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Ordering of the Heisenberg spin glass in four dimensions
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Ordering of the Heisenberg spin glass in four dimensions (4D) with the nearest-neighbor Gaussian coupling
is investigated by equilibrium Monte Carlo simulations, with particular attention to its spin and chiral orderings.
It is found that the spin and the chirality order simultaneously with a common correlation-length exponent
νCG = νSG � 1.0 i.e., the absence of the spin-chirality decoupling in 4D. Yet, the spin-glass ordered state
exhibits a nontrivial phase-space structure associated with a continuous one-step-like replica-symmetry breaking,
different in nature from that of the Ising spin glass or of the mean-field spin glass. Comparison is made with the
ordering of the Heisenberg spin glass in 3D, and with that of the 1D Heisenberg spin glass with a long-range
power-law interaction. It is argued that 4D might be close to the marginal dimension separating the spin-chirality
decoupling/coupling regimes.
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I. INTRODUCTION

The Heisenberg spin-glass (SG) model, or the Edwards-
Anderson model with the isotropic Heisenberg exchange
interaction,1 has been considered as the standard model of
many real SG materials.2 In realistic three spatial dimensions
(3D), earlier studies in the 1980s suggested that the isotropic
Heisenberg SG did not exhibit an equilibrium SG transition at
any finite temperature in apparent contrast to experiments.3–7

Then, a proposal was made in 1992 that the model might
exhibit a finite-temperature transition in the chiral sector,
with the standard SG order occurring at a temperature TSG

lower than the chiral-glass (CG) ordering temperature TCG

(i.e., TSG < TCG
8). The occurrence of such separate spin and

chirality transitions is now called “spin-chirality decoupling”.9

Chirality is a multispin variable representing the sense or the
handedness of local noncoplanar spin structures induced by
spin frustration. A possible counterview to such a picture might
be that the spin and the chirality order at a common finite
temperature.10–14 Although there is no complete consensus,
recent simulations point to the occurrence of the spin-chirality
decoupling in 3D.15–19 For example, Ref. 19 reported that TSG

was lower than TCG by about 10% ∼ 15%.
To get further insight into the issue, it might be useful to

extend the space dimension from the original d = 3 to general
d dimensions. In d = 1, the Heisenberg SG with a short-range
(SR) interaction exhibits only a T = 0 transition. In d = 2,
recent calculations suggested that the vector SG model, either
the three-component Heisenberg SG20 or the two-component
XY SG,21 exhibited a T = 0 transition but with the spin-
chirality decoupling (i.e., the CG correlation-length exponent
νCG was greater than the SG correlation-length exponent
νSG, meaning that this T = 0 transition was characterized by
two distinct diverging length scales, each associated with the
chirality and with the spin). In the opposite limit of d → ∞, the
model is known to reduce to the mean-field (MF) model [i.e.,
the Sherrington-Kirkpatrick (SK) model]. The Heisenberg
SK model is known to exhibit a single finite-temperature
transition, with no spin-chirality decoupling. In high but finite
d, a Monte Carlo (MC) study by Imagawa and Kawamura
suggested that the spin-chirality decoupling did not occur for

d = 5, whereas the situation in d = 4 appeared somewhat
more marginal.22

Another useful way of attacking the issue might be to study
the one-dimensional (1D) Heisenberg SG with a long-range
(LR) power-law interaction proportional to 1/rσ (r the spin
distance). Indeed, several studies both for the Ising and the
Heisenberg SGs suggested that the 1D LR SG model with
a power-law exponent σ might show the ordering behavior
analogous to the d-dimensional SG model with an SR
interaction.23–31 Even a simple empirical formula relating σ

and d, d = 2/(2σ − 1), was proposed,23 though the relation is
only approximate.

