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Mapping spin-polarized transitions with atomic resolution
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The coupling of angstrom-sized electron probes with spin-polarized electronic transitions shows that the
inelastically scattered probe electron is in a mixed state containing electron vortices with nonzero orbital angular
momentum. These electrons create an asymmetric intensity distribution in energy filtered diffraction patterns,
giving access to maps of the magnetic moments with atomic resolution. A feasibility experiment shows evidence
of the predicted effect. Potential applications are column-by-column maps of magnetic ordering, and the creation
of angstrom-sized free electrons with orbital angular momentum by inelastic scattering in a thin ferromagnetic
foil.
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I. INTRODUCTION

With the availablity of electron vortices of sub-nanometer
scale in the transmission electron microscope1–4 (TEM) and
its theoretical description,5–7 many potential applications come
within reach, ranging from the transfer of angular momentum
to nanoparticles, over utilization of the intrinsic magnetic
moment of vortex electrons to the probing of chirality.8

Indeed, chiral electronic transitions were the first application
of electron vortices in energy-loss magnetic chiral dichroism
(EMCD).1

The discovery of EMCD (Ref. 9) was an unexpected
alternative to XMCD (x-ray magnetic circular dichroism)
with the convenient side effect that additional information on
the investigated material can be obtained simultaneously via
standard analytical techniques.10,11 The spatial resolution of
this electron-microscopic technique is now in the nanometer
range.12 A modification of the technique has been shown to
be site selective.13 The excellent spatial resolution and the site
selectivity are important for the study of novel materials such
as Heusler alloys,14,15 nanoparticles, or interfaces.16 Recent
advances in electron microscopy have led to the imaging
of condensed matter with subatomic resolution.17–19 On this
basis, it has been speculated that the mapping of spin-polarized
electronic transitions, and thus the mapping of spin and orbital
polarization, on the atomic scale could be feasible in a TEM,
applying the EMCD technique.20 An incident plane wave
affecting a spin-polarized L23 transition would break the
mirror symmetry of nonmagnetic transitions in the scattered
wave. This symmetry breaking could be analyzed either with
asymmetric objective apertures or with a cylinder lens.21,22

However, for technical reasons, both approaches are unrealistic
in the TEM.

On second thought, it becomes evident that the inelastic
interaction of an incident electron with a spin-polarized
electronic transition creates a scattered electron with topo-
logical charge. One can thus apply the theory of vortex
electrons6 to the outgoing wave field. In a sense, this is a
bottom-up application of the original idea of using incident

vortex electrons for EMCD. The reason that this works
is the generalized reciprocity theorem23 that confirms the
equivalence of the incident and the outgoing (also called
reciprocal24) electron for inelastic scattering. This observation
raises two questions: How can an EMCD signal be detected
with angstrom-sized scanning TEM (STEM) probes? Can one
produce electron vortices without holographic masks?

Here, we present a theoretical and numerical analysis of
the coupling between an angstrom-sized STEM probe and an
atom-sized vortex field via a chiral electronic transition. It is
shown that the inelastically scattered probe is in a mixed state
containing electron vortices with nonzero angular momentum.
These electrons create an asymmetric intensity distribution
in energy filtered diffraction patterns, giving access to maps
of the magnetic moments on an atomic column-by-column
basis. A feasibility experiment shows evidence of the predicted
effect. Finally, potential applications are discussed: maps of
magnetic ordering with atomic resolution, and the creation of
free electrons with orbital angular momentum and a diameter
of about 0.1 nm by inelastic scattering in a thin ferromagnetic
foil.

II. THEORY

We focus on the model of a thin (ideally one atom) layer of
Fe. In this case, the dynamical equation for the propagation of
the probe’s density matrix is considerably simplified. We give
here only the basic equation for the propagator and refer the
reader to the relevant literature.20,22,25–27

The inelastic intensity at energy loss E in the exit plane of
the specimen is the diagonal term ρ(r,r) of the density matrix:

ρE(r,r′) =
∫ ∫

Gd−z(r,x)G∗
d−z(r

′,x′)TE(x,x′,z,z′)

×φ∗
z (x)φz′(x′)d2x d2x ′eiqe(z−z′)dz dz′, (1)

where z,z′ are variables along the optic axis and r,x are
in planes perpendicular to the optic axis. G is the elastic
propagator of electrons in the crystal. φz is the wave function
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of the incident electron at depth z and qE = ko − ki is the
minimum wave-number transfer in the inelastic interaction,
equal to the difference between wave numbers of the outgoing
and the incident electrons.

