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Plaquette order and deconfined quantum critical point in the spin-1 bilinear-biquadratic
Heisenberg model on the honeycomb lattice
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We have precisely determined the ground state phase diagram of the quantum spin-1 bilinear-biquadratic
Heisenberg model on the honeycomb lattice using the tensor renormalization group method. We find that the
ferromagnetic, ferroquadrupolar, and a large part of the antiferromagnetic phases are stable against quantum
fluctuations. However, around the phase where the ground state is antiferroquadrupolar ordered in the classical
limit, quantum fluctuations suppress completely all magnetic orders, leading to a plaquette order phase which
breaks the lattice symmetry but preserves the spin SU(2) symmetry. On the evidence of our numerical results,
the quantum phase transition between the antiferromagnetic phase and the plaquette phase is found to be either
a direct second order or a very weak first order transition.
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I. INTRODUCTION

In a quantum spin system, the spin order of the classical
ground state can be melted by a quantum fluctuation at
zero temperature,1 and the resulting so-called quantum spin
liquid has been suggested as a possible parent state of high
temperature superconductivity upon electron or hole doping.2

The quantum fluctuation is usually enhanced with a small
spin, low dimensionality, and geometric frustration. Indeed,
so far almost all the candidates of a quantum spin liquid
discovered or proposed are effective spin-1/2 systems with
or without charge fluctuations on a triangular lattice,3–7 on a
Kagome lattice,8–12 or on a honeycomb lattice.13–17 Besides the
exotic quantum spin liquid phases, strong quantum fluctuations
in spin-1/2 systems can also lead to highly unconventional
quantum critical points. For example, it has been proposed
that a generic direct second order quantum phase transition
between a magnetic ordered phase and a paramagnetic phase
with broken lattice symmetry can exist in spin-1/2 quantum
magnets.18,19 Such a transition is forbidden by the classic
Landau-Ginzburg-Wilson-Fisher paradigm, and is called the
deconfined quantum critical point, as it is described by
fractionalized quantities instead of physical order parameters.
In the last few years this theoretical proposal has gained strong
numerical evidence by quantum Monte Carlo simulation
on spin-1/2 models with both nearest neighbor Heisenberg
coupling and four-spin interactions.20–22

In this paper we will address the question: Can quantum
fluctuation lead to such exotic phases and phase transitions in
systems with larger spins in two dimensions without geometric
frustration? Theoretically, this question is highly nontrivial as
the Affleck-Kennedy-Lieb-Tasaki type of valence bond state
(VBS) only exists for spin-1 systems in one dimension. Recent
experiments on the spin-1 magnet Ba3NiSb2O9 suggested that
a highly nontrivial quantum disordered ground state of a two
dimensional spin-1 system is indeed possible.23

By using the state of the art tensor renormalization group
method,24–26 we present strong numerical evidences for the
quantum fluctuation driven exotic physics in the spin-1

bilinear-biquadratic Heisenberg model on the honeycomb
lattice. An interesting but surprising result we find is that
all dipole and quadruple magnetic orders vanish in a phase
where the ground state is staggered quadrupolar ordered in
the classical limit; instead the system develops a translation
symmetry breaking plaquette order. Moreover, we demonstrate
that the transition between the plaquette and antiferromagnetic
(AF) order is either a direct second order transition or a very
weak first order transition. If it is indeed a direct second order
transition, then it is most likely a deconfined quantum critical
point, which is the first example of a deconfined quantum
critical point in a spin-1 system.

The spin-1 bilinear-biquadratic Heisenberg model reads

H =
∑
〈i,j〉

[(cos θ )Si · Sj + (sin θ )( Si · Sj )2]. (1)

The honeycomb lattice has the smallest coordination number
in two dimensions, and the effect of a quantum fluctuation is
the strongest. This model contains a number of special points.
The point θ = 0 is the conventional SU(2) AF Heisenberg
model. When θ = π/4, 5π/4, or ±π/2, the Hamiltonian is
SU(3) invariant, possessing a symmetry higher than the spin
SU(2) symmetry. At θ± = ± arctan 2, the Hamiltonian can be
expressed purely using the quadrupolar tensor operator

