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2 or spin-1 sites
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A density matrix renormalization group (DMRG) algorithm is presented for the Bethe lattice with connectivity
Z = 3 and antiferromagnetic exchange between nearest-neighbor spins s = 1/2 or 1 sites in successive
generations g. The algorithm is accurate for s = 1 sites. The ground states are magnetic with spin S(g) = 2gs,
staggered magnetization that persists for large g > 20, and short-range spin correlation functions that decrease
exponentially. A finite energy gap to S > S(g) leads to a magnetization plateau in the extended lattice. Closely
similar DMRG results for s = 1/2 and 1 are interpreted in terms of an analytical three-site model.
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I. INTRODUCTION

Dendrimers have been extensively explored over the past
two decades, both experimentally and theoretically. Den-
drimers are macromolecules with repetitive branches attached
to a central core or focal point.1,2 Three parameters (b,Z,g)
characterize the dendrimer lattice model in Fig. 1: the number
of branches b attached to the focal point, the connectivity Z of a
site, and the number of generations g. Many natural systems are
dendrimers, and molecular engineering can produce custom
dendrimers with constituents that range from carbon-based
molecules3 to organometallic compounds.4,5 Potential applica-
tions include drug delivery for chemotherapy,3 gene therapy,6

magnetic resonance imaging as contrast agents based on
superparamagnetism,7 and molecular recognition.8

Bethe lattices (BLs) or Cayley trees are theoretical models
of dendrimers and attractive approximations of solid-state sys-
tems. We consider in this paper superparamagnetic dendrimers
based on sites with unpaired spins. BLs are fundamentally
one-dimensional (1D) systems, without any closed loops, that
can be divided by cutting any bond. Their distinctive feature
is exponential growth with g. Half of the sites for the BL with
Z = 3 in Fig. 1 are on the surface in generation g. BLs are
bipartite: all nearest-neighbor (NN) bonds in Fig. 1 are between
sites in even and odd g that define two sublattices with different
numbers of sites. The BL has open boundary conditions, a focal
point at g = 0, and an arbitrarily large boundary g. General
theorems apply for the spectrum free electrons9 with NN
transfer t in a BL or for spins10 with NN Heisenberg exchange
J > 0. Three parameters generate a rich variety of BL(b,Z,g).
In dynamical mean-field theory,11 the BL density of states with
infinite connectivity is used as an initial guess for the density
of states in higher dimensions. BLs are models for strongly
correlated systems,12 alloys,13 and disordered systems.14 The
present study addresses antiferromagnetic (AF) Heisenberg
exchange J > 0 in the BL with b = Z = 3,

H (g) =
∑

〈i,j〉
J �si · �sj . (1)

The sum 〈i,j 〉 is over all NN for either s = 1/2 or s = 1
sites. BL-Ising models limited to sz

i s
z
j interactions have been

used to study finite spin glasses.15 The electronic properties of
correlated BL models still pose many challenges.

Recent advances in numerical techniques and computa-
tional resources have been applied to BL models. Meth-
ods include exact diagonalization (ED), quantum Monte
Carlo (QCM),16 and density matrix renormalization group
(DMRG).17 DMRG is particularly well suited for 1D systems
such as Hubbard or extended Hubbard models, t-J models,
and Heisenberg or related spin models. DMRG yields accurate
properties for the ground state (gs) or low-energy excited
states.18–21 The DMRG challenge for a BL is the large
number of surface sites in Fig. 1. Otsuka22 applied DMRG
to the BL, Eq. (1), with s = 1/2 sites and axially anisotropic
NN exchange (XXZ model). Friedman23 presented another
DMRG algorithm for Eq. (1) with s = 1/2. Lepetit et al.24

used essentially the same algorithm to treat the Hubbard
model version of Eq. (1) that reduces to J = 4t2/U for
s = 1/2 when the on-site repulsion U is large compared to NN
electron transfer t . They also solved analytically the Hückel or
tight-binding model with U = 0.

