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Spin-wave analysis of the transverse-field Ising model on the checkerboard lattice
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The ground-state properties of the S = 1/2 transverse-field Ising model on the checkerboard lattice are studied
using linear spin-wave theory. We consider the general case of different couplings between nearest neighbors
(J1) and next-to-nearest neighbors (J2). In zero field, the system displays a large degeneracy of the ground
state, which is exponential in the system size (for J1 = J2) or in the system’s linear dimensions (for J2 > J1).
Quantum fluctuations induced by a transverse field are found to be unable to lift this degeneracy in favor of a
classically ordered state at the harmonic level. This remarkable fact suggests that a quantum-disordered ground
state can be instead promoted when nonlinear fluctuations are accounted for, in agreement with existing results
for the isotropic case J1 = J2. Moreover, spin-wave theory shows sizable regions of instability, which are further
candidates for quantum-disordered behavior.
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I. INTRODUCTION

Frustrated quantum magnets represent one of the richest
playgrounds to investigate quantum collective phenomena.1

Indeed, known models of frustrated quantum magnets might
admit quantum ground states without any classical counterpart,
such as valence-bond crystals, or resonating-valence-bond
spin liquids.2 Most of the investigations have focused on
Heisenberg antiferromagnets due to their relevance to real
compounds, although the lack of well-controlled analytical or
numerical approaches for the bulk properties of these systems
still leaves the question open on the true nature of their ground
state.3 On the other hand, quantum-disordered ground states
have been shown to emerge in models with strongly anisotropic
interactions (in spin space and/or in real space), which appear
to provide the first controlled realizations of quantum spin
liquids with a topological nature.4–7 Some of these systems are
related to quantum dimer models,8,9 which have provided the
first known examples of quantum spin-liquid ground states.10

In this class of anisotropic systems, a special role is
played by frustrated quantum Ising models, namely, Ising
systems enriched with quantum fluctuations, coming either
from an exchange coupling in the transverse spin components
or from a transverse magnetic field.11,12 In the absence of
quantum fluctuations, Ising models on frustrated lattices have
generally a classical spin-liquid nature, namely, they exhibit
an exponential degeneracy of the ground state, as it is the
case for the Ising antiferromagnet on the triangular lattice,
kagome lattice, checkerboard lattice, pyrochlore lattice, etc.,
with, however, correlations that can be long ranged, algebraic,
or short ranged. The effect of quantum fluctuations is in
general that of lifting the large degeneracy of ground states,
leading either to the emergence of an ordered ground state
(as, e.g., in the case of the triangular lattice11) or to a ground
state with novel spin-liquid properties (as it appears to be the
case for the pyrochlore lattice4,6). In this study, we focus on
the Ising antiferromagnet on the checkerboard lattice, which
represents a fundamental model of frustrated magnetism in
two dimensions. Indeed, in the case of spatially isotropic
interactions, the ground-state properties of the system are

equivalent to those of the unbiased six-vertex model, also
known as square ice.13 The effect of quantum fluctuations
on such a system has been the subject of several recent
investigations11,14–18 focusing particularly on the limit of weak
quantum fluctuations, treated within degenerate perturbation
theory.

In this study, we adopt a different strategy, which allows us
to treat arbitrarily strong quantum fluctuations in a generalized
version of square ice. We investigate the S = 1/2 Ising model
on the checkerboard lattice with different couplings along the
coordinate axes (J1) and along the diagonals (J2), as shown in
Fig. 1. The anisotropy in the couplings allows us to introduce
a bias in the vertex weights of the corresponding vertex
model, reducing the degeneracy to exponential in the linear
dimensions of the system (J2 > J1), or even to a finite value
(for J1 > J2). The application of a transverse field allows us
therefore to investigate the effect of quantum fluctuations on a
classical manifold of states with variable degeneracy. Quantum
fluctuations are investigated via linear spin-wave theory,
accounting for the harmonic fluctuations around the classical
ground state. Albeit limited to the harmonic approximation,
such an approach allows for investigation of arbitrarily strong
fields, and its breakdown signals the candidate regions in the
phase diagram where novel quantum-disordered behavior can
be expected. On the side J2 > J1, the infinite degeneracy of
the ground state would a priori make the spin-wave analysis
impossible, given the exceedingly large number of possible
classical reference states. In fact, we demonstrate that the
spin-wave spectrum does not depend on the particular classical
ground state chosen as a reference. This implies that the
spectrum of linear excitations is defined unambiguously in
the J2 > J1 region; this situation persists also in the isotropic
case of square ice J1 = J2, for which the lowest branch of
the excitation spectrum is a flat band. But, this implies as
well that the classical degeneracy remains unaltered in the
presence of harmonic quantum fluctuations, which means that
only nonlinear quantum fluctuations can lift the degeneracy,
a situation previously encountered in a number of frus-
trated magnets.19–25 Moreover, harmonic quantum fluctuations
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FIG. 1. (Color online) Checkerboard lattice. Full lines represent
couplings with strength J1, dashed lines represent couplings with
strength J2.

triggered by a sufficiently strong field are found to reverse
the classical hierarchy of ordered states close to the isotropic
(J1 = J2) limit, suggesting that anharmonic fluctuations might
destabilize the classical order completely. Finally, the classical
order parameter is found to be completely washed out by
quantum fluctuations for strong fields close to the classical
polarization transition, and for couplings close to the isotropic
case. We can therefore conclude that the transverse-field
Ising model (TFIM) on the checkerboard lattice can harbor
quantum-disordered phases for strong frustration and fields,
and that nonlinear quantum fluctuations are expected to play
a major role in the case of extensive degeneracy of the ground
state.