Qi =

⎛
⎜⎜⎜⎜⎜⎜⎝

S2
ix − S2

iy√
3S2

iz − 2/
√

3

SixSiy + SiySix

SiySiz + SizSiy

SixSiz + SizSix

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2)

as

H =
∑
〈i,j〉

(
sin θ±

2
Qi · Qj + 4

3
sin θ±

)
. (3)

Like the ferromagnetic (FM) spin operator, the uniform
quadrupolar operator, Q = ∑

i Qi , commutes with this
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Hamiltonian. However, the staggered quadruple operator,
Qs = ∑

i(−)iQi , does not commute with the Hamiltonian.
The two terms in Eq. (1) introduce competition between

different kinds of magnetic orders. The first term favors
the conventional ferromagnetic or antiferromagnetic order,
while the second term favors a ferro- or antiferroquadrupolar
order. This competition causes a strong quantum fluctuation,
especially in the regime sin θ > 0, where the Marshall sign
rule is not applicable to the ground state wave function and the
quantum Monte Carlo suffers the minus-sign problem.

Aspects of the spin-1 bilinear-biquadratic model have been
explored previously in the literature. In one dimension, the
ground state phase diagram has been characterized by a
numerical density matrix renormalization group method. For
−π/4 < θ < π/4, the model gives rise to the Haldane spin
gapped phase, while the ground state for π/4 < θ < π/2
corresponds to a quantum critical phase with power-law spin
and quadrupolar correlations.27,28

In two dimensions, the ground state phase diagram has
not been firmly established. In the classical limit, this model
possesses four phases,29,30 as depicted by the inner circle of
Fig. 1. In the lower half plane of θ , the quantum Monte Carlo
simulation31 and other calculations15 confirmed the classical
phase diagram on square or triangular lattices. In the upper
half plane of θ , there is no quantum Monte Carlo study on
this model due to the minus-sign problem. Other calculations
based on mean field theory and exact diagonalization showed
that the phase π/4 < θ < π/2 is antiferroquadrupolar ordered
on the triangular or square lattice.32

II. METHODS

The tensor renormalization group method recently devel-
oped is an accurate numerical method for studying the ground

FIG. 1. (Color online) The ground state phase diagram of the spin-
1 bilinear-biquadratic Heisenberg model on the honeycomb lattice.
The inner circle is the phase diagram in the classical limit, while
the outer circle is for the corresponding quantum spin model. FM,
AF, FQ, AFQ, and PVBS stand for ferromagnetic, antiferromagnetic,
ferroquadrupolar, antiferroquadrupolar, and plaquette valence bond
solid phases, respectively. θd ≈ 0.19π .

state of quantum lattice models in two dimensions.24–26 It does
not have the minus-sign problem encountered in the quantum
Monte Carlo simulation and can be used to study the phase
diagram in the whole parameter space. We assume that the
ground state is described by the following tensor-product wave
function

|�〉 = Tr
∏
{i}

Ai
xiyizi

[mi]|mi〉, (4)

where mi is the eigenvalue of spin operator Sz
i . Ai

xiyizi
[mi] are

the third-order tensors defined on the six sublattices, as shown
in Fig. 2. The trace is to sum over all spin configurations and
all virtual bond variables. This wave function satisfies the area
law of entanglement entropy. It is an accurate representation
of the ground state wave function. Its accuracy is determined
by the bond dimension D. It approaches the exact result in the
limit D → ∞.

The ground state wave function, or the local tensors Ai , is
determined by applying the projection operator exp (−τH ) to
an arbitrary initial state |�〉 iteratively until it is converged.
Since this model only contains nearest neighbor interactions,
exp (−τH ) can be divided into a sequence of local two-site
operators approximately by the Trotter-Suzuki decomposition
for a sufficiently small τ . We apply the first order Trotter-
Suzuki decomposition here. In our calculation, we start the
projection with a relatively large τ = 0.2 and then reduce it
gradually to 10−4 until the wave function is converged. In order
to find the true ground state and not being trapped in a local
minimum, we start the projection from a variety of possible
magnetically ordered states or valence bond solid states. We
choose the converged state which has the lowest energy as
the ground state wave function. A detailed introduction to this
method can be found from Refs. 24,25. This method is a fast
and accurate way to get the ground state wave function.