DMRG is a truncation procedure in which insignificant
degrees of freedom of the system block, the right or left block
in a chain, are discarded at each step with increasing system
size. In 1D chains, the superblock consists of two blocks
with dimension m and two sites with p degrees of freedom.
The superblock dimension is m2 × p2, with p = 2s + 1 in
spin systems. The DMRG procedure is equivalent to a matrix
product state (MPS) approach. The MPS method is found
to be useful in attempts to extend the DMRG method to
higher dimension.25 The superblock of BL(3,3,g) has three
blocks and hence goes as m3. More branches b increase
the computational requirements. Otsuka22 used four blocks
and two new sites for BL(3,3,g) with p = 2 (s = 1/2). His
superblock increased as m4 × p2. The Friedman algorithm23

with b = 3 and four new sites yields a superblock dimension
of m3 × p4. The DMRG algorithm in Sec. II has a superblock
dimension m3 × p or, more generally, mb × p, which makes
s = 1 sites accessible.

The paper is organized as follows. Section II presents and
tests our algorithm. Section III reports results for the BL in
Fig. 1 and Eq. (1) up to g = 11 for s = 1/2 and 1 sites, and up
to g > 20 for 〈sz

0〉 at the focal point. We obtain the gs energy per
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FIG. 1. One arm of a Bethe lattice with b = Z = 3 and g = 5.
The other two arms are shown to generation g = 1; g also represents
the distance from the focal point.

site, the energy gap � that governs the gs magnetization, and
gs expectation values of sz

n for n � g. We find spin correlation
functions between the focal point and other sites and their
convergence with increasing g. Section IV relates the DMRG
results to a simple analytical model with localized states, to
previous DMRG studies, and to the question of long-range
order in the infinite BL.

II. DMRG ALGORITHM

In this section, we present a DMRG algorithm for the BL in
Fig. 1 with b = Z = 3. The principal change is how the lattice
is grown. The total number of sites in BL(3,3,g) is

NT (g) = 1 + 3(2g − 1). (2)

The first step in Fig. 2 contains four sites. Sites A, B, and
C are blocks each of whose size is 2g−1 at generation g.
The focal point D is the new site added at each step. As
shown in Fig. 2, each block A = B = C contains three sites

FIG. 2. Schematic representation of BL growth from g = 1 at
step 1 to g = p at step p. The blocks A = B = C at step g are given
by Eq. (2). The focal point D is the new site added at each step.

in the second step for g = 2. Growth at step g = 2,3, . . . is
schematically represented as

Dg
Ag+1 =

Ag Ag (3)

Dg is connected to the focal point D at step g + 1. The next
step gives blocks of seven sites at g = 3, and so on up to the
BL with NT (g) sites. The procedure for BL(3,3,g) holds for
other b and Z.

The infinite DMRG algorithm for the BL proceeds along
largely standard lines:17 (i) Start with the superblock matrix
of four sites and find the eigenvalues of H . (ii) Use the
eigenvectors of the superblock to construct the density matrix
of the new blocks Ag+1, initially for g = 1. Keep the
eigenvectors of the m largest eigenvalues, with m chosen as
discussed below. The density matrix dimension is m2 × p,
where m and p refer to the block and degrees of freedom
of the new site. Full diagonalization of the density matrix is
carried out separately for large m in sectors with different total
Sz. (iii) Renormalize the Hamiltonian of the new blocks and
the operators that are necessary for the next step. These steps
follow conventional DMRG.17 (iv) Construct the next (g +
1) superblock from the three renormalized blocks Ag+1 and
the new site. Diagonalize the matrix and retain the m lowest
eigenvalues and eigenvectors. Repeat steps (ii)–(iv) until the
desired system size is reached.