The inelastic scattering kernel TE(x,x′,z,z′) is characteristic
for the electronic transitions creating an energy loss E. For
thin specimens and atomic columns without defects, the z

integration can be performed in closed form.28 For spin-
polarized dipole transitions, the atomic scattering kernel reads
as22

TE(x,x) =
1∑

μ=−1

|ψμ(x)|2
∑

s=↑,↓
C

↑,↓
jμ n↑,↓ (2)

with

ψ±1(x) = e±iα i

2π

∫ ∞

0

q2J1(qx)〈j1(Q)〉ELSj

Q3
dq, (3a)

ψ0(x) = qE

2π

∫ ∞

0

qJ0(qx)〈j1(Q)〉ELSj

Q3
dq, (3b)

with the matrix element of the spherical Bessel function

〈j1(Q)〉 = 〈I |j1(Q)|F 〉
between initial and final target states. Q2 = q2 + q2

E with
the characteristic wave-number transfer qE = k0E/(2E0).
The coefficients Cjμ are weighting factors for spin-orbit
coupling,22,29,30 and n↑,↓ is the spin polarization of the final
state. The spin-orbit coupling of the initial state renders
the coefficients C dependent on the total magnetic quantum
number j = l + s. For the L23 edges to be considered, j = 1/2
or 3/2. The essential property that we will focus on is
described by Eq. (3a): It represents the outgoing inelastically
scattered wave as an electron vortex with topology m = ±1
in the form of a Hankel transform that is easily computable
from atomic wave functions. The azimuthal phase factor e±iα

shows that the outgoing probe electron has orbital angular
momentum. It should be mentioned that the probe beam is not
spin polarized. It has acquired orbital angular momentum by
spin-orbit coupling of the target electrons.

The propagation of focused probes through a thin specimen
has regained interest in the context of real-space STEM.31 Even
for elastic scattering, the problem of propagating a focused
probe, as we shall adopt in the following, through a thin spec-
imen to the detector poses considerable numerical problems.
The inelastic interaction that can take place throughout the
specimen adds another complexity. Therefore, Eq. (1) can
not be solved without approximations, at least with present
numerical capacity. We restrict the discussion to a model
system that allows us to analyze the salient features of the
inelastic coupling process with an accuracy comparable to
the available experimental data. As such, we choose a line
of equally spaced atoms with given spin polarization; we
shall calculate the contributions from each transition in dipole
approximation, discuss the signal from a single atom, and
finally build a line profile of the energy filtered signal from
the array of atoms. For this model, the elastic propagators G

in Eq. (1) collapse into delta functions and we have for the
diagonal element (the density)

ρE(r,r) = T(r,r)φ∗
0 (r)φ0(r). (4)

Equation (2) allows us to disentangle the problem: Each
transition channel μ ∈ [−1,1] can be factorized into a product
of wave functions, and we get for the outgoing intensity in
channel μ

ρjμ(r,r) = C̄jμϕμ(r)ϕ∗
μ(r) (5)

with

C̄jμ =
∑

s=↑,↓
C

↑,↓
jμ n↑,↓ (6)

and

ϕμ(r) = ψμ(r)φ∗
i (r). (7)

The intensity in the diffraction plane is calculated from the
two-dimensional (2D) Fourier transform of Eq. (5):

ρjμ(q,q) = C̄jμ|FTr[ϕμ(r)]|2 (8)

as the trace over the three transition channels μ:

ρj,E(q,q) = Trμ[ρjμ(q,q)] =
∑

μ

ρjμ(q,q) . (9)

The trace operator shows formally that the scattered electron
is in a mixed state. With the coefficients C for L23 transitions,
we can compute the outgoing intensity and the corresponding
diffraction patterns. Without loss of generality, we assume
complete spin polarization for the final target states (as is
justified for the L edges of the 3d ferromagnets that we will
use as a demonstration example).

For complete spin polarization, the values for C̄jμ are given
in Table I.22 The image intensity Eq. (4) will then contain
different contributions from the scattering channels for spin-up
and -down polarizations. This difference is the basis of EMCD.

