM and AFM couplings are weakened by the
isotropic tension, which keeps the FM phase stable. In contrast,
both J01 and J02 decrease rapidly under compression (i.e.,
compression weakens the FM interaction and strengthens the
AFM interaction). This destroys the original balance and leads
to the noncollinear SS ground state.

Figure 5 shows the exchange interaction parameters J01,
J02, and J03, as functions of in-plane anisotropic strains
(εxx , εyy). Overall, the tension tends to increase J0j and the
compression tends to decrease J0j . In particular, both the
positive J01 and the negative J02 decrease rapidly around
the strain region of εxx = −0.1 ∼ −0.2 (as indicated by
the relatively high density of contour lines). This indicates
that the FM coupling from the first neighbors is weakened
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and that the AFM coupling for the second neighbors is
strengthened remarkably by the compression along [1̄10] (in
the x direction). This trend corresponds well to both the higher
stability of the noncollinear SS state and the larger SS wave
vector qx observed under compressive εxx , as mentioned in the
previous section [see also Figs. 3(a) and 3(b), respectively].
Note that, because J03 has a smaller magnitude than J01 and
J02, the contribution from the third neighbors is expected to
be considerably smaller than those of the first and second
neighbors.

Let us consider the critical condition for the FM-SS phase
transition in terms of the exchange interaction parameters. The
transition occurs when E(q) in Eq. (2) becomes a minimum
at q �= 0. Considering the exchange interaction features for
which J01 and J02 are dominant, the critical condition for
the FM-SS phase transition can be derived by applying
J01,J02 �= 0, and J0j = 0 (j � 3) to Eq. (2). It is given by
J02/J01 = −1/4.3 Figure 6(a) shows the FM-SS magnetic
phase transition predicted by the critical condition based on
only J01 and J02 (see the red line). For comparison, the
black dashed line indicates the FM-SS transition directly
obtained from ab initio total-energy calculations. The J01-
J02 dominated transition line coincides well with the actual
FM-SS transition around the isotropic strain (εxx = εyy =
−0.1). However, in the transition in the anisotropic strain
region (εxx �= εyy), they dissociate from each other. This
discrepancy is expected to originate from the absence of
J03. We again consider the critical condition based on three
exchange parameters, J01, J02, and J03. The blue line in
Fig. 6(a) indicates that the J01-J02-J03-dominated transition
line is in excellent agreement with the actual FM-SS transition
for both isotropic and anisotropic strains. Here, the condition
can be represented in the two-dimensional phase diagram as
functions of J02/J01 and J03/J01, as shown in Fig. 6(b).50,51

This indicates that the FM-SS phase transition under the
isotropic strain is dominated by the exchange interaction of
the first and second neighbors, while the third neighbors
additionally contribute to the transition under anisotropic
strain.
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FIG. 7. (Color online) Schematic illustration of difference in the
majority and minority spin band structures of the FM and SS states.

C. Electronic band structures

Figure 7 shows a schematic illustration of the different
majority and minority spin band structures of the FM and SS
states. When the SS wave is introduced into the FM system,
the majority and minority spin bands crossing the Fermi level
EF tend to separate from each other. The minority-spin band is
pushed above the Fermi level and a portion of the band around
EF that was occupied in the FM phase becomes an unoccupied
state (see the blue lines). On the other hand, the majority-spin
band drops to a lower energy level (see the red lines). As a
result of this interband repulsion due to the SS wave, electrons
transfer from the higher minority-spin state to the lower
majority-spin state, which reduces the total energy and thus
stabilizes the noncollinear SS state. As discussed in Refs.52–55,
such stabilization of the SS structure can occur when both
the majority and minority spin bands cross the Fermi level
(which implies the formation of a Fermi surface). This is the
electronic-level condition for noncollinear instabilities in FM
systems.

To investigate the effect of SS waves on the electronic
structures and the stabilization of SS structures under com-
pression, we here analyze the electronic band structures of the
Fe(110) monolayer for several SS wave vectors qx . Figure 8
shows the electronic band structures of the Fe(110) monolayer
with different SS wave vectors qx under in-plane strains of
(εxx , εyy) = (0.0,0.0), (−0.2, −0.2), (−0.2, 0.0), and (0.0,
−0.2). For a strain-free monolayer [Fig. 8(a)], which exhibits
the FM ground state, the electronic band structure at qx = 0
corresponds to its two-dimensional geometry: The dxy- and
dx2−y2 -dominant bands are distributed over a wide energy
range because they form direct and strong ddσ bonds due to
orbital alignment in the monolayer plane.5 In contrast, the dyz-
and dzx-dominant bands have a relatively narrow distribution
because of the weaker interaction due to their orbital topologies
being aligned out of the monolayer. The dz2 -dominant band has
the narrowest width because the corresponding orbitals are
perpendicular to the monolayer. When we consider each pair
of majority-spin and minority-spin bands, none of them satisfy
the condition for the noncollinear SS structure, as discussed
above. Thus, the system remains in the FM ground state.