The paper is structured as follows: Section II describes
the model, its behavior in zero applied field, and the classical
behavior in a transverse field; Sec. III reviews known results on
quantum square ice from degenerate perturbation theory and
numerics; Sec. IV describes linear spin-wave theory as applied
to the various regimes of the checkerboard lattice TFIM; Sec. V
discusses the phase diagram emerging from spin-wave theory;
and finally conclusions are drawn in Sec. VI, along with a
discussion about physical realizations. The general framework
of spin-wave theory for the TFIM on arbitrary lattices is
presented in Appendix A, while the spin-wave observables
for the checkerboard lattice are discussed in Appendix B.

II. CLASSICAL BEHAVIOR OF THE TRANSVERSE-FIELD
ISING MODEL ON THE CHECKERBOARD LATTICE

A. Model Hamiltonian and ground-state properties in zero field

The Hamiltonian of the TFIM on the checkerboard lattice
reads as

H = J1

∑
〈i,j〉

Sz
i S

z
j + J2

∑
〈〈i,j〉〉

Sz
i S

z
j − �

∑
i

Sx
i , (1)

where Si are quantum spins of length S, satisfying |Si |2 =
S(S + 1) and [Sα

i ,S
β

i ] = iεαβγ S
γ

i . The first sum in Eq. (1)
runs over the nearest-neighbor bonds of a square lattice,
while the second sum runs over the next-to-nearest-neighbor
(diagonal) bonds on a staggered array of plaquettes (see Fig. 1).
We consider here frustrated antiferromagnetic couplings J1,
J2 > 0. � is a transverse magnetic field, introducing quantum
fluctuations in the system. As we will see in the following

section, in zero field, the ground-state properties of the above
model are equivalent to those of an m-vertex model with
m = 2, 4 or 6 depending on the Hamiltonian parameters.
Motivated by this equivalence, in the following we will indicate
as vertices (denoted by �) the squares with additional diagonal
J2 couplings, and as plaquettes (denoted by �) the squares
without diagonal couplings.

When � = 0, we can easily rewrite the Hamiltonian in the
following form:

H = J2hice + (J1 − J2)
∑
〈i,j〉

Sz
i S

z
j (2)

if J1 > J2, and

H = J1hice + (J2 − J1)
∑
〈〈i,j〉〉

Sz
i S

z
j (3)

if J2 > J1, where we have introduced the square-ice Hamilto-
nian

hice =
∑
�

⎡⎣(∑
i∈�

Sz
i

)2

− 4
∑
i∈�

(
Sz

i

)2

⎤⎦ . (4)

With this choice, the ground state is identified in two steps: (1)
first, one needs to impose on each spin the constraint that Sz

i =
±S, and on each vertex the zero-magnetization constraint
M� = ∑

i∈� Sz
i = 0: these two constraints minimize the first

term on the right-hand side of both Eqs. (2) and (3). The
M� = 0 constraint corresponds to the so-called ice rule for
square ice, and therefore we will hereafter denote the states
which satisfy it (and which satisfy Sz

i = ±S) as ice-rule states;
(2) second, one needs to choose, among the ice-rule states,
those corresponding to a minimum of the second term in
the right-hand side of Eqs. (2) and (3); this term is always
antiferromagnetic by construction, so that it can be minimized
by zero-magnetization vertices.

In the special case J1 = J2, we recover H = J1(2)hice,
namely, the square-ice model, the ground states of which are
only constrained by the ice rule (along with the condition
Sz

i = ±S). The ground-state properties of this system are
equivalent to the six-vertex model, displaying an exponential
degeneracy of the ground state.13 This degeneracy is (partially)
lifted when J1 �= J2.

If J1 > J2, we need to select among all zero-magnetization
vertices with satisfied antiferromagnetic J1 bonds. This further
constraint imposes that each vertex must take the antiferro-
magnetic (Néel) configuration in Fig. 2(b) or its spin-flipped
version (two-vertex model), and it reduces the possible ground
states to the two Néel-ordered states. The ground-state energy
per spin takes the value ENéel = −(2J1 − J2)S2.

If, on the contrary, J2 > J1, the zero-magnetization vertices
must satisfy the J2 bonds, and therefore they take one of the
four collinear configurations in Fig. 2(b), reducing the ground
state of the system to that of a four-vertex model. The collinear
ground states (namely, containing only collinear vertices) are
massively degenerate because flipping a linear chain of spins
along the J2 diagonals does not alter any of the constraints
which the ground state must satisfy. Therefore, the ground-
state degeneracy is equal to 2Nd , where Nd is the number of
J2 diagonals. The ground-state energy per spin takes the value
Ecoll = −J2S

2.
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(a) (b)

FIG. 2. (Color online) Crossed plaquettes that obey the “ice rule.”
(a) On the Néel plaquettes, the nearest-neighbor links are satisfied.
(b) On the “collinear” plaquettes, the next-nearest-neighbor links are
satisfied.

In summary, the degeneracy of the ice-rule states is partially
lifted when J1 �= J2, and ice-rule states are organized into a
band with energy width (per spin) given by

ω = |ENéel − Ecoll| = 2|J1 − J2|S2. (5)

The above discussion is valid for an arbitrary value of the
spin length S, and in particular also in the classical limit S →
∞, in which one can introduce continuous spins S̃i = Si/S

with unit length |S̃i |2 = 1. On the other hand, we will see
that the application of a transverse field introduces significant
differences for the ground-state properties depending on the
spin length S.