After obtaining the ground state wave function |�〉, we can
evaluate the expectation value of physical variable O:

〈O〉 = 〈�|O|�〉
〈�|�〉 . (5)

FIG. 2. (Color online) Diagrammatic representation of the tensor-
network wave function on the honeycomb lattice. Tensor Ai defined
on each lattice site contains three virtual bond indices and one physical
index.
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FIG. 3. (Color online) The ground state energy density as a
function of D with different values of χ at θ = 0. The curves of
χ = 30 and χ = 40 are almost on top of each other.

By contracting the physical indices, both 〈�| O |�〉 and 〈�|�〉
can be also expressed as a tensor network. The contraction of
tensors is achieved by computing the dominant eigenvector of
the corresponding one dimensional transfer matrix using the
infinite time-evolving block decimation (iTEBD) method26

beyond unitary evolution. The iTEBD is also an iterative
projection method and the truncation error does not accumulate
during the iteration. The largest eigenvector of the transfer
matrix is represented by a matrix product state with bond
dimension χ , which determines the accuracy of the expectation
values.

In our calculations, we found that the ground state energy
is converged when the bond dimension D � 12, while the
expectation values of physical variables become stable when
the parameter χ � 30 (see Fig. 3). Thus, we choose D = 12
and χ = 30 throughout the calculations.

III. RESULTS

The ground state energy shows that the most part of the
quantum phase diagram matches with the classical phase
diagram. Figure 4 displays the θ dependence of the ground
state energy and Fig. 5 displays its first and second derivatives.
The first derivative is calculated with Hellmann-Feynman
theorem, which is more accurate than numerical differentiation
from the ground state energy. We find that there are four phase
transitions, located at θ = −3π/4, ±π/2, and θd ≈ 0.19π ,
respectively. Among them, θ = −3π/4 and ±π/2 are first
order transitions. The transition at θd is a second order one. This
transition point is shifted below the classical value θ = π/4,
which will be discussed later on.

To clarify the phase diagram, we calculate various order
parameters, i.e., the magnetization

Mz =
∑

i

〈Siz〉, (6)

FIG. 4. (Color online) The ground state energy density as a
function of θ .

the staggered magnetization

Mz
s =

∑
i

(−)i〈Siz〉, (7)

the ferroquadrupolar moment

Qzz =
∑

i

〈
S2

iz

〉 − 2/3, (8)

and the antiferroquadrupolar moment

Qzz
s =

∑
i

(−)i
〈
S2

iz

〉
, (9)

in the four phases, respectively. Figure 6 shows the θ

dependence of Mz and Mz
s . The ground state is found to have

FM long-range order for π/2 < θ < 5π/4, and AF long-range
order for −π/2 < θ < θd . In these phases, the quadruple
moment Qzz is finite. In the region −3π/4 < θ < −π/2, both
magnetization and staggered magnetization vanish; however,
the quadrupolar moment is finite, as shown in Fig. 7. It

FIG. 5. (Color online) The first and second (the inset) derivatives
of the ground state energy with respect to θ .
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FIG. 6. (Color online) Uniform (red) line and staggered (blue)
line represent magnetization per site as a function of θ .

corresponds to a ferroquadrupolar phase, in agreement with
both the semiclassical29,30 and quantum Monte Carlo31 results.

In the staggered magnetization curve a sharp jump
shows at θc = −π/2. This feature was also observed in the
quantum Monte Carlo calculation on a square lattice.31 But the
quadrupolar moment is finite and changes continuously at this
point. So a first order phase transition occurs, in consistence
with the conclusion drawn from the first derivative of the
ground state energy.

As expected, the staggered quadrupolar moment Qzz
s

vanishes in the FM, AF, and ferroquadrupolar phases. A
surprising result is that this moment also vanishes in the
classical staggered quadrupolar phase π/4 < θ < π/2, i.e.,
the quantum fluctuation suppresses completely the staggered
quadrupolar order, which is different from the previous studies
on the triangular or square lattices.32 More interestingly, the
critical point has been shifted by the quantum fluctuation from
π/4 to about 0.19π , which excludes the SU(3) AF Heisenberg
spin-1 model from any long-range magnetic order.

To further characterize the phase for θd < θ < π/2, we
have performed a thorough exploration of three possible VBS

FIG. 7. (Color online) Uniform (red) line and staggered (blue)
line represent spin quadruple moment per site as a function of θ .

