
PHYSICAL REVIEW B 85, 134411 (2012)

Effect of lattice geometry on magnon Hall effect in ferromagnetic insulators

T. Ideue,1 Y. Onose,1,2 H. Katsura,3 Y. Shiomi,1 S. Ishiwata,1 N. Nagaosa,1,4 and Y. Tokura1,2,4

1Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
2Multiferroics Project, ERATO, Japan Science and Technology Agency (JST), Tokyo 113-8656, Japan

3Department of Physics, Gakushuin University, Tokyo 171-8588, Japan
4Cross-Correlated Materials Research Group (CMRG) and Correlated Electron Research Group (CERG), RIKEN Advanced Science Institute,

Wako 351-0198, Japan
(Received 5 January 2012; published 4 April 2012)

We have investigated the thermal Hall effect of magnons for various ferromagnetic insulators. For pyrochlore
ferromagnetic insulators Lu2V2O7, Ho2V2O7, and In2Mn2O7, finite thermal Hall conductivities have been
observed below the Curie temperature TC . From the temperature and magnetic-field dependencies, it is concluded
that magnons are responsible for the thermal Hall effect. The Hall effect of magnons can be well explained by the
theory based on the Berry curvature in momentum space induced by the Dzyaloshinskii-Moriya (DM) interaction.
The analysis has been extended to the transition-metal (TM) oxides with perovskite structure. The thermal Hall
signal was absent or far smaller in La2NiMnO6 and YTiO3, which have the distorted perovskite structure with
four TM ions in the unit cell. On the other hand, a finite thermal Hall response is discernible below TC in another
ferromagentic perovskite oxide BiMnO3, which shows orbital ordering with a larger unit cell. The presence or
absence of the thermal Hall effect in insulating pyrochlore and perovskite systems reflect the geometric and
topological aspect of DM-induced magnon Hall effect.
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I. INTRODUCTION

The Hall effect is the induction of transverse electric current
on the application of the longitudinal electric field. While the
Hall effect in nonmagnetic metals or semiconductors is usually
induced by Lorentz force proportional to the magnetic field, in
ferromagnets there is an additional component induced by the
spontaneous magnetization, which is termed the anomalous
Hall effect.1 Recent theoretical and experimental studies show
that the theory based on the Berry phase in momentum space
accounts well for the observed anomalous Hall effects.1 The
spin-orbit interaction gives rise to the topological structure
of the Bloch wave around band crossing points denoted as
magnetic (anti-)monopoles, which act as sources or sinks of
fictitious magnetic field in momentum space. The anomalous
velocity caused by the fictitious field is the origin of the anoma-
lous Hall effect. Because the Berry phase is not restricted to
electrons, the Berry phase–induced Hall effect is expected for
other particles even without the charge. In fact, Hall effects
of photons and phonons have been reported previously.2–8 In
this paper, we study the Hall effect of magnons, which are the
quanta of magnetic excitation in magnetic materials.

Because magnons can carry the spin moments less dissi-
patively than do electrons, the magnon spin current seems
to be useful for future spintronics. In this context, the new
functionalities of magnon spin currents have been investigated
recently.9,10 The Hall effect may also be useful for the control
of the magnon spin current. Theories of the magnon Hall effect
were proposed recently.11,12 Fujimoto theoretically suggested
that the transverse magnon spin current can be induced by
the application of the longitudinal magnetic-field gradient
in noncoplanar spin structure.11 On the other hand, Katsura
et al. showed that the ring exchange interaction induces the
Hall effect even in the collinear ferromagnet in the case of a
particular lattice such as the Kagomé lattice.12 They also show

that the magnon Hall effect can be observed with use of heat
transport measurment and derive a formula for the thermal
Hall conductivity due to magnons.12

