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Injection and detection of spin in a semiconductor by tunneling via interface states
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Injection and detection of spin accumulation in a semiconductor having localized states at the interface is
evaluated. Spin transport from a ferromagnetic contact by sequential, two-step tunneling via interface states is
treated not in itself, but in parallel with direct tunneling. The spin accumulation �μch induced in the semiconductor
channel is not suppressed, as previously argued, but genuinely enhanced by the additional spin current via interface
states. Spin detection with a ferromagnetic contact yields a weighted average of �μch and the spin accumulation
�μls in the localized states. In the regime where �μls/�μch is largest, the detected spin signal is insensitive to
�μls and the ferromagnet probes the spin accumulation in the semiconductor channel.
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Spin polarization can be created in nonmagnetic semi-
conductors by spin-polarized tunneling from a ferromagnetic
contact. This powerful, robust, and technologically viable
approach has been demonstrated in various semiconductors,
including silicon and germanium and at room temperature.1–11

Considerable discussion has arisen because the magnitude
of the spin accumulation induced in the semiconductor is
consistently in disagreement with the theory for spin injection
and spin diffusion.12–15 The detected spin signal is often
found to be orders of magnitude larger than expected,
particularly for three-terminal devices in which the spin
accumulation is induced and probed by a single magnetic
tunnel contact.3,5,6,9–11,16,17 But in some Si- and Ge-based
devices with nonlocal geometry (with separate spin injection
and detection contacts) the spin signal is significantly smaller
than predicted if reasonable values of the contact tunnel spin
polarization are used.4,8 Understanding the origin of these
puzzling results is indispensable because spin injection and
detection by a magnetic tunnel contact is a cornerstone of
semiconductor spintronics.

While there are indications that the standard theory for
spin injection does not capture all the physics,3,6,11 and lateral
inhomogeneity of the tunnel current may also contribute,3,17

it is also heavily debated whether localized states near the
semiconductor interface play a role. These can give rise
to resonant tunneling, nonresonant scattering, and inelastic
tunneling and thereby reduce or even invert the tunnel-
ing spin polarization.18–28 In a different vein, ferromag-
net/insulator/semiconductor structures under photoexcitation
were described by sequential, two-step transport via interface
states with their own spin accumulation and spin relaxation
rate.29,30 The states are separated from the ferromagnet by
a tunnel barrier and from the semiconductor bulk by a
Schottky barrier and, for the latter, transport by thermionic
emission was considered. Just as for spin injection into
nondegenerate semiconductors,31 this severely compromises
the spin selectivity of the contacts. Recently, Tran et al. also
considered spin injection by two-step, sequential transport, but
assumed tunneling across the barrier between localized states
and semiconductor.16 Importantly, it was predicted that the spin
accumulation �μls in the localized states can be much larger
than the spin accumulation �μch induced in the semiconductor
channel, albeit under certain conditions.

If two-step tunneling via interface states indeed plays a
role, it may have crucial implications for the injection and
detection of spin in a multitude of devices that employ tunnel
contacts. Two pertinent questions are as follows. (i) What is
the effect of two-step tunneling via interface states on the spin
accumulation that is created in the semiconductor? (ii) How
does two-step tunneling affect the detection of spin accumu-
lation in the semiconductor by a magnetic contact? Tran et al.
predict that the spin accumulation in the semiconductor can be
severely suppressed if spins relax in the intermediate localized
states.16 They also predict that a ferromagnetic contact does
not probe �μch, but instead �μls, which can be much larger
than �μch, particularly for small density of localized states.
Given the implications, it is unfortunate that it has become
practice to automatically attribute enhanced spin signals seen
in experiment to spin accumulation in interface states, without
examining whether the conditions to produce an enhancement
are fulfilled, and without critical tests, for instance, varying
specific parameters and observing whether the experimental
data follows the expected trends.