Recent MC calculation on the 1D LR Heisenberg SG
by Viet and Kawamura suggested that the spin-chirality
decoupling occurred for σ � σc, but did not occur for σ � σc,
σc being estimated numerically to be σc � 0.8.29,30 If one
applies the approximate d − σ correspondence formula quoted
above,23 the critical dimension below which the spin-chirality
decoupling is expected would be dc � 3.3, suggesting that
d = 4 might lie near the margin of, slightly on the side
of the spin-chirality coupling regime. Of course, the above
d − σ correspondence formula is only approximate, and even
whether d = 4 is greater or smaller than dc is not clear.
Previous simulation on the four-dimensional Heisenberg SG,
which dealt with the linear size of L � 10, was not definitive
concerning the occurrence of the spin-chirality decoupling in
four dimensions (4D).22

Under such circumstances, the purpose of the present
paper is first to clarify whether the spin and the chirality are
decoupled or not in the four-dimensional Heisenberg SG by
simulating larger systems than the ones studied in Ref. 22.
Since d = 4 is expected to be close to the marginal dimension
concerning the spin-chirality decoupling, we wish to see what
kind of ordering behavior is realized for the spin and the
chirality near the marginal dimension.

The present paper is organized as follows. In Sec. II, we
introduce our model and explain some of the details of our MC
simulation. Various physical quantities are defined in Sec. III.
The results of our MC simulations, including the spin and the
chiral correlation lengths, and the spin and the chiral Binder
ratios, are presented in Sec. IV. The SG and CG transition
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temperatures are determined by carefully examining the size
dependence of the finite-size data. In Sec. V, critical properties
of the spin and of the chirality are investigated by means of
a finite-size scaling analysis. Finally, Sec. VI is devoted to
summary and discussion.

II. THE MODEL AND THE METHOD

The model we consider is the isotropic classical Heisenberg
model on a four-dimensional hypercubic lattice, with the
nearest-neighbor Gaussian coupling. The Hamiltonian is given
by

H = −
∑
〈ij〉

Jij
�Si · �Sj , (1)

where �Si = (Sx
i ,S

y

i ,Sz
i ) is a three-component unit vector, and

the 〈ij 〉 sum is taken over nearest-neighbor pairs on the lattice.
The nearest-neighbor coupling Jij is assumed to obey the
Gaussian distribution with zero mean and variance J 2, which
is taken to be unity (J = 1) in the following. The temperature
T is measured in units of J .

We perform equilibrium MC simulations on the model.
The lattices are hypercubic lattices with N = L4 sites with
L = 6, 8, 10, 12, 16, and 20. We impose periodic boundary
conditions in all four directions. The sample average is taken
over 1300, 1200, 840, 590, 430, and 256 independent bond
realizations for L = 6, 8, 10, 12, 16, and 20, respectively. Error
bars of physical quantities are estimated by sample-to-sample
statistical fluctuations over the bond realization.

In order to facilitate efficient thermalization, we combine
the heat-bath and the over-relaxation methods with the
temperature-exchange technique.32 For each heat-bath sweep
we perform 11, 15, 19, 23, 31, and 55 over-relaxation
sweeps, while the total number of temperature points in the
temperature-exchange process are taken to be 35, 51, 59, 55,
55, and 60 for L = 6, 8, 10, 12, 16, and 20, respectively.
Care is taken to be sure that the system is fully equilibrated.
Equilibration is checked by following the procedures of
Ref. 19.

III. PHYSICAL QUANTITIES

In this section, we define various physical quantities
measured in our simulations.

For the Heisenberg spin, the local chirality at the ith site and
in the μth direction χiμ may be defined for three neighboring
Heisenberg spins by a scalar,

χiμ = �Si+êμ
· (�Si × �Si−êμ

), (2)

where êμ (μ = x,y,z,u) denotes a unit vector along the μth
axis. There are in total 4N local chiral variables.

We define an “overlap” for the chirality. We prepare at
each temperature two independent systems 1 and 2 described
by the same Hamiltonian (1) with the same interaction set. We
simulate these two independent systems 1 and 2 in parallel with
using different spin initial conditions and different sequences
of random numbers.
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FIG. 1. (Color online) The temperature and size dependence of the spin correlation-length ratio (a), of the perpendicular chiral correlation-
length ratio (b), and of the parallel chiral correlation-length ratio (c).
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FIG. 2. (Color online) Magnified views of the temperature and size dependence of the spin correlation-length ratio (a), of the perpendicular
chiral correlation-length ratio (b), and of the parallel chiral correlation-length ratio (c).