Quite recently, we have succeeded in the experimental
observation of the thermal Hall response below the Curie tem-
perature TC in a ferromagnetic insulator with pyrochlore struc-
ture Lu2V2O7.13 We have found that the temperature and
magnetic-field dependencies are consistent with the picture
of the magnon Hall effect. The observed thermal Hall
conductivity can be explained by the theoretical model based
on the Berry phase due to the Dzyaloshinskii-Moriya (DM)
interaction. In this paper, we have investigated the thermal
Hall conductivity in various ferromagnetic insulators to further
develop the concept of the magnon Hall effect. We have
found that the thermal Hall conductivities are commonly
observed below TC in ferromagnetic insulators with pyrochlore
structure, In2Mn2O7, Ho2V2O7, as well as Lu2V2O7. The
temperature and magnetic-field dependencies for In2Mn2O7

and Ho2V2O7 are similar to the previously observed data
of Lu2V2O7, except for the variation of sign, indicating the
generality of our observations. On the other hand, we could
not observe a finite thermal Hall conductivity for the perovskite
ferromagnets YTiO3 and La2NiMnO6, in which the unit cell
contains four magnetic transition-metal (TM) sites, while a
finite signal is observed for BiMnO3 with a larger unit cell
including 16 Mn sites. We show that these observations reflect
the geometric and topological aspect of magnon Hall effect
caused by the Berry phase due to the DM interaction.

The organization of the rest of the paper is as follows. In
Sec. II, we show the details of the sample preparation and the
transport measurement. In Secs. III and IV, we discuss the
thermal Hall conductivity caused by magnon Hall effect in
pyrochlore and perovskite ferromagnets, respectively. Finally,
we conclude with a summary in Sec. V.
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II. EXPERIMENT

Crystals of Lu2V2O7 and YTiO3 were prepared by the
floating zone method. The atmospheres were Ar gas for
Lu2V2O7 and the mixture of Ar and H2 gases with the ratio
of 96:4 for YTiO3. The growth rate was 2 mm/h for both
the cases. We prepared polycrystalline Ho2V2O7, In2Mn2O7,
and BiMnO3 samples by use of high-pressure synthesis. The
mixed powder of starting material (Ho2O3 and V2O4 for
Ho2V2O7, In2O3 and MnO2 for In2Mn2O7, and Bi2O3 and
Mn2O3 for BiMnO3) with the prescribed ratios was packed
into platinum or gold capsules (∼4 mmφ × 6 mm) and heated
in a cubic anvil-type apparatus for 60 min. Samples were
synthesized at 1300 ◦C and 6.5 GPa for Ho2V2O7, at 850 ◦C
and 3 GPa for In2Mn2O7, and at 700 ◦C and 6.5 GPa for
BiMnO3. The capsules were cooled down to room temperature
before releasing the pressure. Polycrystalline La2NiMnO6

samples were prepared by solid-state reaction. Powders of
La2O3, Mn2O3, and NiO were ground altogether with the
stoichiometric ratio. The mixed powders were then pressed
into half-inch-diameter pellets of 2–3 mm thickness and
sintered in flowing air at 1100 ◦C for 48 h. By means of
powder x-ray diffraction, we have confirmed that these samples
are without any extra phase except for the BiMnO3 sample,
in which unindexed peaks due to some impurity phase were
observed but the volume fraction was estimated to be less
than 3%. The Lu2V2O7 sample was confirmed to be a single
crystal with use of Laue x-ray diffraction. As for YTiO3, we
have obtained the clear Laue pattern corresponding to the
pseudocubic perovskite structure but the orthorhombic a, b,
and c axis could not be distinguished presumably due to the
heavily twined structures.

The magnetization was measured in a Magnetic Property
Measurement System (Quantum Design). The resistivity was
measured with use of the Physical Property Measurement
System (Quantum Design). We employ a conventional steady-
state method for the measurements of longitudinal and trans-
verse thermal conductivities. The longitudinal and transverse
temperature gradients ∂T

∂x
and ∂T

∂y
were measured using both the

type E thermal couple (T � 20 K) and CX-1050 thermometers
(T � 50 K). The longitudinal thermal conductivity κxx and
thermal Hall conductivity κxy were obtained by use of the
following relationships:

κxx = ωxx

ω2
xx + ω2

xy

≈ 1

ωxx

≈ − jq

∂T
∂x

, (1)