From here on, we focus on the L3 edge and omit the
index j for easier readability. By scrutinizing Eq. (5) for an
incident plane wave, one notes that |ϕμ|2 = |ϕ−μ|2 because the
phase factors of both the incident plane wave and the kernel
e±iα cancel in the intensity. That means that there will be no
difference in the image predicted by Eq. (5) for spin-up or for
spin-down polarizations. The same is true for the intensity in
the diffraction plane Eq. (9). Essentially, it is not possible to
see spin polarization from single atoms in the TEM without
further action. (In the standard EMCD geometry, one uses the
interference terms caused by Bragg scattering of the outgoing
atomic vortices on the lattice, which is different for spin-up
and -down polarizations.)

The situation changes when using a STEM probe instead of
a plane incident wave. We analyze the situation qualitatively
before considering numerical simulations. For the explanation
of the effect, we assume a narrow focused probe given by
the Airy function A with a diameter much smaller than the
distance R from the atom, essentially so small that that the
amplitude of the kernel is almost constant within the probe.
(In the numerical simulation, this condition is relieved.) Then,
we can approximate the outgoing wave in channel μ as

ϕμ(r) = ψμ(r + R)A(r) ≈ A(r)|ψμ(R)|eiμα(r+R). (10)

Note that the outgoing wave is more extended than the Airy
disk because of the long-range Coulomb coupling force; in
Fig. 1, it is drawn not to scale (even larger for better visibility).
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TABLE I. Prefactors C
↑,↓
jμ . The first two rows are the weighting factors for the transitions when the final states are completely (up- or

down-) spin polarized. The third row gives the weighting factors for unpolarized final states (all per electron).

j 1/2 (L2) 3/2 (L3)

μ −1 0 1 −1 0 1
↑ 0.056 0.111 0.167 0.278 0.222 0.167
↓ 0.167 0.111 0.056 0.167 0.222 0.278
Unpolarized 0.111 0.111 0.111 0.222 0.222 0.222

The azimuth angle within the outgoing disk is α
.= α(R) +

μy/R in the coordinate system shown in Fig. 1, and we see
that the phase of the outgoing wave depends on the position
of the STEM probe and changes sign when going from μ =
1 to −1. Via the shift theorem, the diffraction pattern will
be proportional to the Fourier transform of the Airy function
shifted in qy direction by −1/R,0,1/R for the three transition
channels, which are shifted disk functions �(q):

ρμ(q,q) = C̄jμ|ψμ(R)|2�(q + μq̂y/R). (11)

Having established an observable that has the signature of a
particular transition channel, the spin polarization of a single
atomic column can be determined.

III. NUMERICAL SIMULATIONS

Simulations were performed for an incident probe of
100 keV. First, we construct the outgoing signal for each of
the three transition channels ρμ(r,r) shown in Fig. 2. These
are L3 energy filtered images of a STEM probe of 0.1 nm
diameter scanning across a single atom. From top to bottom
are the transition channels μ = −1,0, + 1. From left to right
the distance R to the atom is −2,−1,0,1,2 atomic units. Note

qy=k0 Θ

Μ=-1

Μ=0

Μ=1R

dΑ

y

710540

energy loss [eV]

Θ

STEM probe diffraction pattern

x

(a) (b) (c)

FIG. 1. (Color online) Schematic of the principle of probe-vortex
coupling. (a) Top view of a narrow incident Airy disk (gray), focused
at a distance R in scan direction (x) from the atom (red). The scattering
kernel TE is symbolized as a diffuse cloud with a color-coded phase
(hereafter called rainbow wheel), increasing from blue to red in
clockwise rotation for the μ = 1 channel. According to Eq. (10), the
outgoing wave (gray circle) has acquired a phase ramp dα = μy/R

in the chiral transition. (b) The phase ramp translates into a shift
of the diffraction disk by μ/R in direction qy . (c) The qx extension
is squeezed into one pixel on the detector in the (q,E) geometry.
Note that the energy-loss axis must be perpendicular to qy , which
is proportional to the scattering angle qy = k0θ . The (θ,E) map is a
true image taken on magnetite ranging from the oxygen K edge at
∼540 eV to the Fe L23 edge at ∼710 eV.