B. Excited states in zero field

The nature of the excited states is dependent upon the spin
length. In the following, we will concentrate on the S = 1/2
case, which will be the main focus of this paper. In this limit,
when J1 > J2, the lowest-energy excitations correspond either
to one of the following: (1) a single spin flip, costing an energy

� = (2 − ν1)J1 + (1 − ν2)J2, (6)

where νp is the number of frustrated Jp links (p = 1,2)
connected to each site. For Néel states, ν1 = 0 and ν2 = 2,
while for collinear states ν1 = 2 and ν2 = 0. Notice that for
generic ice-rule states, one has ν1 + ν2 = 2; (2) a joint flip
of all the spins on a plaquette (plaquette flip). This operation
has the lowest energy when applied to a flippable plaquette,
with the property that its flip connects the initial ice-rule state
to another ice-rule state. All the neighboring vertices of a
flippable plaquette share with the plaquette a bond with zero
magnetization, so that the plaquette flip will not alter the vertex
magnetization. This imposes that the flippable plaquette has
a local Néel configuration. In Néel states, all plaquettes are
flippable, with an energy cost of �plaq = 4(J1 − J2). In the
collinear states, only a portion of the plaquettes are flippable
(at most one half as in the state depicted in Fig. 3), with an
energy cost of �plaq = 4(J2 − J1).

Comparing the energy cost of a plaquette flip with that of
a spin flip, we find that plaquette flips are the lowest-energy
excitations in the parameter range 2/3 < J2/J1 < 4/3, and
outside of this range, spin flips are instead the excitations with
the lowest energy.

x̂′

ŷ′ŷ
x̂

J2 < J1 J2 > J1

FIG. 3. (Color online) Reference classical ground states. The
circles indicate flippable plaquettes.

C. S → ∞ limit in a transverse magnetic field

In this section, we discuss the effect of a transverse field
on classical continuous spins (S → ∞). The corresponding
ground-state configurations will serve as a template for the
spin-wave analysis in the quantum case. The transverse field
introduces a canting of the spins along the x axis by an angle ϑ

(see Fig. 4). This angle increases with the intensity of the field
up to a critical value �c at which ϑ = π/2, corresponding to
the polarization of the spins along x. For both the collinear and
the Néel ground states, each spin sees the same local field (in
modulus) created by the neighboring spins [hloc = ±(4J1 −
2J2)Sẑ for Néel states, and hloc = ±2J2Sẑ for collinear states,
where ẑ is the unit vector in the z direction of spin space].
Therefore, the application of the external field will create the
same canting angle ϑ on each spin. Upon canting, the spin
configuration becomes Sx

i = S sin ϑ and Sz
i = ±S cos ϑ .

The classical energy per spin admits the compact expres-
sion, valid for both the Néel and collinear states:

εcl = [(ν1 − 2)J1 + (ν2 − 1)J2]S2 cos2 ϑ − �S sin ϑ

= [ν2(J2 − J1) − J2]S2 cos2 ϑ − �S sin ϑ. (7)

Minimizing the energy per spin with respect to ϑ , we find

sin ϑ = min

(
�

2S[J2 − ν2(J2 − J1)]
,1

)
. (8)

If � > �c = 2S[J2 − ν2(J2 − J1)], the system becomes com-
pletely polarized in the transverse direction. For � > �c, the
classical ground-state energy per spin takes the value

εcl = −S2[J2 − ν2(J2 − J1)](1 + sin2 ϑ). (9)

The resulting classical phase diagram for S → ∞ is shown in
Fig. 5.

Γ
ϑ

ϑ

FIG. 4. Classical rotation angle induced by the transverse field.

134427-3



HENRY, HOLDSWORTH, MILA, AND ROSCILDE PHYSICAL REVIEW B 85, 134427 (2012)

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

Γ/
J 1

J2/J1

Polarized

Néel Collinear

FIG. 5. (Color online) Classical phase diagram of the transverse-
field Ising model on the checkerboard lattice.

III. SQUARE ICE IN A TRANSVERSE FIELD: RESULTS
FROM PERTURBATION THEORY

For square ice (J1 = J2), in the case � � J1,J2, the
transverse field can be treated via degenerate perturbation
theory on the manifold of ice-rule states. Considering all
terms up to fourth order,26 one can easily find the following
effective Hamiltonian for the subspace of ice-rule states (up to
an additive constant):

Heff = − �4

�3

∑
flippable�

(S+
i S−

j S+
k S−

l + H.c.) + O
(

�6

�5

)
, (10)

where (ijkl) are the four sites on a plaquette (in clockwise
order), and the sum runs on flippable plaquettes. Various claims
exist in the literature11,14 that this Hamiltonian will lift the
degeneracy of ice-rule states in favor of the Néel state, based
on the fact that the Néel state has the largest number of flippable
plaquettes. In fact, this Hamiltonian is completely off diagonal
for the ice-rule states, so that it can not favor a specific ice-rule
state, but only a resonant superposition thereof. In particular,
a flippable plaquette, once flipped, turns its four neighboring
vertices from Néel configurations to collinear configurations or
vice versa, namely, the effective Hamiltonian will resonantly
connect local Néel configurations with local collinear ones. At
the same time, two corner-sharing flippable plaquettes can not
be both flipped without leaving the ice-rule manifold, which
suggests that Néel-collinear resonances will be localized to
single plaquettes. A rough approximation to the ground state
of Eq. (10) is therefore a state in which a checkerboard subset of
non-corner-sharing plaquettes resonate between two flippable
states, giving rise to a resonating-plaquette solid (RPS)

|�0〉 ≈ |�RPS〉 =
∏
�

′
(|↑i↓j↑k↓l〉 + |↓i↑j↓k↑l〉)/

√
2, (11)

where the primed product runs on a sublattice of plaquettes.
This state breaks the twofold symmetry between the two
plaquette sublattices. While direct numerical investigations
of the square-ice model in a transverse field are not known
to us, there exists in the literature a series of numerical
studies of square ice with different quantum perturbations,
which all map perturbatively onto the effective Hamiltonian
of Eq. (10). A direct simulation of Eq. (10) is reported in