κxy = − ωxy

ω2
xx + ω2

xy

≈ −ωxy

ω2
xx

≈
κ2

xx
∂T
∂y

jq

, (2)

where ωxx , ωxy , and jq are the longitudinal and Hall com-
ponents of thermal resistivity and thermal current density,
respectively. While the transverse temperature gradient ∂T

∂y

should be antisymmetric with respect to the magnetic field,
the H -symmetric component is observed due to the small
asymmetry of the thermal probes in the actual measurements as
in the transverse voltage of usual electrical Hall measurements.
Following the convention of electrical Hall measurement,
we have subtracted the H -symmetric component using the
equation ∂T

∂y
= �T (+H )−�T (−H )

2d
, where �T and d are the

observed temperature difference and distance of the transverse

FIG. 1. (Color online) Crystal structures of (a) pyrochlore oxides
A2B2O7 and (b) perovskite oxides ABO3. The oxygen ions in (a) are
omitted for simplicity.

thermal probes, respectively. While the Hall conductivity at
negative fields obtained by this method is merely the copy of
the positive field data, we plot the data at negative fields just
for the clarity of figure. As shown in Eq. (2), the small value
of κxx is desirable in order to estimate the κxy value precisely
from the measurement of the transverse temperature gradient
∂T
∂y

. The present samples certainly have such small κxx values,
as discussed later.

III. MAGNON HALL EFFECT IN PYROCHLORE
FERROMAGNETS

In this section, we discuss the thermal Hall conductivity in
pyrochlore ferromagnets Lu2V2O7, Ho2V2O7, and In2Mn2O7.
The results for Lu2V2O7 have been published in a short
paper.13 Here, the detailed data and analyses for all the
three pyrochlore ferromagnets are presented and discussed
comprehensively. Figure 1(a) shows the crystal structure of
pyrochlore oxide A2B2O7. In this figure, the oxygen ions are
omitted for simplicity. The A and B sublattices are identical
with each other. The B sublattice is displaced by half a unit
cell from the A one. The sublattice structure, commonly called
pyrochlore lattice, is composed of corner-sharing tetrahedra
and can be viewed as a stacking of alternating Kagome and
triangular lattices along the [111] direction.

Lu2V2O7 and Ho2V2O7 are ferromagnetic Mott insulators
with one 3d electron per vanadium site. For these materials,
the resistivities increase rapidly with decreasing temperature
and the spontaneous magnetization emerges below the Curie
temperature TC ≈ 70 K as shown in Figs. 2(a) and 2(b), respec-
tively. Spin-polarized neutron diffraction suggests that the 3d

orbitals are ordered so they all point to the center of mass of V
tetrahedron.14 In the orbital ordered state, the virtual hopping
process to the higher-lying states stabilizes the ferromagnetic
order of S = 1/2 magnetic moments.15 For Lu2V2O7, the
magnetization saturates at low field and the saturated value
per V atom nearly coincides with a 1-bohr magneton (μB),
being consistent with the d1 electronic configuration as shown
in Fig. 2(c). While only the vanadium ions are magnetic in
Lu2V2O7, the Ho ions are also magnetic and behave as Ising
spins in Ho2V2O7. Therefore, the saturation field is relatively
high and the saturated magnetization with the component of
Ho moment is much higher than 1 μB in Ho2V2O7.

In2Mn2O7 is also a Mott insulator.16 The resisivity is too
high to be measured even at 300 K. There are three 3d electrons
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FIG. 2. (Color online) [(a)–(d)] Magnetic, electric, and thermal
transport properties for Lu2V2O7, Ho2V2O7, and In2Mn2O7. (a) Tem-
perature dependence of the resistivity. (b) Temperature dependence
of the spontaneous magnetization (μ0H = 0.1 T). (c) Magnetization
curves at T = 5 K for all the samples. For Ho2V2O7, the 20 K data
are also shown. (d) Temperature variation of thermal conductivity.

per manganese site. The localized S = 3/2 magnetic moments
are ferromagnetically coupled to each other due to the strong
hybridization among the In 5s, O 2p, and Mn 3d orbitals.17 As
shown in Figs. 2(b) and 2(c), the spontaneous magnetization
is observed below TC = 130 K and the saturated magnetic
moment nearly coincides with the expected value of 3 μB .