On the other hand, at εxx = εyy = −0.2 four pairs of
majority- and minority-spin bands of the dxy , dx2−y2 , dyz,
and dz2 orbitals fulfill the condition [see the thicker lines in
Fig. 8(b); the red and blue lines indicate the majority and

134440-5



SHIMADA, OKUNO, AND KITAMURA PHYSICAL REVIEW B 85, 134440 (2012)

−6

−5

−4

−3

−2

−1

 0

 1

 2

E
ne

rg
y 

 (
eV

)

−6

−5

−4

−3

−2

−1

 0

 1

 2

−6

−5

−4

−3

−2

−1

 0

 1

 2

−6

−5

−4

−3

−2

−1

 0

 1

 2

−6

−5

−4

−3

−2

−1

 0

 1

 2

−6

−5

−4

−3

−2

−1

 0

 1

 2

E
ne

rg
y 

 (
eV

)

−6

−5

−4

−3

−2

−1

 0

 1

 2

E
ne

rg
y 

 (
eV

)

−6

−5

−4

−3

−2

−1

 0

 1

 2

E
ne

rg
y 

 (
eV

)
(a) = (0.0, 0.0)(           ),εxx εyy

(b) = (−0.2, −0.2)(           ),εxx εyy

(c) = (−0.2, 0.0)(           ),εxx εyy

(d) = (0.0, −0.2)(           ),εxx εyy

HN Γ N

dx2 y2−

dzx

dyz
dz2

dxy

dxy

dzx

N Γ H N

N Γ H N

N Γ H N

N Γ H N

HN Γ N

dz2 dyz

dx2 y2−

HN Γ N

HN Γ N

= 0.0xq

= 0.0xq

= 0.0xq

= 0.0xq

= 0.4xq

= 0.4xq

= 0.4xq

= 0.4xq

FIG. 8. (Color online) Electronic band structures of the Fe(110)
monolayer with different SS wave vectors qx under in-plane strains
of (εxx , εyy) = (a) (0.0, 0.0), (b) (−0.2, −0.2), (c) (−0.2, 0.0), and (d)
(0.0, −0.2). The red and blue lines, respectively, indicate majority-
spin and minority-spin bands in the collinear FM state (qx = 0.0).

minority spins, respectively]. These pairs of bands tend to
disperse repulsively when an SS wave is introduced and the
wave vector qx increases. As explained above, these interband
repulsions reduce the total energy of the system and stabilize
the SS wave. In fact, the monolayer under this compressive
strain exhibits the noncollinear SS state, as shown in the
previous section. Note that the repulsion of bands is remarkable
along the N-� line, which corresponds to the direction of
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εyy) = (0.0,0.0) and (0.2, 0.2). The red and blue lines indicate the
majority-spin and minority-spin bands, respectively.

the excited SS wave. In the same manner, under anisotropic
strain conditions, (εxx , εyy) = (−0.2, 0.0) and (0.0, −0.2),
the dxy- and dx2−y2 -dominant bands, respectively, satisfy the
condition, which also leads to the SS ground state. However,
the monolayer under these anisotropic strains has fewer pairs
of majority and minority spin bands that fulfill the requirement
for the noncollinear SS state relative to the monolayer under
isotropic strain. Recalling that the SS state is more stable
for isotropic compression than anisotropic compression (see
Fig. 3), the bands that satisfy the condition should directly
contribute to the stability of the SS state.

Another important characteristic is that under compression,
each band tends to be distributed over a wider energy range
than the strain-free monolayer [e.g., compare Figs. 8(a)
and 8(b)], and the applied tension reduces the bandwidth, as
shown in Fig. 9. This is because the orbitals highly overlap each
other due to a shortened bond length produced by compression.
Clearly, as the bandwidth becomes broader, the number of the
majority and minority spin bands that cross the Fermi level
increases. This signifies that the compressive strain tends to
stabilize the noncollinear SS state through the requirement
for the SS state. On the other hand, applying a tensile strain
narrows the bandwidth, which reduces the number of bands
crossing the Fermi level. Therefore, the SS wave is excited and
stabilized not by tension but by compression.

IV. CONCLUSION

We performed fully unconstrained first-principles spin-
density-functional calculations to investigate the magnetic
phase transition from collinear FM to noncollinear SS ordering
in an Fe(110) monolayer under in-plane strain. The strain-free
monolayer is in the FM ground state. The Fe(110) monolayer
undergoes the FM-SS phase transition on the application of
in-plane compression, while tension keeps the system FM.
The stability and wavelength of the excited SS state are
increased on applying further compressive strain, especially
along [1̄10]. Heisenberg-Hamiltonian–based analysis of the
exchange interaction revealed that the FM-SS transition in an
isotropically strained monolayer is dominated by competing
exchange interactions between the ferromagnetically coupled
first neighbor and the antiferromagnetically coupled second
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neighbor, while the third neighbor also contributes to the tran-
sition under anisotropic strains. In addition, we demonstrated
the stabilization mechanism of SS noncollinear magnetism
from electronic band structures: The noncollinear SS state is
stabilized in a monolayer under compression by the remarkable
interband repulsion between the majority and minority spins.
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