The superblock dimension of m3 × p makes possible larger
m, which increases the accuracy, and larger p = 2s + 1. We
can use m = 60 without much computational effort and find
10−13 or less for the weight of the discarded eigenvalues
of blocks. DMRG is a variational method. Energies and
correlation functions for given size g converge better for finite
DMRG.17 We followed the standard approach of sweeping
back and forth through different blocks. Care has to be taken
in designing the finite DMRG algorithm due to the complex
structure of the BLs.

We constructed the density matrix with equal weight for
the lowest two eigenstates. As a first test of accuracy, we
performed ED on BL(3,3,3) with 22 sites s = 1/2 and on
BL(3,3,2) with 10 sites s = 1. There are 222 and 310 spin
states, respectively. DMRG results with increasing m must
eventually converge to ED. The evolution of the gs energy
per site, δε0 = ε0(m) − ε0(ED), with m is shown in Table I
for the 22-site systems. Also shown are the evolution of δ〈sz

3〉
and the spin correlation δ〈sz

0s
z
3〉 between the focal point and

the boundary. DMRG with m = 50 is quantitative here. The

TABLE I. The difference δX between ED and DMRG with
increasing m for BL(3,3,3) with s = 1/2 sites, where X is the gs
energy per site ε0, � is the excitation energy, 〈sz

3〉 is the boundary
spin, and 〈sz

1s
z
3〉 is the spin correlation.

m δε × 109 δ� × 104 δ〈sz
3〉 × 104 δ〈sz

0s
z
3〉 × 105

10 2670.8 42.593 89.48 −1.193
20 560.08 41.441 0.030 −0.722
30 552.99 41.212 0.031 −0.801
50 0.001 0.0008 0.003 −0.0001
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FIG. 3. Ground-state energy E0 of spins 1/2 and 1 in a large
BL(3,3,10) as a function of m relative to m = 65. The inset shows
the m dependence of the energy gap � to the ground state with
Sz = S(10) + 1.

Friedman algorithm whose superblock increases as m3 × p4

is limited to m ≈ 30 and returns23 δε0 = 2.2 × 10−6 with
m = 29 for infinite DMRG, which is comparable to m = 10 in
Table I. DMRG with increasing m also agrees quantitatively
with ED for s = 1 sites.

We chose m = 60 on the basis of BL calculations for
large systems with g = 10. Figure 3 shows the evolution
of ε0(m)/ε0(65) with m for s = 1/2 and 1 sites. Although
s = 1 converges an order of magnitude more slowly, m > 40
is adequate in either case. Preliminary results indicate still
slower convergence for s = 3/2 sites. The inset of Fig. 3
shows the slower, and not monotonic, evolution of the energy
gap �(m)/�(65). This is not unexpected since � is the
difference between two extensive quantities: the absolute gs
with S = S(g) and the lowest state with S ′ = S + 1.

We followed the first excited state in Sz = S(g) with similar
results. We kept m = 60 and did eight sweeps of finite DMRG
for the results in Sec. III. We estimate that the gs energy, spin
densities, and spin correlation functions are accurate to four to
five decimal places in larger systems, while energy gaps are
accurate to two to three places.

III. RESULTS FOR BL WITH s = 1/2 AND 1

In general, a BL of NT sites has NT − 1 bonds, since only
the focal point is not connected to a site with lower g. The gs
energy per bond of BL(3,3,g) is

ε0(g) = E0(g)/[NT (g) − 1], (4)

where E0 is the gs energy and NT is given in Eq. (2). Figure 4
shows ε0(g) for s = 1/2 and 1 sites up to g = 10. There is very
little size dependence. The extended s = 1/2 and 1 systems
have ε0 = −0.393 84 and −1.2795, respectively.

The gs has a total z component of spin Sz(g) = 2gs.
Equation (1) conserves S, and either a half-filled band or
Heisenberg exchange yields S(g) = 2gs. Finite g corresponds
to a superparamagnetic BL with 2S(g) + 1 degeneracy in Sz,
and all calculations are performed in the Sz = S(g) sector.