We show the longitudinal thermal conductivities for
Lu2V2O7, Ho2V2O7, and In2Mn2O7 in Fig. 2(d). According
to the Wiedemann-Franz law, the electric contribution of
thermal conductivity is less than 10 −4 W/K m below 150 K
even for the least resistive sample of Lu2V2O7, indicating
that the heat current is not carried by electronic carriers but
by charge-neutral excitations such as phonons and magnons
for these samples in this temperature region. The thermal
conductivities for these samples are quite small, 2–3 W/K m
even at 300 K, and decrease with decreasing temperature.
These behaviors are frequently observed in transition-metal
oxides, in which both spin and orbital degrees of freedom are
active because of the strong electron correlation.18 These are
likely because the mean free paths of phonons and magnons
are suppressed due to the fluctuations of spin and orbital in
terms of exchange-striction and/or Jahn-Teller coupling. As
mentioned above, the small longitudinal thermal conductivity
is favorable to the sensitive measurement of κxy .

We reproduce the thermal Hall conductivity for Lu2V2O7

in Fig. 3.13 A finite thermal Hall conductivity is observed
below TC = 70 K while it is negligible at 80 K. The magnitude
shows a maximum around 50 K and decreases with decreasing
temperature from 50 K. As for the magnetic-field dependence,
the thermal Hall conductivity steeply increases and saturates in
the low-magnetic-field region similarly to the magnetization,
which indicates that the observed thermal Hall effect is not
the normal Hall effect proportional to the magnetic field
but the anomalous Hall effect depending on the direction
of magnetization. At low temperatures, the thermal Hall
conductivity gradually decreases with the magnetic field after
the saturation.

FIG. 3. (Color online) Thermal Hall conductivity as a function of
the magnetic field for Lu2V2O7 at various temperatures. The magnetic
field is applied to the [100] direction.

We now discuss the possible carriers of the thermal
Hall current, i.e., either phonons or magnons. The thermal
Hall effect caused by phonons was previously reported in
Tb3Ga5O12,4 and theories based on spin-phonon coupling
were proposed to explain it.5,6 Nevertheless, we have ascribed
the thermal Hall conductivity in Lu2V2O7 to the magnon
Hall effect for the following reasons. Since the mean free
path of phonons is expected to increase with magnetic field
due to the reduction of spin-phonon scattering, the decrease
of the thermal Hall conductivity in the high field region at
low temperature cannot be explained in terms of the phonon
mechanism. On the other hand, the reduction of the magnon
population caused by the gap opening due to Zeeman effect
will diminish the magnon contribution of the thermal Hall
conductivity in the high magnetic field. In the theory of
phonon Hall effect based on the spin-phonon scattering,6 the
thermal Hall angle κxy/κxx is expected to be proportional to the
magnetization. Nevertheless, this is not the case for Lu2V2O7.
Figure 4(a) shows the temperature dependence of thermal
Hall conductivity at μ0H = 0.3 T and 7 T being compared
with the magnetization. To be precise, we plot the averaged
thermal Hall conductivity between 0.1 T and 0.5 T for the 0.3-T
value and between 6.5 T and 7.5 T for the 7-T value because
the observed data are scattered. The error bars are estimated
by the standard deviation divided by the square root of the
averaged data number. The thermal Hall conductivity is quite
small even at μ0H = 7 T at T = 80 K while the magnetization
is more than half of the maximum value at this temperature and
magnetic field. The difference of the temperature dependencies
in the high magnetic field can be explained by the magnon
picture because the magnon propagation is caused by the
ferromagnetic interaction and is not valid in the magnetic-field-
induced spin-polarized state above TC . Thus, the temperature
and magnetic-field dependencies are well understood with the
picture of magnon Hall effect.

In order to further examine the scenario of magnon Hall
effect, we have also investigated the thermal Hall conductivity
for other pyrochlore ferromagnetic insulators Ho2V2O7 and
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FIG. 4. (Color online) Temperature dependence of the thermal
Hall conductivity and magnetization (a) at μ0H = 0.3 T and μ0H =
7 T for Lu2V2O7, (b) at μ0H = 0.5 T and μ0H = 7 T for Ho2V2O7,
and (c) at μ0H = 0.3 T and μ0H = 7 T for In2Mn2O7. κcalc

xy is the
theoretically calculated thermal Hall conductivity for In2Mn2O7 at
0.3 T.