The k-dependent chiral overlap, qχ (�k), is defined as an
overlap variable between the two replicas 1 and 2 as a scalar,

qχ (�k) = 1

4N

N∑
i=1

∑
μ=x,y,z,u

χ
(1)
iμ χ

(2)
iμ ei�k·�ri , (3)

where the upper suffixes (1) and (2) denote the two replicas of
the system, and �ri is the position vector of the site i.

The k-dependent spin overlap, qαβ(�k), is defined by a tensor
variable between the α and β components of the Heisenberg
spin,

qαβ (�k) = 1

N

N∑
i=1

S
(1)
iα S

(2)
iβ ei�k·�ri , (α,β = x,y,z). (4)

In term of the k-dependent overlap, the CG and the SG order
parameters are defined by the second moment of the overlap
at a wave vector k = 0,

q
(2)
CG = [〈|qχ (�0)|2〉]

χ4 , (5)

q
(2)
SG = [〈qs(�0)2〉], qs(�k)2 =

∑
α,β=x,y,z

|qαβ(�k)|2, (6)

where 〈· · ·〉 represents a thermal average and [· · ·] an average
over the bond disorder. The CG order parameter q

(2)
CG has been

normalized here by the mean-square amplitude of the local

chirality,

χ2 = 1

4N

N∑
i=1

∑
μ=x,y,z,u

[〈
χ2

iμ

〉]
, (7)

which remains nonzero only when the spin has a noncoplanar
structure locally. The local-chirality amplitude depends on the
temperature and the lattice size only weakly.

Finite-size correlation length ξL is defined by

ξL = 1

2 sin(km/2)

√
[〈q(�0)2〉]

[〈q(�km)2〉] − 1, (8)

for each case of the chirality and the spin, ξCG and ξSG, where
�km = (2π/L,0,0,0) with km = |�km|. For the CG correlation
length ξCG, we consider two distinct definitions depending on
the mutual direction between the êμ vector appearing in the
definition of the local chirality (2) and the �km vector. When êμ ‖
�km (i.e., μ = x), we call the corresponding ξCG the parallel
CG correlation length ξ

‖
CG, whereas, when êμ ⊥ �km (i.e., μ =

y,z,u), we call the corresponding ξCG the perpendicular CG
correlation length. The perpendicular CG correlation length
ξ⊥

CG is actually defined by the mean of three equivalent ones,
each defined in the μ = y,z,u directions.

The CG and the SG Binder ratios are defined by

gCG = 1

2

(
3 − [〈qχ (�0)4〉]

[〈qχ (�0)2〉]2

)
, (9)
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FIG. 3. (Color online) The temperature and size dependence of the Binder ratio for the spin (a), and for the chirality (b). The inset of (b) is
a behavior of gCG expected in the L → ∞ limit.

gSG = 1

2

(
11 − 9

[〈qs(�0)4〉]
[〈qs(�0)2〉]2

)
. (10)

These quantities are normalized so that, in the thermodynamic
limit, they vanish in the high-temperature phase and give
unity in the nondegenerate ordered state. In the present
Gaussian coupling model, the ground state is expected to be
nondegenerate so that both gCG and gSG should be unity at
T = 0.

IV. MONTE CARLO RESULTS

In this section, we present the results of our MC simulations
on the four-dimensional isotropic Heisenberg SG with the
random Gaussian coupling.

We show in Fig. 1 the temperature dependence of the CG
and the SG correlation-length ratios, ξSG/L in (a), ξ⊥

CG/L in (b),
and ξ

‖
CG/L in (c). As can be seen from the figures, both the spin

ξSG/L and the chiral ξCG/L curves cross at temperatures which
are weakly L dependent. Magnified views of the crossing-
temperature range are shown in Figs. 2(a)–2(c) for the spin, the
perpendicular chirality and the parallel chirality, respectively.