Ref. 15, while Refs. 16, 17, and 18 focus on hard-core bosons
on the checkerboard lattice at half-filling, with strong nearest-
neighbor repulsion, and weak hopping (with either positive or
negative sign) between nearest neighbors and next-to-nearest
neighbors. The latter model is equivalent to square ice with
weak ferromagnetic/antiferromagnetic exchange terms for the
x and y spin components. The common result of all these
studies is that the ground state for weak quantum perturbations
has indeed long-range RPS order, and no magnetic order.
Therefore, we expect spin-wave theory to break down or
become inconclusive in this limit, which is indeed one of the
main results of the following analysis.

IV. LINEAR SPIN-WAVE THEORY

In the following, we describe a treatment of quantum
fluctuations introduced by the transverse field in the S = 1/2
case based on a linear spin-wave expansion.25,27 We will then
treat separately the spectrum of excitations above the various
classical reference states of the system: Néel, collinear, and
fully polarized.

A. Spin-boson transformation

We begin by considering a generic classical ground state
with long-range magnetic order, and with a magnetic unit cell
containing n spins. We denote Sl,p the pth spin (p = 1 . . . n)
of the lth cell. As seen in Sec. II C, in the classical limit an
applied transverse field introduces a canting of the spins by an
angle ϑ with respect to the z axis. We introduce a local rotation
of the spin configuration S̃l,p = σpRy(σpϑ)Sl,p, where σp =
1 (−1) if the spin in zero field has positive (negative) projection
along the z axis, and Ry(±ϑ) is the rotation matrix of an angle
±ϑ around the y axis. In the classical limit S → ∞, the ground
state is a simple ferromagnetic state for the S̃l,p spins, namely,
S̃z

l,p = S everywhere.
We then consider small quantum fluctuations around this

classical reference state by transforming the quantum spins to
bosons via a linearized Holstein-Primakoff transformation28

valid in the limit of a small number of bosons nl,p � 2S:

S̃z
l,p = S − a

†
l,pal,pS̃x

l,p ≈
√

S

2
(a†

l,p + al,p). (12)

Here, al,p and a
†
l,p are bosonic operators, satisfying

[al,p,a
†
l,p] = 1 and [a(†)

l,p,a
(†)
l,p] = 0.

B. Harmonic Hamiltonian for ordered ice-rule states

The Hamiltonian is then expanded up to quadratic order in
the bosonic operators (the linear terms vanish by construction).
In the following, we will specialize the discussion to reference
classical states which in zero field are ice-rule states with long-
range magnetic order, namely, the states which minimize the
energy in the classical limit S → ∞, and the ordered structure
of which allows us to build a spin-wave theory. These states
have the property that the number of frustrated bonds of types
1 and 2, ν1 and ν2, is the same for every site. Under these
generic assumptions, the quadratic bosonic Hamiltonian reads
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as

HLSW = Nεcl + J1H̃nn + J2H̃nnn + �H̃� (13)

with

H̃nn = 2Sν2 cos2 ϑ
∑
l,p

a
†
l,pal,p + S

2
sin2 ϑ

×
∑

〈lp,l′p′〉
(a†

l,pa
†
l′,p′ + a

†
l,pal′,p′ + H.c.),

H̃nnn = 2S(1 − ν2) cos2 ϑ
∑
l,p

a
†
l,pal,p + S

2
sin2 ϑ (14)

×
∑

〈〈lp,l′p′〉〉
(a†

l,pa
†
l′,p′ + a

†
l,pal′,p′ + H.c.),

H̃� = −� sin ϑ
∑
l,p

a
†
l,pal,p.

This is a remarkable result in that the spin-wave Hamil-
tonian depends only on the frustration parameters ν1 and ν2,
while it is completely independent of the geometry of the unit
cell. The frustration parameters ν1,ν2 distinguish among Néel
states and collinear states, but they are not able to distinguish
among different collinear states. At the square-ice point
J1 = J2, the dependence on the frustration parameter drops.
Therefore, as we will discuss further, quantum corrections at
the harmonic level are not able to lift the degeneracy between
ordered ice-rule states, regardless of the size of their magnetic
unit cell. This result can be extended even to disordered ice-rule
states, which can be regarded as ordered ones with an infinite
unit cell.

To diagonalize the spin-wave Hamiltonian, Eq. (14), we
first introduce the Fourier transform of the bosonic operators
and then perform a n-modes Bogoliubov transformation as
described in Appendix A. The Hamiltonian then becomes

H = N

(
εcl − ε0

2

)
+ 1

2

∑
k,p

ωk,p

(
b
†
k,pbk,p + 1

2

)
, (15)

where ε0 = 2S[J2 − ν2(J2 − J1)].