In2Mn2O7. In Fig. 5, we show the magnetic-field dependence
of thermal Hall conductivity for Ho2V2O7 at various tem-
peratures. The positive thermal Hall conductivity is observed
below the transition temperature TC = 70 K. The magnetic
field and temperature dependencies are quite similar to the
case of Lu2V2O7 while the magnitude is slightly smaller. In
Fig. 4(b), we show the temperature dependence of thermal
Hall conductivity and magnetization at μ0H = 0.5 T and 7 T.
(Similarly to the previous case, we plot the averaged thermal
Hall conductivity between 0.2 T and 1 T for the 0.5-T value
and between 6.5 T and 7.5 T for the 7-T value.) The thermal
Hall conductivity is quite small above TC even under high
magnetic field, similarly to the case of Lu2V2O7.

The difference from Lu2V2O7 is the presence of Ho f

magnetic moment. We show the magnetization curve at 20 K
for Ho2V2O7 in Fig. 2(c) to compare with the thermal Hall
conductivity. At this temperature, the magnetization shows
a kink structure around 0.3 T but gradually increases with
magnetic field even above the kink field. The kink corresponds
to the saturation of ferromagnetic vanadium moments and the
increase in the high magnetic field is reflected by the gradual
alignment process of paramagnetic Ho moments. On the other
hand, the thermal Hall conductivity saturates at low magnetic
field and does not increase with magnetic field after saturation,
which indicates that the thermal Hall effect is caused only by
the ferromagnetic and Heisenberg-like vanadium moments.

FIG. 5. (Color online) Magnetic-field variation of the thermal
Hall conductivity for Ho2V2O7 at various temperatures.

This is consistent with the scenario of magnon Hall effect
because the magnon picture is not valid for paramagnetic and
Ising-like Ho moments.

Figure 6 shows the magnetic-field dependence of thermal
Hall conductivity for In2Mn2O7 at various temperatures. A fi-
nite thermal Hall conductivity is observed below TC = 130 K.
While the sign is negative and the magnitude is large (κxy ≈
−2 × 10−3 W/K m at 100 K) in this case, the temperature and
magnetic-field dependencies are quite similar to the previous
cases. The decrease of thermal Hall conductivity after the
saturation is also observed at low temperature. In Fig. 4(c), we
show the temperature dependence of thermal Hall conductivity
and magnetization at μ0H = 0.3 T and 7 T. (Similarly to the
previous cases, we plot the averaged thermal Hall conductivity
between 0.2 T and 0.5 T as the 0.3-T value and between 6.5 T
and 7.5 T as the 7-T value.) The thermal Hall conductivity is
fairly suppressed above TC even under magnetic field also in
this case.

FIG. 6. (Color online) Magnetic-field variation of the thermal
Hall conductivity for In2Mn2O7 at various temperatures.
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FIG. 7. (Color online) (a) DM vectors in pyrochlore lattice and
(b) magnetic flux due to the DM interaction in the (111) plane of the
pyrochlore lattice (Kagomé lattice).

The thermal Hall signal in pyrochlore ferromagnetic insu-
lators can be explained by the theory of magnon Hall effect
based on the DM interaction.13 Since the midpoint between
any two apices of a tetrahedron is not a center of inversion
symmetry in the pyrochlore structure, there is a nonzero DM
interaction

HDM =
∑
〈i,j〉

Dij · (Si × Sj ), (3)

where Dij and Si are, respectively, the DM vector between the
sites i and j and the TM spin moment at the site i. The sum is
taken over all pairs of neighboring sites. As shown in Fig. 7(a),
the DM vectors on a single tetrahedron of the pyrochlore lattice
are determined by Moriya’s rule19–21 and distributed as

D13 = D√
2

(−1,1,0), D24 = D√
2

(−1, −1,0), (4)

D43 = D√
2

(0, −1,1), D12 = D√
2

(0, −1, −1), (5)