that the STEM probe is always in the center of the images. The
side structures at distances of R = ±2 atomic units are signals
from the second maximum of the Airy disk that coincides here
with the atom center. Brightness codes are for intensity of the
image, and color codes for the phase of the wave function
(rainbow colors from −π to π ). When the Airy disk sits on
the atom, the outgoing beam is a true atomic vortex with
topological charge μ ∈ [−1,0,1]. At larger distance, phase
ramps in the Airy disks develop, visible as continuous color
variations. They change sign when crossing the atom center
and are opposite for μ = ±1. Each square has a side length of
5 atomic units (0.26 nm).

These phase ramps are responsible for the corresponding
shifts of the diffraction patterns shown in Fig. 3. The shift of the
patterns in vertical direction (qy) is opposite for μ = ±1 and
depends on the position of the probe. The μ = 0 channel does
not show any shift because it lacks a phase ramp in the image.
The patterns are smeared by convolution of the incident probe
disk with the inelastic scattering kernel that has an extension
of δθ ∼ �E/(2E0) ≈ 3.5 mrad.

Since the μ = ±1 channels contribute differently for spin-
up and -down polarization via the coefficients Cjμ [Eq. (6)],
the diffraction patterns will be different for these two cases.
(Note that this is not the case in the filtered real-space image:

FIG. 2. (Color online) Fe L3 energy filtered real-space exit wave
functions ϕμ [Eq. (7)] of a 100-keV STEM probe of 0.1 nm diameter
scanning across a single atom for the three dipole allowed transition
channels. From top to bottom: transition channels μ = −1,0, + 1.
From left to right: distance R to the atom −2,−1,0,1,2 atomic units.
Brightness codes are for intensity of the image, and color codes for
the phase of the wave function (rainbow wheel as given in Fig. 1).
When the Airy disk sits on the atom (center column), the outgoing
beam is a real vortex with μ ∈ [−1,0,1]. At a distance, phase ramps
in the Airy disks develop, changing sign with R and with μ. Each
square has a side length of 5 atomic units (∼0.26 nm).
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FIG. 3. Fe L3 energy filtered diffraction patterns ρ(q,q)μ [Eq. (8)]
of a 100-keV STEM probe of 0.1 nm diameter scanning across a
single atom, corresponding to Fig. 2. From top to bottom: transition
channels μ = −1,0, + 1. From left to right: distance R to the atom
−2,−1,0,1,2 atomic units. Note the shift of the patterns for μ = ±1
in vertical direction qy as predicted in Fig. 1(b), depending on the
position of the probe, and the inversion of shifts with change of sign.
The μ = 0 channel does not show any shift because there is no phase
ramp in the image. Convergence angle 18 mrad. The images have a
side length of ±50 mrad.

there, the difference is only in the phase, not in the intensity
distribution.)

Monitoring energy filtered diffraction patterns of a scanned
probe means measuring a multidimensional data cube because
background subtraction and multiple scattering deconvolution
of energy-loss spectra require a range of losses. Such data
have two dimensions (qx,qy) in the reciprocal space, one in
the energy-loss (eV), and one (x) or two (x,y) in the real
space, depending on the scanning pattern. This creates huge
data files (a scan over 1 elementary cell in magnetite with
0.02-nm step width with 2562 pixels in the diffraction pattern
would give ∼60 Mb per energy channel, approaching ∼10 GB
for a whole spectrum) and is impractical. One can, however,
exploit a remarkable feature apparent in the simulations: The
diffraction patterns show only asymmetry with respect to the
coordinate qy , which is the Fourier-transformed variable of y.
An experimental setup could then discard the qx variable by
integration without information loss. This is exactly what is
realized in the (q,E) geometry. There, the qx axis is squeezed
onto one pixel of the spectrometer by compressive lenses,
whereas the qy axis is retained, being projected on the detector
perpendicular to the energy-loss axis. This is sketched in
Fig. 1(c), which is a (qy,E) data set for a fixed position R.
Selecting the L3 white line from the whole (qy,E,R) data, a
reduced subset with axes (R,qy) is obtained. The scan direction
must be perpendicular to y in the coordinate system of Fig. 1.
Contrary to XMCD or EMCD, the new technique operates
on a single white line only (the stronger L3 line here). This
is important because often the L2 edge is too faint to obtain
sensible results. (It should be noted that for the separation
of spin and orbital moments, both L2 and L3 edges are
needed.32,33)