The gap �(g) to the gs in the Sz = S(g) + 1 sector governs
the gs magnetization. The evolution of �(g) with NT (g) is
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FIG. 4. Ground-state energy ε0 per bond of the BL, Eq. (1), with
s = 1/2 and 1 sites, g � 11 generations, and NT (g) sites. Linear
extrapolation gives ε0 of the extended BL.

shown in Fig. 5. The substantial gap of the extended system
is discussed in Sec. IV. We also found doubly degenerate
excitations �′(g), comparable to �(g), in the Sz(g) sector for
both s = 1/2 and 1. The C3 symmetry (not used) of the BL
leads naturally to E states. Since we compute Sz rather than S,
the gs automatically appears also in sectors with Sz < Sz(g).
The energy of the second and third excited states for Sz =
Sz(g) − 1 decreases with NT (g), and these excitation energies
vanish in the extended system within our numerical accuracy.

The gs expectation values of 〈sz
p〉 in generation p are

listed in Table II for the BL with g = 10. The g = 9
and 11 results are almost the same. The gs has long-range
order (LRO) that corresponds to staggered magnetization in
successive generations. The largest 〈sz

p〉 is at the boundary,
p = g. The smallest magnitude is at p = g − 1 next to the
boundary, and |〈sz

n〉| near the focal point become equal for
large g. The convergence of |〈sz

0〉| to 0.348 is shown in Fig. 6
up to g = 26, a huge BL of 3 × 226 sites, and agrees with the
previous estimate of 0.35.24 The s = 1 limit up the g = 24
is |〈sz

0〉| = 0.83, and the staggered magnetization of both gs
becomes constant near the focal point for g > 10. By contrast,
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FIG. 5. Size dependence of the energy gap � to Sz = S(g) + 1
for the BL, Eq. (1), with s = 1/2 and 1 sites, g � 11, and NT (g) sites.
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TABLE II. Ground-state expectation values of 〈sz
p〉 and 〈�sp−1 · �sp〉

for s = 1/2 and 1 sites in BL(3,3,10). The focal point and boundary
are p = 0 and 10, respectively.

s = 1/2 s = 1

p 〈sz
p〉 〈�sp−1 · �sp〉 〈sz

p〉 〈�sp−1 · �sp〉
0 0.347 0.829
1 − 0.345 − 0.359 − 0.828 − 1.214
2 0.347 − 0.361 0.828 − 1.214
3 − 0.342 − 0.357 − 0.826 − 1.213
4 0.348 − 0.364 0.826 − 1.215
5 − 0.332 − 0.350 − 0.817 − 1.208
6 0.348 − 0.371 0.820 − 1.218
7 − 0.307 − 0.334 − 0.789 − 1.191
8 0.356 − 0.392 0.816 − 1.238
9 − 0.249 − 0.289 − 0.691 − 1.104
10 0.393 − 0.456 0.872 − 1.397

a half-filled BL of a free electron has 〈sz
0〉 = 2/(g + 1) for odd

g and 〈sz
0〉 = 0 for even g or in the extended system.

Table II also lists the gs expectation values of 〈�sp−1 · �sp〉 in
successive generations of BL(3,3,10) with s = 1/2 and 1 sites.
The g = 9 and 11 values are similar. Variations of 〈�sp−1 · �sp〉
at g and g − 1 are reduced near the focal point. The BL-Ising
model has 〈sz

p〉 = (−1)ps and 〈sz
p−1s

z
p〉 = −s2. Table II shows

that s = 1 is closer to the Ising model than s = 1/2, where
quantum fluctuations are larger.