As another indicator of the transition, we show in Fig. 3 the
Binder ratios for the spin (a) and for the chirality (b). The chiral
Binder ratio gCG exhibits a negative dip. The data of different
L cross on the negative side of gCG. A magnified view of gCG

in the crossing-temperature region is shown in Fig. 4.
In contrast to gCG, the spin Binder ratio gSG shown in

Fig. 3(a) exhibits no crossing in the investigated range of the
temperature and the lattice size, monotonically decreasing with
L. However, gSG develops a more and more singular shape with
increasing L, a prominent peak appearing for larger L.

In the L → ∞ limit, the Binder ratios gSG and gCG should
satisfy here g → 0 in the high-temperature phase, and g = 1 at
T = 0. Hence, the asymptotic form of gCG in the L → ∞ limit
should be like the one as illustrated in the inset of Fig. 3(b). In
fact, such a form of g is expected in a system with an ordered
state exhibiting a continuous one-step-like replica-symmetry
breaking (RSB).33 A similar form of gCG was observed in
3D.16,18,19 Note that the one-step-like RSB discussed here
is of a continuous type, in contrast to the one-step RSB

of a discontinuous type often discussed in conjunction with
structural glasses. In the latter case, the negative dip of gCG

should exhibit a negative divergence at the transition, while
such a negatively divergent behavior is not observed here.

In order to estimate the bulk SG and CG transition
temperatures quantitatively, we plot in Fig. 5(a) the crossing
temperatures Tcross(L) of ξSG/L versus the inverse system size
1/Lav for pairs of the sizes L and sL with s = 2,5/3 and
5/4, where Lav = 1+s

2 L. Likewise, the crossing temperatures

Tcross(L) of ξ⊥
CG/L, ξ

‖
CG/L, and gCG are plotted versus 1/Lav

in Fig. 5(b). The crossing temperature Tcross(L) is expected to
obey the scaling form,

Tcross(L; s) = Tg + csL
−θ , θ = ω + 1

ν
, (11)

where ν is the correlation-length exponent and ω is the leading
correction-to-scaling exponent. We fit our data of Tcross(L; s)
for the spin or for the chirality to the above form (11), to extract
the transition temperature (Tg = TCG or TSG) and the exponent
θ (θ = θCG or θSG) for the spin or the chirality.

For the spin, we perform a joint fit of Tcross(L; s) of ξSG/L

for three different values of s = 2, 5
3 , 5

4 , where the values of
TSG and θSG are taken common while the values of cs are s

dependent. We then find an optimal fit for TSG = 0.391(2) and
θSG = 4(2) with the associated χ2 value, χ2/DOF = 0.73.
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2 L: the spin correlation-length ratio ξSG/L in (a); the perpendicular chiral correlation-length ratio ξ⊥
CG/L, the

parallel chiral correlation-length ratio ξ
‖
CG/L, and the chiral Binder ratio gCG in (b). In (b), the dip temperatures Tdip of the chiral Binder ratio

gCG are also shown. Solid curves represent the fitting curves of the data on the basis of Eq. (11) (see the text for details). The spin-glass and the
chiral-glass transition temperatures are estimated to be TSG = 0.391(2) and TCG = 0.390(1), respectively.

For the chirality, we have several kinds of crossing
temperatures Tcross(L; s)[ i.e., Tcross(L; s) of ξ

‖
CG/L, ξ⊥

CG/L,
and gCG]. Then, we perform a joint fit of the data of Tcross(L; s)
of these three kinds of Tcross(L; s), each with s = 2, 5

3 , 5
4 , where

TCG and θCG are taken common while the values of cs are s

dependent. We then get TCG = 0.390(1) and θCG = 2.4(4) with
the associated χ2 value, χ2/DOF = 0.51.