To address the effect of interface states, a correct prediction
of their impact on spin transport is required. It is shown here
that Tran’s model16 and the trends it predicts need significant
revision, because a basic assumption, namely that all the tunnel
current between ferromagnet and semiconductor is through
localized states, is not generally valid. Here we treat two-step
tunneling via interface states in parallel with direct tunneling.
We show that the spin accumulation in the semiconductor
channel is not suppressed, but genuinely enhanced by the
additional spin current via interface states. We also find that
spin detection with a ferromagnetic contact yields a weighted
average of �μch and �μls, which shifts depending on the ratio
of direct and two-step tunneling current. Spin accumulation
in interface states only enhances the detected spin signal in
the intermediate regime where both current components are
comparable, and only if the localized states are separated
from the semiconductor by a barrier with sufficiently large
resistance.

The system has three sections, a ferromagnet, localized
states with spin-integrated density Dls (in states eV−1m−2),
and a semiconductor channel (Fig. 1). The potential of
the ferromagnet is taken to be the zero. The spin-averaged
potentials of the semiconductor channel and the localized
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FIG. 1. (Color online) Energy band diagram of a ferromag-
net/insulator/semiconductor junction with localized states (LS) sep-
arated from the ferromagnet (FM) by tunnel barrier 1, and from
the semiconductor (SC) by tunnel barrier 2. A spin accumulation
exists in the semiconductor channel (�μch) and in the localized states
(�μls). The circuit depicts the spin currents and resistances, with •
representing spin sinks due to spin relaxation in LS and SC. The FM
is the spin source.

states are V and V ls, respectively. For direct tunneling, the
charge current I and spin current Is are (see also the Appendix)

I = GV − PGG

(
�μch

2

)
, (1)

Is = PGGV − G

(
�μch

2

)
, (2)

where G is the total (spin-averaged) tunnel conductance and
PG is the spin polarization of the conductance. Note that the
spin accumulation decays into the semiconductor and that
�μch is the value at the interface, since this determines the
tunneling process. For two-step tunneling via localized states,
we denote the charge and spin current between ferromagnet
and localized states by I1 and Is,1, respectively, the total
conductance by G1, and the conductance spin polarization
by PG1. For the second tunnel step between localized states
and semiconductor channel, the charge and spin current are
denoted by I2 and Is,2, the total tunnel conductance is G2,
and the conductance is unpolarized since neither localized
states nor semiconductor is ferromagnetic. The charge and spin
currents for two-step tunneling are (see also the Appendix)

I1 = G1V
ls − PG1G1

(
�μls

2

)
, (3)

Is,1 = PG1G1V
ls − G1

(
�μls

2

)
, (4)

I2 = G2(V − V ls), (5)

Is,2 = G2

(
�μls − �μch

2

)
. (6)

Since direct and two-step tunneling occur in parallel, �μch

is determined by the total spin current Is + Is,2 into the
channel, where Is,2 is proportional to the difference between
�μls and �μch. The spin accumulation in the localized
states gives rise to spin relaxation and an associated spin
current I ls

s = e(N↑
ls − N

↓
ls )/τ ls

s , where Nσ
ls is the number of

electrons with spin σ in the localized states, and τ ls
s is the

spin-relaxation time in the localized states. Note that I ls
s is

defined in units of electron angular momentum h̄/2 transferred
per unit time, instead of spin flips per unit time. The spin
resistance of the localized states is r ls

s = τ ls
s /(e Dls), such that

�μls = 2I ls
s r ls

s . Similarly, spin relaxation in the semiconductor
channel produces a spin-relaxation spin current I ch

s that is
related to the spin accumulation by the spin resistance rch

s

of the semiconductor: �μch = 2I ch
s rch

s . The relations for r ls
s

and rch
s , together with Eqs. (1)–(6), define the system. The

three unknown quantities (�μch, �μls, and V ls) are ob-
tained from the following three conditions: (i) I ch

s = Is + Is,2,
(ii) I ls

s = Is,1 − Is,2, and (iii) I1 = I2. Condition (i) says that,
in a steady state, the spin relaxation spin current in the
semiconductor is equal to the total spin current injected into
it (sum of Is and Is,2). Condition (ii) states that the spin
relaxation spin current in the localized states must be equal
to the difference of the spin current Is,1 injected into it from
the ferromagnet and the spin current Is,2 that leaks away
into the semiconductor. Charge conservation yields condition
(iii). The solutions for the spin accumulations are32

�μls = βchPG1 + PG

βchβ ls − 1

(
2R2

Rtun

)
V, (7)