We define radial spin correlation functions as

C(r) = (−1)r
(〈 �s0 · �sr〉 − 〈

sz
0

〉〈
sz
r

〉)
(5)

with r = 1,2, . . . ,g. The mean-field contribution is explicitly
excluded. As seen in Fig. 7, C(r) decreases as exp(−αr) with
α = 0.80 for both s = 1/2 and 1. Accurate DMRG makes it
possible to compute small C(r) up to r ≈ 10. The inset shows
the related correlation function Cz(r) with 〈sz

0s
z
r 〉 instead of

the dot product, which decreases even faster. Although the
model has isotropic exchange, the gs has S = 2gs and C(r)
in the Sz = 2gs sector is almost completely due to transverse
spin components. Since the number of boundary sites goes as
n(g) = 1.5 exp(g ln2), we have n(g)C(g) → 0 for large g.
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FIG. 6. Magnitude of 〈sz
0〉 at the focal point of a BL up to g = 26

generations for s = 1/2 and up to g = 24 for s = 1 sites. Even and
odd g form separate series that merge at large g.
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FIG. 7. Spin correlation functions C(r) in Eq. (5) between the
focal point and generation r � g in BLs with g = 9, 10, and 11 and
s = 1/2 and 1 sites. The inset shows the z component, Cz(r).

The gs degeneracy is lifted when an applied magnetic field h

is added to Eq. (1). The lowest Zeeman level goes as −hS(g).
With increasing h, the gs becomes the lowest Zeeman level
of a state with Sz > S(g), an excited state at h = 0. When
Sz = S(g) + 1, the crossover field is related to the zero-field
energy in the two sectors,

h = �(g) = {E0[S(g) + 1] − E0}/J. (6)

The first crossover may be to a state with higher Sz, when
Eq. (6) has a multiple of h. The gs magnetization per s = 1/2
site of BL(3,3,g) is shown in Fig. 8 for g = 3, 4, and 5. The
first jump is to Sz = S(g) + 1. Complete alignment at large
h leads to M = 1/2 in reduced units. The extended BL with
infinite g has a magnetic gs with M = 1/6 at h = 0 and an
initial increase at � marked with an arrow in Fig. 8.

IV. DISCUSSION

DMRG results for H (g) in Eq. (1) are similar for BLs
with s = 1/2 and 1 sites in Fig. 1. The gs has S(g) = 2gs

as expected on general grounds. The larger sublattice has
NA(2) = 2g+1 − 1 sites and the smaller has NB(g) = 2g −
1 sites. The difference NA(g) − NB(g) is 2g . As seen in
Table II, the gs has staggered magnetization with LRO and AF
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FIG. 8. (Color online) Exact magnetization M per site of
BL(3,3,3) with s = 1/2 sites as a function of applied field h. The
g = 4 and 5 magnetization is DMRG up to finite h. The extended BL
has an M = 1/6 plateau up to h = �, the gap shown in Fig. 5.
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spin correlations in successive generations. Spin correlation
functions C(r) in Fig. 8 decay rapidly and exponentially.
Magnetization has a substantial gap �(g) that remains finite
in the extended s = 1/2 or 1 system.

We interpret these results in terms of a simple analytical
approximation. We partition H (g) with J = 1 in Eq. (1) as
H = H0 + V ,

H0 = NB(g)h(3), h(3) = �s2 · ( �s1 + �s3). (7)

The trimer h(3) is elementary and H0 accounts for exactly
2/3 of the exchanges. For example, the outermost two
generations of BL(3,3,5) in Fig. 1 contain eight trimers per
arm. Each s = 1/2 trimer has a gs with s = 1/2 at e0 = −1,
another doublet at e = 0, and a quartet, s = 3/2, at e = 1/2.
The gs of an s = 1 trimer is e0 = −3. The perturbation V

contains an extra site q in the larger sublattice and remaining
exchanges. Each of NA(q) choices of q uniquely defines
the sites of NB(g) trimers. The middle and end sites are
necessarily in the smaller and larger sublattice, respectively,
and all exchanges in V are between a middle and end
site. There is only one kind of trimer-trimer or trimer-q
interaction.