One sees from these results that the spin and the chiral
transition temperatures agree within the error bars (i.e., TSG =
TCG within the accuracy of 1%). This observation strongly
suggests the absence of the spin-chirality decoupling in 4D, in
contrast to the case of 3D where TSG lies below TCG by about
10% ∼ 15%.

For the CG transition, we have another indicator (i.e., the
negative-dip temperature Tdip(L) of the chiral Binder ratio
gCG), which is expected to obey the scaling form,

Tdip(L; s) = Tg + cL− 1
ν . (12)

The data of Tdip(L) are also shown in Fig. 5(b). As can be seen
from the figure, Tdip(L) changes its behavior with increasing
L. It tends to decrease with L for smaller sizes, while it tends
to increase with L for larger sizes of L � 16. Indeed, such
a nonmonotonic size dependence of Tdip(L) is expected due
to the following reason. For large enough L, the negative-dip
temperature Tdip(L) should lie below the crossing temperature
of gCG, Tcross(L). Since the exponents governing the asymptotic
size dependence of Tdip(L) and Tcross(L) are θ and 1/ν which
satisfy the inequality θ > 1/ν by definition, Tdip(L) needs
to approach TCG from below for large enough L. Hence, a
bending-up behavior observed in Tdip(L) for larger L is a
necessary changeover as expected from the argument above.

Anyway, this changeover in the observed size dependence
of gdip(L) makes a systematic extrapolation of Tdip(L) difficult.
Nevertheless, as can be seen from Fig. 5(b), our data of Tdip(L)
for larger L � 16 seems fully consistent with the TCG value
obtained above from the crossing temperatures.

As mentioned above, the negative dip of gCG shown in
Fig. 3(b) is consistent with the occurrence of a one-step-like

RSB.16,18,19 The corresponding spin Binder ratio gSG shown in
Fig. 3(b) also develops a more and more singular form with a
peak structure appearing for larger L. If one recalls the fact that
gSG takes a value unity at T = 0 and approaches zero above
TSG(= TCG) in the L → ∞ limit, gSG is expected to develop
a negative dip as in the case of gCG. In the L → ∞ limit, this
negative dip temperature Tdip should yield TSG. Since TSG is
likely to agree with TCG in 4D, a one-step-like RSB is expected
to arise independently of the occurrence of the spin-chirality
decoupling. In other words, in 4D, the Heisenberg SG is likely
to exhibit a single SG transition without the spin-chirality
decoupling. Yet, the SG (simultaneously CG) ordered state
is peculiar in that the ordered state possesses a one-RSB-like
nontrivial phase-space structure.

V. CRITICAL PROPERTIES

In the previous section, we have demonstrated that, in
4D, the SG and the CG transitions are likely to take place
simultaneously (i.e., TSG = TCG). In this section, we study
the critical properties of the transition on the basis of a
finite-size scaling analysis of our MC data. In the absence
of the spin-chirality decoupling, a natural expectation for the
critical properties is that, as usual, the spin is a primary order
parameter of the transition. Then one should have νSG = νCG

and ηSG < ηCG. The latter corresponds to the fact that the
spin is the primary order parameter and the chirality is the
composite of the spin.

We first study the critical properties of the spin by means
of a finite-size scaling analysis of both ξSG/L and q

(2)
SG. We

employ the following finite-size scaling form with the leading
correction-to-scaling term,

ξSG

L
= X̃((T − TSG)L1/νSG )(1 + aL−ωSG ), (13)

q
(2)
SG = L−(2+ηSG)Ỹ ((T − TSG)L1/νSG )(1 + a′L−ωSG ), (14)

where a and a′ are numerical constants, while X̃ and Ỹ are
appropriate scaling functions. The SG transition temperature
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FIG. 6. (Color online) Finite-size-scaling plots of the spin-glass correlation-length ratio ξSG/L (a), and of the spin-glass order parameter
q

(2)
SG (b), where the leading correction-to-scaling effect is taken into account. The spin-glass transition temperature is fixed to TSG = 0.39 as

determined in Sec. IV. The best fit for ξSG/L is obtained with νSG = 1.0 and ωSG = 3.0, while that for q
(2)
SG is obtained with νSG = 1.0 (fixed)

and ηSG = −0.3.