These subsets can be constructed from the previous re-
sults, simply by integrating the intensity of Fig. 3 over the
“squeezed” variable qx and summing over the three transition
channels in Eq. (9). The result is shown in Fig. 4 for spin-up
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FIG. 4. Fe L3 energy filtered (R,qy) signal distribution of a
STEM probe of 0.1 nm diameter scanning across a single atom,
corresponding to Fig. 2. (a) Spin-up polarization of the atom; (b)_
spin-down polarization. The top/bottom asymmetry is well visible
and can be used to determine the spin polarization. (c) Full line:
intensity integrated over the upper detector half (20 to 50 mrad) line
scan of a STEM probe of 0.1 nm diameter across a single atom,
corresponding to (a). Dashed line: same for the lower detector half
(−50 to −20 mrad).

and -down configurations. The asymmetry of the intensity
distribution with respect to the atom position at R = 0 is
indicative for spin-polarized transitions.

To enhance the asymmetry, Fig. 4 suggests to avoid the
central part around qy = 0, which adds only spin-insensitive
intensity, thus increasing the noise level. Integration of the
density matrix Eq. (8) over the scattering angle in the top and
bottom parts yields two scans over a single atom

ρ+(R) =
∫

dqx

∫ qy2

qy1

ρ(q,q) dqy,

(12)

ρ−(R) =
∫

dqx

∫ −qy1

−qy2

ρ(q,q) dqy,

where qy = k0θ . This is shown in Fig. 4(c) for θy1 = 20 mrad,
θy2 = 50 mrad. The difference in position between the maxima
in the two scans is ∼0.06 nm, indicating that Cs corrected
machines and extreme stability are needed to see the effect.
Even so, the signal will be very faint, such that noise will
tend to override the effect. Dynamical diffraction of the
incident and the outgoing electron on the lattice and remaining
aberrations of the probe-forming lens and the spectrometer will
also complicate the situation. Quantitative spin detection will
therefore need elaborate calculations.
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FIG. 5. (Color online) HAADF image of the border of the
magnetite nanoparticle in the [111] zone axis orientation. The scan
line is indicated as a box, the axis of energy dispersion (arrow) is
almost perfectly parallel to the scan direction, thus qy ||y. The bright
dots are the A columns containing three Fe atoms per unit cell in this
projection. Their projected distance is 0.33 nm.

IV. EXPERIMENTAL EVIDENCE

We have performed a feasibility experiment at the Dares-
bury SuperSTEM facility using a NION UltraSTEM100
microscope.34 The instrument is a dedicated, aberration cor-
rected STEM operated at 100 kV with a cold-FEG emitter.
Its third-generation C3/C5 aberration corrector allows a
typical probe size of 0.1 nm at a beam current of 30 pA.
Electron energy-loss spectroscopy (EELS) spectrum imaging
at atomic resolution is done with a DigiScan2 scanning unit in
combination with a Gatan Enfina spectrometer. The difficulty
of the experiment stems from the extreme demand on stability,
the rather long dwell times causing beam damage, remaining
aberrations, and the low count rates. Spectra were collected
during 0.2 s per position, corresponding to a dose of ∼5 × 107

electrons focused in the STEM spot.
We investigated a plateletlike magnetite nanoparticle of