FIG. 8. (Color online) Pictorial representation of three possible
VBS patterns considered in the calculation: (a) plaquette, (b)
columnar, and (c) staggered. The red thicker bonds represent
stronger correlation while the black thinner bonds represent weaker
correlation.

patterns (Fig. 8) on the honeycomb lattice. It has been checked
that whatever VBS patterns we start with, it always converges
into the plaquette order phase [Fig. 8(a)] under renormalization
group flow. Hence the ground state energy of the plaquette
VBS phase is the lowest. This plaquette order phase explicitly
breaks the lattice translation symmetry, but not the spin SU(2)
symmetry. A naive picture of this plaquette order is that,
in order to minimize the ground state energy, the spins on
one-third of the minimal hexagons of the honeycomb lattice
form the VBS phase, like the Haldane gapped phase in one
dimension.

In order to detect the plaquette order, we calculate the
plaquette order parameter defined as

P =
∑

〈i,j〉∈red〈Si · Sj 〉
2
∑

〈i,j〉∈black〈Si · Sj 〉 − 1, (10)

where 〈i,j 〉 ∈ red (black) means the two nearest neighbor
spins connected by red (black) bonds of Fig. 8(a). Figure 9
shows the θ dependence of the plaquette order parameters.
Both the plaquette and AF orders vanish simultaneously and
continuously at the critical point θd . This observation suggests
that this plaquette-AF transition is in fact a second order
transition, in consistence with the conclusion drawn from the
first and second derivatives of the ground state energy with
respect to θ in Fig. 5. But we are still unable to rule out the

FIG. 9. (Color online) The plaquette order parameter as a function
of θ .
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possibility of a very weak first order transition, partly due to
the finite bond dimension D.

Moreover, around the transition point between antiferro-
magnetic and plaquette valence bond solid phases, we have
evaluated the ground state wave function using the cluster
update approach proposed by Wang et al.33 The cluster update
considers long-range entanglement by computing a larger
block size. The accuracy of the computation near a second
order phase transition can be improved by using a relatively
small cluster size (six sites).

IV. DISCUSSION AND CONCLUSION

A second order transition between AF and VBS order was
originally predicted theoretically as the deconfined quantum
critical point. This theory is based on the observation that
the topological defect (Skyrmion) of the AF order parameter
carries a finite lattice momentum; thus after the AF order
is suppressed by the Skyrmion proliferation, the system
automatically enters the VBS order. The previous studies
on deconfined criticality were focused on spin-1/2 systems
only, and this theory has gained strong numerical evidence
from quantum Monte Carlo simulation on a spin-1/2 model
on the square lattice with both two-body and four-body
interactions.20–22 Our present result actually gives rise to
a possible deconfined quantum critical point in the spin-1
systems. Using the techniques in Refs. 34,35, we can show
that for spin-1 systems on the honeycomb lattice the momenta
carried by the Skyrmion will precisely lead to the plaquette
order pattern after the Skyrmion proliferation.

In fact, another columnar VBS order [Fig. 8(b)] has the
same symmetry as the plaquette order, which in principle
can also be a candidate phase of the Skyrmion condensate.
However, in this part of the phase diagram the energy of the

columnar VBS order is higher than the plaquette order. One
can see this by noting that the SU(3) invariant point is in this
plaquette phase, and the plaquette phase can be adiabatically
connected to a SU(3) singlet phase, while the VBS order in
Fig. 8(b) cannot. Thus we conclude that the plaquette order
is energetically more favorable than the columnar VBS order
close to the SU(3) point.

Due to the critical point between AF and plaquette order at
θd , our numerical result also implies that the ground state of
the SU(3) AF Heisenberg model on the honeycomb lattice has
a plaquette order. This result concurs with the recent studies
on the SU(N) Heisenberg model,36 which suggested that the
SU(N) spins tend to form block singlets that are commensurate
with the lattice.

To summarize, the ground state phase diagram of the
quantum spin-1 bilinear-biquadratic Heisenberg model on a
honeycomb lattice has been determined precisely. Besides
the ferromagnetic, antiferromagnetic, and ferroquadrupolar
phases, a plaquette order phase is found in the region of θd <

θ < π/2, where the classical AF or staggered quadrupolar
order is completely suppressed by quantum fluctuations. The
quantum phase transition between AF and the plaquette order
phase is found to be either a direct second order or a very
weak first order transition. This is a possible candidate of a
deconfined quantum critical point in a quantum spin-1 system.
Further investigation on the critical properties around this point
is desired.
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