The gs energy of H0 for s = 1/2 and 1 sites is −NB(g) and
−3NB (g), respectively. Spin correlation functions of adjacent
sites for s = 1/2 and 1 are

〈 �s1 · �s2〉 = −1/2,−3/2. (8)

The spin densities of the central and terminal sites for s =
1/2 are

2
〈
sz

2

〉 = −1/3, 2
〈
sz

1

〉 = 2/3. (9)

The corresponding spin densities for s = 1 are −1 in the
middle and 3/2 at the ends. The gs of H0 is a product over
trimers and the spin at q,

|�(0)(q,g)〉 = |αq〉
NB (g)∏

j=1

|ψj 〉. (10)

First-order perturbation theory in V lifts the degeneracy
between q in generations g and <g.

Site q is a 1/NT correction for large g. The energy per site
of the infinite BL is, to first order in V ,

〈�(0)|H |�(0)〉/3NB (g) = ε0(s)/3 + 〈
sz

1

〉〈
sz

2

〉/
3. (11)

Parallel spins give lower energy due to the opposite signs
of spin densities. The s = 1/2 result is −19/54 = −0.351 85
per site in first order and −0.390 82 in second order in V , very
close to the DMRG result of −0.393 85 in Fig. 4. The s = 1
result is −9/8 = −1.125 per site in first order and −1.3152
in second order, slightly below −1.2796 in DMRG. The
variational theorem holds for the energy in first order, but not in
second order. The first-order energy is lowest for parallel spins
of NB(g) trimers and site q that properly gives Sz = S(q)s.
Moreover, �(0)(q,g) immediately rationalizes low-energy spin
flips in states with S < S(g) for either s = 1/2 or 1 sites.

Site q is a NN of one middle site when q is in generation
g and of three middle sites otherwise. The second term of

Eq. (12) is more negative for q � g − 2 than for q = g by
2〈sz

2〉(s − 〈sz
1〉) for s = 1/2 or 1. To first order in V , site q is

not on the boundary and g, g − 1 in Fig. 1 are trimers with end
sites g. H0 accounts for all exchanges between generations
g and g − 1 while V contains all exchanges between g − 1
and g − 2. The trimer approximation leads to 〈sz

g〉 = 1/3 and
〈sz

g−1〉 = −1/6, compared to 0.40 and −0.25 for DMRG for
s = 1/2 sites in Table II. The correlation functions are 〈�sg−1 ·
�sg〉 = −1/2 compared to −0.44 for DMRG. Trimers have
reduced 〈�sg−2 · �sg−1〉 = −1/18, well below the DMRG result
of −0.30 but consistent with reduced correlation in g − 1 and
g − 2. The s = 1 BL has 〈sz

g〉 = 3/4 and 〈sz
g−1〉 = −1/2 in the

trimer approximation and 0.87 and −0.69 in DMRG (Table II).
Trimers have 〈�sg−1 · �sg〉 = −3/2 for s = 1 while DMRG gives
−1.397.

A trimer of s = 1/2 sites must be excited to a quartet state
s = 3/2 with excitation energy 3/2 under H0 to obtain Sz =
S(g) + 1. One of the NB(g) trimers in �(0)(q,g) is changed to
|φ〉 = |ααα〉. A normalized function with a quartet is

|	(g)〉 = [NB(g)]−1/2
NB (g)∑

m=1

|φm〉|�(0)(q,g)〉/|ψm〉. (12)

The quartet is delocalized over the BL by the s+s− terms of
V . To first order in V , the excitation energy to S = S(g) + 1
is

〈	|H |	〉 − 〈�(0)|H |�(0)〉 = �(1) = 1.0. (13)

Delocalization lowers the energy by 2/3 while the diagonal
szsz contribution raises the energy by 1/6. The net effect is
to lower the excitation from 3/2 to 1 for s = 1/2, somewhat
above � = 0.74 for the extended BL in Fig. 5.