�μch = β lsPG + PG1

βchβ ls − 1

(
2R2

R1 + R2

)
V, (8)

where we defined the resistances Rtun = 1/G, R1 = 1/G1,
R2 = 1/G2 and the dimensionless parameters:

βch = RtunR2 + rch
s (R2 + Rtun)

rch
s (R1 + R2)

≈ Rtun
(
R2 + rch

s

)
R1rch

s

, (9)

β ls = R1R2(R1 + R2) + r ls
s [(R1 + R2)2 − (PG1R2)2]

r ls
s R1Rtun

≈ R1
(
R2 + r ls

s

)
Rtunr ls

s

. (10)

The approximate forms of βch and β ls are obtained when
R1 >> R2, which applies to localized states at or near the
semiconductor interface. If R1 >> R2, Eqs. (7) and (8)
reduce to

�μls =
(

2reff
s

R1

)
PG1V + reff

s

R2 + rch
s

(
2rch

s

Rtun

)
PGV, (11)

�μch = rch
s

R2 + rch
s

(
2reff

s

R1

)
PG1V

+ r ls
s + R2

r ls
s + R2 + rch

s

(
2rch

s

Rtun

)
PGV, (12)

where reff
s = r ls

s (R2 + rch
s )/(r ls

s + R2 + rch
s ) as in the work of

Tran et al.16 It represents the effective spin resistance of the
system of localized states and semiconductor channel, coupled
by a tunnel resistance R2.
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The spin accumulations have a contribution from two-
step tunneling (proportional to PG1) and a contribution that
arises from direct tunneling (proportional to PG).33 The latter
disappears for Rtun → ∞, for which Eqs. (11) and (12) reduce
to that obtained in Tran’s model.16 In that case one finds
that the spin accumulation is governed by reff

s instead of rch
s ,

and that �μls/�μch equals 1 + R2/rch
s , which can be much

larger than unity when R2 > rch
s . Moreover, �μch becomes

vanishingly small when R2 > r ls
s ,rch

s , corresponding to the
situation where spins relax in the localized states before
escaping into the semiconductor. In Tran’s model, a spin
current into the semiconductor is obtained only when spin
relaxation in localized states is negligible (R2 < r ls

s ).
The behavior changes drastically when direct tunneling is

included (finite Rtun). The spin current injected into the semi-
conductor by direct tunneling is approximately PGV/Rtun, and
the associated contribution to �μch [last term in Eq. (12)]
exists in addition to the two-step tunneling contribution. In
other words, starting with direct tunneling at a given bias
voltage V and then adding localized states, one increases �μch,
since extra spin current is injected into the semiconductor by
the two-step tunneling. This extra current can also be highly
spin polarized (for R2 < r ls

s ), which is beneficial for creating
a large spin accumulation in the semiconductor channel. Even
if the spin current from the localized states is negligible
(when R2 > r ls

s ,rch
s ), the spin accumulation induced by direct

tunneling still remains. Our formalism thus demonstrates that
neglecting direct tunneling leads to an incorrect prediction
of the magnitude of �μch and to the erroneous conclusion
that localized states have a detrimental effect on the spin
accumulation in the semiconductor channel. Treating direct
and two-step tunneling on an equal footing is thus crucial in
order to assess how localized states affect the induced spin
polarization.

Next we address how two-step tunneling via interface
states affects the detection of a spin accumulation in the
semiconductor. Spin detection is typically done by suppressing
the spin accumulation via spin precession in a magnetic field
perpendicular to the injected spins (Hanle effect). At constant
charge current, the resulting change in voltage �VHanle across
the tunnel contact is, without approximations,

�VHanle = R1 + R2

R1 + R2 + Rtun

(
PG

2

)
�μch

+ Rtun

R1 + R2 + Rtun

(
PG1

2

)
�μls, (13)

where �μch and �μls are the values in the absence of a
magnetic field [Eqs. (7) and (8)]. The important point is
that the Hanle signal is a weighted average of �μch and
�μls, with a relative contribution determined by the ratio
of the resistances associated with direct tunneling (Rtun) and
two-step tunneling (R1 + R2). When the current is dominated
by the localized states (Rtun >> R1 + R2), the first term
is zero and the Hanle signal is governed exclusively by
�μls, as in Tran’s model.16 However, when the current
due to two-step tunneling is comparable to or smaller than
the direct tunneling current, the weight shifts to the term
proportional to �μch and any enhancement of the Hanle
signal due to localized states disappears. The resistance of the