TSG is fixed to TSG = 0.39 as determined in the previous
section.

We begin with the finite-size scaling of ξSG/L with νSG

and ωSG free fitting parameters. The best fit is obtained for
νSG = 1.0 and ωSG = 3.0. The resulting scaling plot is given
in Fig. 6(a). Inspecting the quality of the plot by eyes, we put
the error bars as νSG = 1.0(1) and ωSG = 3(1). Note that these
estimates of νSG and ωSG are consistent with our above estimate
of θSG = ωSG + 1

νSG
= 4(2). Next, with assuming νSG = 1 and

ωSG = 3, we perform the finite-size scaling analysis of q
(2)
SG to

obtain ηSG = −0.3(1). The resulting scaling plot is shown in
Fig. 6(b).

We also try the type of extended finite-size scaling analysis
proposed by Campbell et al. where the scaling variables are
chosen to take a matching between the critical regime and
the high-temperature regime in order to get a wider scaling
regime.34 The resulting exponent values turn out to be the
same as those obtained above by the standard analysis.

Similar scaling analysis is also applied to the chiral degrees
of freedom to estimate the chiral correlation-length exponent
νCG and the chiral anomalous-dimension exponent ηCG. The

transition temperature is fixed to TCG = 0.39 as determined
in the previous section. The finite-size scaling of the chiral
correlation-length ratio yields νCG = 1.0(1) and ωCG = 1.7(3).
We get the same estimates even when we use either the
perpendicular or the transverse CG correlation-length ratio.
The resulting scaling plot for the perpendicular one is given
in Fig. 7(a). These estimates of νCG and ωCG are consistent
with our above estimate of θSG = ωSG + 1

νSG
= 2.3(4). The

finite-size scaling of the CG order parameter q
(2)
CG with fixing

νCG = 1.0 and ωCG = 1.7 yields ηCG = 2.4(8). The resulting
scaling plot is given in Fig. 7(b). We also try the extended
finite-size scaling analysis a la Campbell et al.34 Again, as in
the case of the spin, the resulting exponent values turn out to
be the same as those obtained above by the standard analysis.

Combining the exponent estimates obtained above, we
finally quote as our best estimates of the spin exponents,

νSG = 1.0 ± 0.1, ηSG = −0.3 ± 0.1, (15)

while for the chirality exponents quote

νCG = 1.0 ± 0.1, ηCG = 2.4 ± 0.8. (16)
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FIG. 7. (Color online) Finite-size-scaling plots of the perpendicular chiral-glass correlation-length ratio ξ⊥
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order parameter q
(2)
CG (b), where the leading correction-to-scaling effect is taken into account. The chiral-glass transition temperature is fixed to

TCG = 0.39 as determined in Sec. 4. The best fit for ξ⊥
CG/L is obtained with νCG = 1.0, while that for q

(2)
CG is obtained with νCG = 1.0 (fixed)
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If one applies the standard scaling or hyperscaling relations,
one can estimate other SG exponents as α � −2.0, βSG �
0.85, γSG � 2.3, and δSG � 3.7, etc.

One sees from these estimates that the correlation-length
exponents ν for the spin and for the chirality agree within
the error bars (i.e., νSG = νCG), which indicates the existence
of only one diverging length scale at the transition. This
observation is fully consistent with the absence of the spin-
chirality decoupling in the four-dimensional Heisenberg SG.
Our data are also not incompatible with the relation ωSG = ωCG

within the error bars. By contrast, the anomalous-dimension
exponents satisfy the inequality ηSG < ηCG, indicating that the
spin is the primary order parameter as usual. If one applies
the scaling relation to the CG exponents γCG = (2 − ηCG)νCG,
one would get the CG susceptibility exponent as γCG =
−0.4 ± 1.1. The estimated value of γCG means that the CG
susceptibility does not diverge, or diverges only weakly, at the
transition. This observation is again consistent with the view
that the primary order parameter in 4D is the spin and the
chirality is only composite.