C. Néel state

Let us first consider the Néel state, defined for � <

2S(2J1 − J2). Its unit cell contains n = 2 spins (see Fig. 3).
The unit cells form a rotated square lattice with vectors
x̂ ′ = (x̂ − ŷ) and ŷ ′ = (x̂ + ŷ). The diagonalization of the
Hamiltonian shows that the spectrum of the magnon exci-
tations is gapped whenever the classical Néel state is defined,
i.e., if � < 2S(2J1 − J2) (details are given in Appendix A). Its
lower band is plotted in Fig. 6. It has minima at (0,0) and at
the four corners of the Brillouin zone. This corresponds to the
structure of the classical Néel state.

D. Collinear states

As already mentioned in Sec. IV A, all collinear states admit
the same frustration parameter ν2, and hence the same spin-
wave Hamiltonian. This means that they possess the same
spectrum of harmonic spin-wave excitations (but folded into
a smaller Brillouin zone, the larger the unit cell), and that

FIG. 6. (Color online) Lowest band of the magnon spectrum for
� = J1/2 and various values of J2/J1, around the Néel state. For the
purpose of readability, the bands have been offset by the energy of
their lower edge. The lower band edge (corresponding to the minimum
excitation gap) is plotted in the lower panel.

zero-point quantum fluctuations can not lift the degeneracy
among them.

We will then specify the discussion to the particular
collinear state represented in Fig. 3. Its unit cell contains
n = 8 spins; the unit cells form a square lattice with vectors
x̂ ′ = 2(x̂ − ŷ) and ŷ ′ = 2(x̂ + ŷ). While not being the simplest
of all collinear states, this state is relevant because it can
be energetically stabilized against other collinear states by,
e.g., dipolar interactions, which are relevant for realistic
ice models.29 The magnon dispersion relation, obtained by
diagonalizing Mk, is shown in Fig. 7. It shows a finite gap, and
two lines of minimum-energy degenerate modes along the axes
of the first Brillouin zone of the magnetic lattice (1/8 of the
Brillouin zone of the geometric lattice, shown in Fig. 7). These
degenerate modes traveling with momentum (kx, ± kx) for all
kx values can be associated with deconfined monopolelike30

pairs, obtained by flipping a finite string of spins along a J2

diagonal of the checkerboard lattice. Given the degeneracy
of all collinear states, not perturbed by quantum fluctuations,
these pairs are deconfined along the J2 diagonals, and their
energy is independent of momentum as long as it satisfies the
constraint of diagonal motion.

E. Quantum square ice

At the square-ice point J1 = J2 = J , spin-wave theory built
around any ice-rule state with canting spins produces the
same excitation spectrum and zero-point quantum fluctuations.
Therefore, harmonic quantum fluctuations are not able to
lift the degeneracy of the classical ice-rule manifold, and
the elementary excitations are identical to the classical case,
namely, deconfined monopole pairs moving with arbitrary
momentum. This is reflected in the spin-wave dispersion,
showing a perfectly flat band for the lowest-energy excitations,
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FIG. 7. (Color online) Lowest band of the magnon spectrum for
� = J1/2 and various values of J2/J1, around any collinear state.
For the purpose of readability, the bands have been offset by the
energy of their lower edge. The lower band edge (corresponding to
the minimum excitation gap) is plotted in the lower panel.

and with a gap equal to the classical value, namely, �cl =
2ε0 = 2JS2.

F. Polarized states

For large �, the classical reference state is totally polarized
along the field. Nonetheless, quantum fluctuations introduce
deviations from the polarized state, given that the field term in
the Hamiltonian does not commute with the Ising couplings.
We build a spin-wave Hamiltonian around the polarized state
analogously to what has been done for the ice-rule states.
Even though in the classical spin configuration all the spins
have the same orientation, the magnetic unit cell contains two
sites (exactly as in the case of the Néel state), due to the
fact that the checkerboard lattice is not a Bravais lattice. The
bosonic excitations correspond to deviations of the spin from
full polarization along the x axis.

The magnon spectrum is shown in Fig. 8. It displays softer
modes at the four corners of the square-lattice Brillouin zone
(for J1 > J2), and along the edges of the checkerboard-lattice
Brillouin zone (for J1 < J2). These modes become gapless
when approaching the critical field �c, signaling the instability
of the fully polarized state to a Néel state (for J1 > J2) and to
degenerate collinear states (for J1 < J2).

V. RESULTS OF THE SPIN-WAVE ANALYSIS

The main observables from linear spin-wave theory are
represented by the internal energy E = 〈HLSW〉 and the order
parameter m = 〈S̃z〉/S, the expressions of which are given
in Appendix B. These two quantities allow us to extract
the quantum phase diagram of our system in the harmonic
approximation.

For each value of J2 and �, we can a priori choose between
three families of reference states as candidate ground state:

FIG. 8. (Color online) Upper panels: lowest band of the magnon
spectrum around the polarized state for � > �c (left column) and for
� = �c (right column). Lower panels: Minimum excitation gap: (left)
as a function of J2/J1 for �/J1 = 1.3 (green line) and for �/J1 = 1.43
(blue line); (right) as a function of �/J1 for J2/J1 = 0.7 and 1.3 (the
curves for both cases coincide).

the Néel states, the fully polarized state, and the degenerate
collinear states. Notice that classically, the Néel and the
collinear states differ in the value of the correlations between
next-to-nearest neighbors C(2) = 〈Sz

i S
z
j 〉〈〈i,j〉〉 = (ν2 − 1). For

the Néel state, C
(2)
Néel = S2, whereas for all collinear states,

C
(2)
collinear = −S2. A natural definition of the ground state (or

ground-state manifold) identified by spin-wave theory is the
state (or the family of states) which has the lowest energy,
the order parameter of which is finite and the next-to-nearest-
neighbor correlations of which have the correct sign; moreover,
the stability of the state requires also that the spin-wave
frequencies be real numbers. The satisfaction of these four
conditions allows us to identify the phases indicated in Figs. 9
and 10, which correspond to the classical phases for the same
parameter ranges.