FIG. 2. (Color online) Tunnel resistance (top) and spin signal
�VHanle divided by the current density J (bottom) as a function
of the density of localized states Dls, for pure two-step tunneling
(blue), pure direct tunneling (pink), and for two-step tunneling and
direct tunneling in parallel (black—the dotted line is for τ esc

2 and thus
R2 reduced by a factor of 1000). The horizontal axis is normalized
to the value of Dls for which the currents by direct and two-step
tunneling are equal. The top and bottom vertical axes are normalized
to, respectively, Rtun and the spin signal for pure direct tunneling. The
escape times τ esc

1 , τ esc
2 as well as Rtun were taken to be independent

of Dls. The inset displays the spin signal vs R2 for Dls = Dcrit
ls and

Dls = 0.01 Dcrit
ls .

junction is then determined by direct tunneling, and �VHanle is
insensitive to �μls (a large �μls may still exist, but the voltage
across the junction does not depend on it). This essential
behavior is not captured when one considers only two-step
tunneling.

For a given tunnel barrier, the relative weight of direct
and two-step tunneling is proportional to the density of
localized states because R1 and R2 scale inversely with Dls.
This can be seen by writing R1 = τ esc

1 /(eDls) and R2 =
τ esc

2 /(eDls), where τ esc
1 and τ esc

2 are the characteristic time
for escape of an electron from, respectively, localized states
into the ferromagnet and into the semiconductor channel, as
determined by the transmission probability of tunnel barrier
1 and 2. At large Dls, the resistance for two-step tunneling
is smaller than the resistance for direct tunneling (top panel
of Fig. 2). As Dls is reduced, R1 + R2 increases rapidly and
surpasses Rtun at a critical value Dcrit

ls . Beyond this, direct
tunneling dominates. This has a marked effect on the Hanle
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signal (bottom panel). Tran’s model16 predicts increasingly
large values of the Hanle signal at smaller Dls (blue curve)
because lower Dls means larger spin resistance (r ls

s ∝ 1/Dls)
and thus a larger spin accumulation in the localized states.
However, our full model shows that the Hanle signal goes
through a maximum at Dcrit

ls and, for smaller Dls, the Hanle
signal is reduced and approaches the value obtained for pure
direct tunneling. We thus find that Tran’s model does not
predict the correct variation with Dls and is not valid in
the regime where it predicts the largest enhancement of the
spin signals—it grossly overestimates the Hanle signal for
Dls < Dcrit

ls . For large Dls, where the signal enhancement is
limited, Tran’s model gives approximately the correct value of
the Hanle signal, but note that even then it does not predict the
correct value of �μch, as explained. The value of Dcrit

ls depends
on the tunnel probabilities for direct and two-step tunneling
through the condition Rtun ≈ (τ esc

1 + τ esc
2 )/(eDcrit

ls ).
Finally, we discuss an important and often overlooked

characteristic of two-step tunneling. The value of reff
s (which

governs �μls) can be much larger than rch
s , but reff

s cannot
be larger than R2. A smaller R2 means a stronger coupling
between localized states and semiconductor channel, which
tends to equalize their spin accumulations and suppress �μls.
Hence any enhancement of the Hanle signal by localized
interface states, if present, can be suppressed by reducing R2,
i.e., by reducing the energy barrier that separates localized
states from the semiconductor bulk. For example, when τ esc

2
and thus R2 is reduced by a factor of 1000 at fixed Dls,
the maximum Hanle signal is also reduced by about the
same factor (Fig. 2, dotted black curve, and inset). Moreover,
enhancement becomes limited to a narrower interval around
Dcrit

ls . This feature was exploited in the experiments by Dash
et al. to exclude interface states as a source of the large
spin accumulation observed in silicon at room temperature.3

They used a treatment with Cs to reduce the Schottky barrier,
but found spin signals to remain large and much larger than
can be supported by the small Schottky barrier (small R2).
We suggest that if spin signals are observed that exceed the
predictions of spin injection theory, one must look beyond
the magnitude of the signal and investigate trends in order
to determine whether an enhancement due to localized states
is at play. The model presented here describes how two-step
tunneling via localized interface states affects the injection
and the detection of spin with a ferromagnetic contact, and the
resulting trends, providing a firm basis for comparison with
experiments.