∼15 nm diameter (Fig. 5). The thickness in this region was
between 5 and 10 nm, resembling as close as possible the single
atomic row model. The STEM probe was scanned over a line of
atoms marked in Fig. 5 as a rectangle. Magnetite is an inverted
cubic spinel XY2O4 with Fe3+ ions at tetrahedral X sites. The
octahedral Y sites are randomly occupied by Fe2+ and Fe3+
ions. X and Y sites are antiferromagnetically coupled. In (111)
zone axis, there are two types of Fe columns (hereafter called
A and B). A contains two X sites and one Y site per elementary
cell, B contains only one Y site. The B columns are not visible
in the high angle annular dark field (HAADF) image (Fig. 5)
because of lower scattering strength and dynamical diffraction,
confirmed by multislice simulations. However, very faint side
maxima from the B columns can be seen in Fig. 6(a). Shown
there are the top and bottom profiles of the scan integrated
from 20 to 50 mrad after standard background subtraction,
drift correction, and usual removal of the continuum signal
beneath the white line. The post-edge continuum, often used
in standard EMCD for normalizing, did not show periodic
variations. Therefore, it was not necessary to correct for, the
more so as this would have induced additional noise. A shift
of the traces with respect to the atomic positions can already
be guessed, although the noise is almost overriding the signal.
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FIG. 6. (Color online) (a) Scan of the Fe L3 white line signal
after standard background subtraction, drift correction, and removal
of the continuum. The filled curve shows the scan using the upper
detector half (20 to 50 mrad), the empty curve is a scan using the lower
detector half (−50 to −20 mrad). The HAADF signal is superposed
(dashed) with maxima indicating the positions of the A columns. The
B columns are visible as faint subsidiary peaks. (b) Same scans after
Fourier filtering. Atom positions (HAADF maxima) are marked with
vertical lines.

The number of electrons collected in the L3 edge was ∼250
in each half detector, causing a theoretical shot noise level of
3σ = 47. Pre-edge extrapolation, instability, and other error
sources add noise such that the 3σ relative error amounts to
∼ 30%–40%.

In order to demonstrate the predicted effect qualitatively,
a Fourier analysis was performed on the two scans, retaining
only coefficients up to lattice periodicity. The result is shown
in Fig. 6(b). As predicted in Fig. 4, the maxima are shifted
to both sides of the atom centers that are marked by vertical
lines. The average distance between the top and bottom scan
maxima is 0.076 nm. One observes a rather large shift at the
0.33-nm position that is caused by some irregularity (probably
sudden drift). Excluding this value, the average difference
between the respective maxima in the two scans is 0.65 nm, in
good agreement with the simulational result of 0.6 nm seen in
Fig. 4(b). Despite the crude approximations and the simple
model, the agreement is surprisingly good. More accurate
models can be devised, but this is beyond the scope of this
paper as noise, drift, and beam damage pose narrow limits on
the interpretation of the data. More elaborate experiments with
ultrathin magnetic specimens must be performed in order to
confirm the present findings.
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FIG. 7. (Color online) Hypothetical line scans showing the first
derivative d[ρ+(R) − ρ−(R)]/dr over an atomic row as in Fig. 5
for (a) ferromagnetic, (b) antiferromagnetic, and (c) ferrimagnetic
ordering. (c) was calculated with a relative strength of −30% for the
spin-down moments, thus taking into account the strong channeling
at the A columns.

V. POTENTIAL APPLICATIONS

A. Detection of magnetic order

As described above and shown in Fig. 4, the top/bottom
asymmetry in the (R,qy) data set is caused by the spin
polarization on the atomic site. That provides a method for
spin mapping. A straightforward way to do so is to take the first
derivative of the difference (top-bottom) line scans (ρ ′

+ − ρ ′
−).

Since the slope of the difference signal is strongest at the
atomic sites, this scan gives directly the sign and position of

FIG. 8. (Color online) The phase and amplitude of the incident
Airy disk of 0.1 nm diameter (left) and for the scattered wave from
the μ = 1 transition. The atom is displaced from the beam center to
the left by 0, 0.01, and 0.05 nm. The images have a side length of
0.2 nm.

the magnetic moment. Here, we assume a hypothetical system
with the same lattice constant as magnetite, also in (111)
zone axis orientation, to make connection to real systems.
Figure 7 shows the derivative of (ρ+ − ρ−) along a line scan
as in Fig. 5 for different assumptions of the magnetic ordering
(ferromagnetic, antiferromagnetic, and ferrimagnetic). To take
account of the dechanneling and defocusing throughout the
specimen, the data were convolved with a 0.1-nm broadening
function. The last panel resembles magnetite, in fact. In
the (111) zone axis projection, the A columns contain two
atoms spin up and on atom spin down, and the B columns
contain one atom spin down, oriented along the z axis in the
magnetic field of the objective lens. On the other hand, the
channeling is stronger on the deeper potential (A columns
containing three atoms as compared to one on B) so the
beam will see more from the A columns than from the B
columns. This will weigh the A columns stronger than the
B ones. The exact weighting factor is impossible to obtain
without solving the dynamical equation for the propagator in
the lattice, but a weighting coefficient between −50% and
−25% for the B columns is reasonable. Here, −30% were
assumed for the simulation. Theoretically, it should be possible
to perform such scans not only along lines, but over areas.
This should give atom-resolved maps of the element-specific
magnetic moments and the magnetic ordering. But, before
establishing such an analytical technique, the problems related
to noise, stability, aberrations, and dynamical diffraction must
be solved.