A clear region of instability of spin-wave theory is found
close to the classical transition line between the fully polarized
phase and the Néel and collinear phases, as indicated by the
black region in Fig. 10. In this parameter range, the order
parameters for all reference states are found to vanish, as
shown in Fig. 11, clearly signaling the onset of a quantum-
disordered phase.

However, a number of other anomalies revealed by the lin-
ear spin-wave theory close to the transition to the paramagnetic
phase point to a significantly larger region where the classical
behavior is probably destroyed by quantum fluctuations.

First of all, a qualitative deviation from the classical
behavior is observed when approaching the square-ice limit
J1 = J2 in a strong field 0.7 � � � J1. In this range (indicated
by the dense-hatched region in Fig. 9), we observe an inversion
of the energy hierarchy between Néel and collinear states
with respect to the classical case. This occurs despite the fact
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FIG. 9. Phase diagram of the S = 1/2 transverse-field Ising
model on a checkerboard lattice from spin-wave theory. The hatched
and dense-hatched regions correspond to the next-to-nearest neighbor
correlation inversion region and to the energy-hierarchy inversion
region, respectively (see text). Below the dotted lines, one can find,
in the classical limit, two states which are (local) energy minima
and which have order in the z-spin components: one state with Néel
order, and the other with collinear order. Above this line, one of the
two states becomes the polarized state. Therefore, collinear and Néel
ordered states can only be compared energetically below the dotted
line.

that quantum fluctuations are stronger for the energetically
favored phase, as shown by the order parameters of the
two phases obeying an opposite hierarchy (namely, mNéel >

mcollinear when ENéel > Ecollinear, and vice versa, see Fig. 12).
The inversion in the energy hierarchy is due to strong quantum
corrections to the classical energy, which change qualitatively
the dependence of both Néel and collinear energies on J2/J1.

This strong quantum effect of energy hierarchy inversion
suggests that classical order might be unstable around the
hierarchy inversion region in Fig. 9 when considering quantum
fluctuations beyond linear spin-wave theory. The real ground
state of the system may then be an intermediate phase
which can not be described within the linear spin-wave
approximation.

Another strong quantum effect is revealed close to the clas-
sical phase boundaries. While classically ENéel and Ecollinear

are monotonic functions of J2/J1, they become nonmonotonic
around the above-mentioned field range. In particular, ENéel
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FIG. 10. Zoom of Fig. 9 around the classical tricritical point.
In the black domain, the order parameters of all considered phases
vanish. Other marked zones are as in Fig. 9.
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FIG. 11. (Color online) Order parameter vs field for different
values of J2. It vanishes at the critical value of the field and a small
gap opens for J2 close to J1 where none of the three states has a finite
order parameter. The insets are closer views around the critical value
of the field. The hatched and dense-hatched regions correspond to
those identified in the phase diagram (Fig. 9).

grows with increasing J2/J1 until it reaches a maximum,
beyond which it starts to decrease; from a classical point
of view, this is quite surprising. According to the Hellmann-
Feynman theorem, the next-nearest-neighbor correlations C(2)

are given by the derivative of the energy with respect to J2,
namely, C(2) = ∂〈H〉/∂J2. Consequently, a change of sign in
the derivative of E corresponds to a change of sign in C(2),
which means that the harmonic ground state is dramatically
different from the reference state. The locus of the maxima in
the energy as a function of J2/J1 represents the lower bound
of the hatched region in Figs. 9 and 10.

A further element of inconsistency of spin-wave theory is
offered by the apparent violation of the Hellman-Feynman
theorem

〈Sx〉 = −∂〈H〉
∂�

. (16)

−0.6

−0.55

−0.5

−0.45

E
/J

1

Γ/J1=0.9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

m

J2/J1

FIG. 12. (Color online) Average energy (upper panel) and order
parameter (lower panel) associated with the Néel (red solid line)
and collinear (blue solid line) reference states. The dashed lines
correspond to the classical energies. Both panels are for �/J1 = 0.9.
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FIG. 13. (Color online) Field-induced magnetization as a func-
tion of the field for different values of J2/J1. The highlighted regions
are as in Fig. 11. The dotted lines correspond to the opposite of
the derivatives of the average energies with respect to the magnetic
field �. These curves deviate from the average induced magne-
tization, signaling a violation of the Hellmann-Feynman theorem
(see text).

The transverse magnetization, defined as 〈mx〉 = 〈Sx〉, is
proportional to m in the harmonic approximation: 〈Sx〉 =
S sin ϑm. The deviation from Eq. (16) comes along with a
strong nonmonotonic behavior, as shown in Fig. 13. This
behavior is unphysical, implying a negative susceptibility. This
signals again that an ordered reference state does not lead to
consistent results. We identify therefore an additional region
of strong anharmonic fluctuations with the magnetization dip
in the mx versus � curve. This dip lies inside the region
[�1,�2] where ∂mx

∂�
(�1) = 0 and mx(�2) = mx(�1). The latter

condition marks the upper bound of the hatched region in
Figs. 9 and 10.