APPENDIX: CURRENTS, POTENTIALS, AND HANLE
SIGNAL

In this appendix we provide the equations for the current
by direct and two-step tunneling for each spin orientation
separately. For the sake of completeness, we also provide the
full solutions for the potentials and the Hanle signals, without
approximations.

For direct tunneling between ferromagnet and semiconduc-
tor channel, we denote the tunnel currents of majority (↑) and
minority (↓) spin electrons by I↑ and I↓, respectively, and the
corresponding tunnel conductances by G↑ and G↓. With the

voltage definitions described in the text of this paper we have

I↑ = G↑
(

V − �μch

2

)
, (A1)

I↓ = G↓
(

V + �μch

2

)
. (A2)

The charge tunnel current I = I↑ + I↓ and the spin tunnel
current Is = I↑ − I↓ due to direct tunneling are then

I = GV − PGG

(
�μch

2

)
, (A3)

Is = PGGV − G

(
�μch

2

)
, (A4)

with the total conductance G = G↑ + G↓ and the tunnel spin
polarization PG = (G↑ − G↓)/(G↑ + G↓).

For two-step tunneling via localized interface states, we
denote the tunnel currents between ferromagnet and localized
states of majority and minority spin electrons by I

↑
1 and I

↓
1 ,

respectively, and the corresponding tunnel conductances by G
↑
1

and G
↓
1 . Tunneling between localized states and semiconductor

channel is described by the tunnel currents I
↑
2 and I

↓
2 , and a

tunnel conductance G2/2 per spin. The latter is independent
of spin because the semiconductor and the localized states are
both not ferromagnetic. The tunnel current components for
two-step tunneling via localized states are

I
↑
1 = G

↑
1

(
Vls − �μls

2

)
, (A5)

I
↓
1 = G

↓
1

(
Vls + �μls

2

)
, (A6)

I
↑
2 = G2

2

[
V − Vls +

(
�μls − �μch

2

)]
, (A7)

I
↓
2 = G2

2

[
V − Vls −

(
�μls − �μch

2

)]
. (A8)

The charge tunnel current I1 = I
↑
1 + I

↓
1 and spin tunnel current

Is,1 = I
↑
1 − I

↓
1 between ferromagnet and localized states are

then

I1 = G1Vls − PG1G1

(
�μls

2

)
, (A9)

Is,1 = PG1G1Vls − G1

(
�μls

2

)
, (A10)

with G1 = G
↑
1 + G

↓
1 and PG1 = (G↑

1 − G
↓
1 )/(G↑

1 + G
↓
1 ). The

charge tunnel current I2 = I
↑
2 + I

↓
2 and spin current Is,2 =

I
↑
2 − I

↓
2 between localized states and semiconductor are

I2 = G2(V − Vls), (A11)

Is,2 = G2

(
�μls − �μch

2

)
. (A12)

Equations (A3), (A4) and (A9)–(A12) are given in the text of
this paper.
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The solution for the potential of the localized states is

V ls =
(

R1

R1 + R2

) {
1 +

(
(R2)2

R1Rtun

) {
βchPG1 + PG

βchβ ls − 1

}}
V. (A13)

The voltage across the tunnel contact is related to the total current I tot = I + I2 by

V = R1 + R2

(R1 + R2 + Rtun) − R2
{

β ls(PG)2+βch(PG1)2+2PGPG1

βchβ ls−1

}RtunI
tot. (A14)

The full expressions for the Hanle signal in terms of V or I tot are

�VHanle =
(

R2

R1 + R2 + Rtun

) {
β ls(PG)2 + βch(PG1)2 + 2PGPG1

βchβ ls − 1

}
V, (A15)

�VHanle =
{ (

R2(R1+R2)
R1+R2+Rtun

)
(R1 + R2 + Rtun)

{
βchβ ls−1

β ls(PG)2+βch(PG1)2+2PGPG1

} − R2

}
RtunI

tot. (A16)
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