The obtained CG exponent values might be compared with
the earlier estimates by Imagawa and Kawamura on the same
model [i.e., νSG = 1.3(2) and ηSG = −0.7(2)22]. One sees that
νSG agrees with our present estimate within the error bars,
while ηSG deviates somewhat. In view of the larger sizes
employed in the present study as compared with those of
Ref. 22 (i.e., L � 20 vs L � 10), and also of a larger number of
independent samples (e.g., 840 vs 80 for L = 10), our present
estimate would be more trustable.

VI. SUMMARY AND DISCUSSION

We studied equilibrium ordering properties of the four-
dimensional isotropic Heisenberg SG by means of an extensive
MC simulation. By calculating various physical quantities
including the correlation-length ratio, the Binder ratio, and
the glass order parameter up to the size as large as L = 20 and
down to temperatures well below Tg , we have found that TSG =
0.391(2) is likely to coincide with TCG = 0.390(1), which
indicates that the spin and the chirality order simultaneously
in the four-dimensional Heisenberg SG (i.e., the absence of
the spin-chirality decoupling). If TSG and TCG are to differ,
the distance in transition temperatures should be less than
1%. We also studied the critical properties of the transition
on the basis of the finite-size scaling analysis. The exponents
were estimated to be νSG = 1.0(1) and ηSG = −0.3(1) for the
spin, and νCG = 1.0(1) and ηCG = 2.4(8) for the chirality.
Although the SG transition in 4D is usual in the sense
that the spin is the primary order parameter, the standard
exponent relations νSG = νCG and ηSG < ηCG being satisfied.
Yet, the SG transition is somewhat unusual in the sense that

the low-temperature SG (simultaneously CG) ordered state
exhibits a nontrivial phase-space structure (i.e., a continuous
one-step-like RSB). Note that the type of RSB is quite different
from the one observed in the Ising SG, or the one observed
in the mean-field limit of both the Ising and the Heisenberg
SGs.

As mentioned in Sec. I, possible correspondence between
the orderings of the d-dimensional SR Heisenberg SG and of
the 1D LR Heisenberg SG with a power-law interaction has
been suggested in the literature. Although this correspondence
is by no means exact, recent numerical studies both on the
Ising and the Heisenberg SGs supported such correspondence.
Indeed, Katzgraber et al. proposed a formula for the d-σ
correspondence, a refined version of the one mentioned in
Sec. 1,26

d = 2 − ηSG

2σ − 1
, (17)

where ηSG is the spin anomalous-dimension exponent of the
d-dimensional SR system. Now, we have an estimate of
ηSG for the four-dimensional Heisenberg SG as ηSG � −0.3.
Substituting this into the right-hand side of Eq. (17) and
putting d = 4, we get σ = 0.79. Together with the recent
numerical estimate of the borderline value of σc separating
the spin-chirality coupling/decoupling regimes, σc � 0.8,29,30

the d-σ correspondence suggests that the result in 4D lies very
close to the borderline dimensionality of the spin-chirality
coupling/decoupling, on the coupling regime only slightly.
Such a view on the basis of the d-σ correspondence seems
fully consistent with our present MC results.

In fact, the correspondence holds also for the critical
exponents. In the d-σ analogy, the exponent νSG of the 1D LR
model should be related to that of the d-dimensional SR model
via the relation, νSG[1D-LR] = d × νSG[dD-SR].35 Then, our
result in 4D suggests that the corresponding 1D LR model
should be characterized by the exponent νSG � 4 × 1.0 = 4.
Meanwhile, Ref. 30 gave νSG = 3.6(5) and νCG = 4.0(5) for
σ = 0.8 so that the expected relation is indeed satisfied.
All these results suggest that d = 4 probably lies fairly
close to the borderline dimensionality of the spin-chirality
decoupling/coupling, may even lie just at the border.
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