Indeed, Eq. (16) ceases to be strictly valid in the linear
spin-wave approximation because in general the linear spin-
wave Hamiltonian does not have the form H = H0 − �Sx .
From inspection of Eqs. (13) and (14), it is immediate to see
that each term of the Hamiltonian depends on � through θ (�),
except for the polarized case in which θ = π/2 independently
of the value of �. In fact, to recover the identity of Eq. (16)
at order 1/S, one has to include corrections to the harmonic
ground state.31 Even though Eq. (16) ceases to be an identity
within linear spin-wave theory, the precision with which
Eq. (16) is approximately verified can be used as a further
criterion for the validity of the linear spin-wave approximation.
In Fig 13, 〈Sx〉 is compared to ∂〈H〉/∂�: upon increasing
the field, the quantities show a significant deviation from
each other when approaching the region already identified
before as showing significant inconsistencies of spin-wave
theory.

A strong violation of the Hellman-Feynman theorem
Eq. (16) is observed also in the case J2 = 0. In this limit, the
system reduces to the square-lattice Ising model in a transverse
field, which features a well-known quantum phase transition
[for a field �c/J1 ≈ 1.5 (see Ref. 32)] between Néel order
and a quantum paramagnetic state. Interestingly, the deviation

between mx and ∂〈H〉/∂� builds up when approaching the
quantum-critical field �c, showing that spin-wave theory is
able to signal the quantum phase transition via the breakdown
of the consistency of its results with known theorems.

VI. CONCLUSIONS AND DISCUSSION

In this study, we have applied a linear spin-wave-theory
analysis to the transverse-field Ising model on the checker-
board lattice, which represents a paradigmatic example of a
frustrated Ising model with controlled quantum fluctuations.
We find the remarkable result that harmonic quantum fluc-
tuations are not able to lift the classical degeneracy, which
is exponential in the linear dimension of the system when
the next-to-nearest-neighbor coupling J2 exceeds the nearest-
neighbor one J1, and which is exponential in the system size
for J1 = J2, corresponding to the square-ice limit. This implies
that spin-wave theory is inconclusive regarding the question
of which classical ground state is selected by quantum effects,
and that nonlinear quantum fluctuations play a central role in
lifting the degeneracy in the exact ground state. This result is
consistent with existing studies of the square ice in a weak
transverse field, for which degenerate perturbation theory and
numerics suggest a quantum-disordered ground state with the
structure of a resonating plaquette solid.

Our results suggest that a quantum-disordered ground
state persists beyond this limit. Spin-wave theory indicates
an anomalous inversion in the classical hierarchy between
reference states for strong fields and for J1 ∼ J2, suggesting
that quantum fluctuations beyond the harmonic approximation
can destroy classical order in the system in that parameter
range. Moreover, spin-wave theory breaks down completely
close to the classical transition line to full polarization, where
linear quantum fluctuations are able to suppress all spin
components. This identifies an interesting candidate region
for quantum-disordered ground states.

Recent experimental developments have led to controlled
realizations of frustrated Ising models, both in the classical
limit and in the presence of tunable transverse fields. In
particular, the classical square-ice model, enriched with long-
range dipolar interactions, is realized in recent experiments
on square-lattice arrays of nanopatterned magnetic domains.33

While quantum tunneling of the magnetization in these sys-
tems is not realistic, given the mesoscopic size of the magnetic
moments, one can envisage scaling down the components
of these artificial ice systems to single-molecule magnets,34

which can be arranged into regular arrays on a surface.35

Transverse-field Ising models are currently realized by arrays
of trapped ions,36–38 where the internal states of the ions
can be coupled with Ising Hamiltonians via virtual phonons,
and where transverse fields are created by Raman laser
schemes. The ions can be individually trapped by microtraps,
which can in turn be arranged into arbitrary planar arrays,39

encompassing the checkerboard geometry explored here as
well as other frustrated structures. Therefore, the theoretical
investigation of transverse-field Ising models on frustrated
lattices is very compelling, as it promises to lead to the
realization of novel quantum states in controlled artificial spin
systems in the near future.
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APPENDIX A: SPIN-WAVE THEORY FOR GENERAL
ISING HAMILTONIANS IN A TRANSVERSE FIELD

We present here several general formulas to study the
quadratic quantum fluctuation in a generic transverse field
Ising system. We consider a generic classical ground state
with long-range magnetic order, and with a magnetic unit cell
containing n spins. We denote Sl,p the pth spin (p = 1 . . . n)
of the lth cell. The most general Hamiltonian supporting such
a ground state has the form

HTFI = 1

2

∑
lp,l′p′

[J (r l′ − r l)]pp′Sz
l,pSz

l′,p′ − �
∑

i

Sx
l,p. (A1)

Here, r l is the position of a reference site in the lth unit cell,
and J (�r) is a n × n matrix containing the couplings between
spins in unit cells at a distance �r .

In the classical limit, an applied transverse field rotates
the pth spins around the y axis by an angle ϑp. As already
discussed in Sec. IV A, we introduce a local rotation of the
spin configuration S̃l,p = σpRy(σpϑp)Sl,p, where σp = ±1
is the orientation of the spin in zero field. The rotation has
the effect of reducing the S = ∞ ground state to a perfectly
ferromagnetic one. The classical energy of the pth spin of each
cell has the expression

εcl,p = S2

2
σp cos ϑp

∑
�r,p′

[J (�r)]pp′σp′ cos ϑp′ − S� sin ϑp,

so that the total classical energy can be written as

Ecl = N

n

∑
p

εcl,p = N

n
Tr εcl, (A2)

where we have introduced the matrix [εcl]p,p′ = εcl,pδp,p′ .
We then consider small quantum fluctuations around this

classical reference state by transforming the quantum spins to
bosons via a linearized Holstein-Primakoff transformation28

valid in the limit of a small number of bosons nl,p � 2S:

S̃z
l,p = S − a

†
l,pal,pS̃x

l,p ≈
√

S

2
(a†

l,p + al,p). (A3)

Here, al,p and a
†
l,p are bosonic operators, satisfying

[al,p,a
†
l,p] = 1 and [a(†)

l,p,a
(†)
l,p] = 0. The angles ϑp are chosen

so that the classical reference state is stable. Thus, the linear
terms in the bosonic operators vanish.