B. Free electrons with angular momentum

If an angstrom-sized spot is focused exactly at the center of
an atom in a ferromagnet, the scattered electron has acquired
orbital momentum. It is important to note that it is in a mixed
state with contributions from the three transition channels
μ ∈ [−1,1], each creating a pure vortex state with topological
charge μ. The expectation value of the angular momentum can

FIG. 9. (Color online) Intensity of the incident Airy disk (left)
and Tr[ρ] for the scattered wave (mixed state from three transition
channels) for atom displacements as in Fig. 8.

134422-6



MAPPING SPIN-POLARIZED TRANSITIONS WITH . . . PHYSICAL REVIEW B 85, 134422 (2012)

(a)

0.10 0.05 0.00 0.05 0.10
0

5

10

15

nm

In
t.
ar
b.
u.

(b)

0.10 0.05 0.00 0.05 0.10
0

5

10

15

20

nm

In
t.
ar
b.
u.

FIG. 10. (Color online) (a) Radial profiles of the incident 1-Å
probe (dashed line) and the outgoing electron density of the mixed
state when the atom is exactly centered on the beam. (b) The same
for an incident probe of 5 Å diameter.

be calculated from the coefficients Cjμ given in Eq. (6):

〈Lz〉 = Trμ[Lzρ]

Trμ[ρ]
∈ [−0.167h̄,0.167h̄]

depending on the spin polarization of the atom. This is
a unique and simple method to create free electrons with
orbital momentum, although the efficiency and the available
momentum are probably too low to manipulate nanoparticles
or even atoms by the torque. Another problem is the precise
positioning of the probe on the atom. Figure 8 shows the
phase and amplitude of the incident beam of 1 Å diameter and
the scattered beam for the μ = 1 transition when the atom is in
the center, 0.01 nm, and 0.05 nm sideways. The vortex structure
disappears rapidly, also visible in the intensity distribution
Fig. 9. Here, the total electron density Trμ[ρ] is shown. The
central dip, characteristic for the topological charge, remains
at a deviation of 0.01 nm, but has disappeared for 0.05 nm.

Figure 10(a) compares the incident Airy disk with the radial
profile of the outgoing mixed state. The scattered state is
even narrower than the Airy disk. The high sensitivity of
the outgoing vortex state to the probe position could be used
for a more direct method of spin mapping with subatomic
resolution than described above, e.g., with a vortex filter such
as a holographic mask.

We simulated also the scattered state when the incident
beam is broader (0.5 nm diameter). The result is shown in
Fig. 10(b). The outgoing beam is broader than in case (a), but
still much narrower than the incident Airy disk, and is again
a superposition of electron vortices. The not so surprising
consequence is that a thin ferromagnetic foil in an electron
beam creates free electrons carrying angular momentum after
energy filtering. This shows that vortices always have been
there in EELS experiments on magnetic materials.

VI. CONCLUSION

The coupling of an angstrom-sized electron probe to a spin-
polarized transition creates a mixed state that contains electron
vortices with nonzero orbital momentum. These states break
the symmetry of the scattering distribution in the far field in
a way characteristic for the chirality of the transition, a fact
that can be used for the imaging of electron spins in real space
with sub-angstrom resolution. A tentative experiment on a
magnetite nanoparticle shows the expected asymmetry.

Apart from probing the local magnetic ordering, important
for a number of technologically promising materials such as
Heusler alloys, the proposed method bears promise for the
mapping of spin polarizations of single atomic columns, be
that in the vicinity of interfaces, magnetically dead layers, or
magnetic core-shell structures. The creation of free electrons
carrying angular momentum is theoretically feasible via spin-
polarized electronic transitions. This works even for relatively
broad incident beams passing a thin ferromagnetic foil.
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