The sharp distinction between NN exchanges in H0 and V

for the outermost three generations is lost in the interior. H0

contains trimers that spans three generations when q � g − 2.
When q �= 0, the central site in Fig. 1 is the middle site of a
trimer for even g and the end site for odd g. Although trimers
imply intermediate spin density and spin correlations near the
focal point, there are variations between even and odd g in
contrast to identical 〈sz

0〉 in Fig. 6. Similarly, C(r) in Eq. (5)
for �(0)(q,g) is strictly limited to r = 1 or 2 since trimers
span at most span three generations. The function �(0)(q,g) is
localized, more localized than the DMRG gs, but it rationalizes
DMRG results in some detail.

DMRG results for NN exchange J in Eq. (1) for s = 1/2
and 1 sites in BL(3,3,g) are closely similar, in sharp contrast
to the fundamentally different behavior of 1D chains of s =
1/2 and 1 sites.26 The s = 1 chain with additional NN terms
J (si · sj )2/3 in Eq. (1) is a valence bond solid (VBS) with
rigorously known gs properties.27 The VBS on BL(3,3,g) has
s = 3/2 sites, yet another added term to Eq. (1), and 〈sz

0〉 = 0,
and hence no LRO in the extended system.27 Both the spin
and Hamiltonian of the VBS are different, and no DMRG has
been performed on that system. For Eq. (1), DMRG indicates
a gs with staggered magnetization and finite 〈sz

0〉 in Fig. 6
at the focal point for either s = 1/2 or 1. The gs has LRO
and short-range spin correlations C(r) in Eq. (5) that decrease
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exponentially and more rapidly than the number of boundary
sites.

V. CONCLUSIONS

The DMRG algorithm in Sec. II makes it possible to treat the
BL in Fig. 1 with s = 1 sites. It improves the accuracy for s =
1/2 sites and yields low-energy excitations. All DMRG results
for either s = 1/2 or 1 sites can be understood qualitatively in
terms of a trimer model for BL(3,3,g).

Preliminary results for BL(3,3,g) with s = 3/2 sites are
satisfactory. The addition of a focal point with p degrees of
freedom at each step can be used for BLs with more arms b > 3
or higher connectivity Z > 3, although with steep increases
of computational resources. The bottleneck is the dimension

mZ−1 × p of the block whose density matrix is constructed
at each step; m ≈ 70 for Z = 3 becomes m ≈ 17 for Z =
4, which has limited accuracy. A comparable reduction to
m ≈ 20–30 limited previous algorithms22–24 for BL(3,3,g) to
s = 1/2 sites. The dimension mb × p of the superblock is less
serious because only a few eigenvalues are required at each
step.

ACKNOWLEDGMENTS

M.K. thanks S. R. White for discussion and B. J. Topham
for reading the manuscript carefully. We thank the National
Science Foundation for partial support of this work through
the Princeton MRSEC (DMR-0819860).

*manoranj@princeton.edu
1D. A. Tomalia and P. R. Dvornic, Nature (London) 372, 617
(2002).

2M. A. Martin-Delgado, J. Rodriguez-Laguna, and G. Sierra, Phys.
Rev. B 65, 155116 (2002).

3R. Esfand and D. A. Tomalia, Drug Discov. Today 6, 427
(2001).

4S. Serroni, S. Campagna, F. Puntoriero, C. Di Pietro, N. D.
McClenaghan, and F. Loiseau, Chem. Soc. Rev. 30, 367 (2001).

5H. Frey, C. Lach, and K. Lorenz, Adv. Mater. 10, 279 (1998).
6C. Dufes, I. F. Uchegbu, and A. G. Schatzlein, Adv. Drug Deliv.
Rev. 57, 2177 (2005).

7H. Kobayashi, S. Kawamoto, and S. K. Jo, Cancer Res. 63, 271
(2003).

8A. W. Freeman, R. H. Vreekamp, and J. M. J. Fréchet, Polym.
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