The quadratic Hamiltonian then reads as

8H2 = Ecl +
∑
l,p

h̃pa
†
lpalp

+ 1

2

∑
lp,l′p′

J̃ (r l′ − r l)pp′(a†
lp + alp)(a†

l′p′ + al′p′ ),

(A4)

where

h̃p = 2εcl,p/S + � sin ϑp,
(A5)

J̃ (�r)pp′ = J (�r)pp′ sin ϑp sin ϑp′ .

We then introduce the Fourier transform of the bosonic
operators and of the interaction

ak,p =
√

2

N

∑
l

eik.r l al,p,

(A6)
J (k) =

∑
l

e−ik.�r J̃ (�r).

The quadratic Hamiltonian can then be written in the compact
form

H2 = N

n

∑
p

(
εcl,p − h̃p

2

)
+ 1

2

∑
k

A
†
kMkAk, (A7)

where

h̃p = 2

S
εcl,p + � sin ϑp,

A
†
k = (a†

k,1, . . . ,a
†
k,n,a−k,1, . . . ,a−k,n),

(A8)

Mk =
(

�k �k

�k �k

)
−

(
εcl 0n

0n εcl

)
,

�k = 1
2 (J̃ (k) + J̃ (k)†).

This Hamiltonian can be diagonalized by a n-mode Bogoli-
ubov transformation. This consists in finding the transforma-
tion Ak = TkBk, with Bk = (b†k,1, . . . ,b

†
k,n,b−k,1, . . . ,b−k,n)T ,

such that A
†
kMkAk = ∑

p ω
(p)
k b

†
k,pbk,p and [bk,p,b

†
k,p] = 1

and [b(†)
k,p,b

(†)
k,p] = 0.

We introduce the matrix �, given by

� =
(

In 0n

0n −In

)
,

the matrix Zk of the right eigenvectors of �Mk, and the unitary
matrix Uk such that U

†
kZ

†
k�ZkUk = diag(l(1)

k , . . . ,l
(n)
k ) = Lk.

The transformation matrix Tk is then obtained as40–42

Tk = ZkUk|Lk|-1/2. (A9)

In particular, the eigenmodes ω
(p)
k are the eigenvalues of �Mk.

If the matrices �k and εcl commute (which is the case for
the Néel and collinear states of the checkerboard Ising model
studied here, having εcl = ε0In), the eigenmodes ω

(p)
k can be

expressed in terms of the eigenvalues λ
(p)
k of �k in the form

ω
(p)
k = εcl,p

2

√
1 + 4

λ
(p)
k

εcl,p
. (A10)

APPENDIX B: ENERGY AND MAGNETIZATION
IN THE CASE OF NÉEL AND COLLINEAR STATES

As mentioned above, in the particular case of the Néel and
collinear states of the checkerboard-lattice Ising model studied
in this work, the classical energies εcl,p are all equal to ε0. The
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mean energy of the system then reads as

〈E〉 = N (εcl − ε0/2) + 1

2

∑
k,p

ωk,p

= Nεcl + ε0

4

∑
k,p

(√
1 + 4

λk,p

ε0
− 1

)
. (B1)

As �k is proportional to �2, so are its eigenvalues. We
can then expand the mean energy per spin in powers of
�2. We will introduce rescaled eigenvalues λ̃k,p defined as
λk,p = ε0�

2λ̃k,p:

〈ε〉 = εcl + ε0

N

∑
k

∞∑
m=1

αmλ̃m
k,p�2m

= εcl + ε0

N

∑
k,m

αmTr

(
�k

ε0

)m

, (B2)

where the αm are defined by
√

1 + 4x − 1 = 4
∑∞

m=1 αmxm. In
the case of a Néel or a collinear case, the trace of �k averages
to zero in the Brillouin zone. Thus, the first nonzero correction
to the classical energy in Eq. (B2) is of fourth order in �.

In both cases, if we introduce the ratio J = J2/J1, we get

〈ε〉 = εcl +
∑
p>1

cp(J )

(
J1

S(ν2 − J )2

)p

�2p, (B3)

where the cp coefficients only depend on J , and not on
the considered state. It is then obvious that the expansion
becomes independent of the classical state if J = 1. Thus, the
classical degeneracy of the ice model is not lifted by harmonic
fluctuations.

Similarly, if all the ωk,p are real (which is the case whenever
spin-wave theory holds), we have

m = 1 − 1

NS

∑
k,p

〈
a
†(p)
k a

(p)
k

〉
= 1 − 1

4NS

∑
k,p

(
2ωk,p

ε0
+ ε0

2ωk,p

− 2

)

= 1 − 1

NS

∞∑
m=1

∑
k,p

βmλ̃k,p
m
�2m, (B4)

where the βm are defined by
√

1 + 4x + 1√
1+4x

− 2 =
4
∑∞

m=1 βmxm.
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