D14 = D√
2

(1,0,1), D23 = D√
2

(1,0, −1), (6)

where 1, 2, 3, and 4 denote the sites shown in Fig. 7(a). The DM
vector on each bond is perpendicular to the bond and parallel
to the face of the surrounding cube. Let us see that the DM
interaction does not disturb the ferromagnetic ordering. To this
end, we replace Si with (〈S〉 + δSi), where 〈S〉 denotes the
ordered moment. For a single tetrahedron, the DM interaction
gives rise to the first-order term in the fluctuation δSi as

δH�
DM =

4∑
i=1

∑
j (�=i)

Dij · (δSi × 〈S〉), (7)

where the superscript � denotes the single tetrahedron
shown in Fig. 7(a). However, since

∑
j (�=i) Dij = 0 for

any i, one can confirm δHDM = 0. This implies that the
collinear ferromagnetic ground state is stable against the DM
interaction.

We now briefly explain how the DM interaction can act on
the magnons like an effective gauge field and gives rise to the
Berry phase effect. The Bloch state of a single magnon with
momentum k is defined by

|k〉 ≡ 1√
N

∑
i

eik·Ri |i〉, (8)

where |i〉 is the magnon state, in which the spin state at
the position Ri is S − 1 with all the other spins being
completely aligned with the H direction. The matrix element
corresponding to the transfer integral of magnons is expressed
as

〈i| − J Si · Sj + Dij · (Si × Sj )|j 〉

= −1

2
〈i|J̃ (e−iφS+

i S−
j + eiφS−

i S+
j )|j 〉 = − J̃

2
eiφ, (9)

where J is the nearest-neighbor ferromagnetic exchange and
S± is the operator that increases (decreases) the spin compo-
nent along the direction n = H/|H|. The relation J̃ eiφ = J +
i Dij · n determines the complex transfer integral for magnons.
Note that the component of the DM vector perpendicular to
n does not contribute to the spin-wave Hamiltonian up to
quadratic order. The phase factor due to the DM interaction can
be viewed as a “fictitious magnetic flux.” It should be noted that
the lattice geometry is important to avoid cancellation of the
effect of phase factor; the inequivalent loops in the unit cell are
necessary for a finite thermal Hall conductivity, as suggested
previously.12 There are such inequivalent loops in the unit cell
in the pyrochlore lattice. Figure 7(b) shows the (111) plane
cross section of pyrochlore lattice, which is the Kagomé lattice.
The out-of-plane component of the DM vector perpendicular
to the (111) plane is also depicted in this figure. The Kagomé
lattice is certainly composed of inequivalent loops, namely
the triangles and hexagons. While the total magnetic flux in
the unit cell is zero, the Berry curvature, i.e., the fictitious
magnetic flux in momentum space, becomes nonzero due to
the inequivalence of the loops, which may induce the thermal
Hall effect of magnons.

We now turn to the quantitative calculation of the thermal
Hall effect and its comparison with the experimental results. A
formula for the thermal Hall conductivity of magnon systems
was first proposed in Refs. 12 and 13. However, it recently
has been pointed out by Matsumoto and Murakami that an
additional term corresponding to the rotational motions of
magnons is missing in this formula.22 In the following, we
will first present the derivation of the previous formula12,13 and
show how this formula relates the thermal Hall conductivity to
the Berry curvature in momentum space. We then will present
the correct formula based on the new formulation, which is
also expressed in terms of the Berry curvature.22 The ratio of
the DM interaction to the ferromagnetic exchange interaction
D/J will also be estimated using the new formula.

Let us, first, provide a brief synopsis of the derivation of
the previous formula. We start from the spin Hamiltonian
consisting of the ferromagnetic exchange interactions, the DM,
and Zeeman terms as follows:

H = H0 + HDM, (10)

H0 = −J
∑
〈i,j〉

Si · Sj − gμB H ·
∑

i

Si . (11)

We can derive the spin-wave Hamiltonian applying the
Holstein-Primakoff transformation, which is a slight modifica-
tion of the calculation of the matrix element Eq. (9) presented
above. The spin-wave Hamiltonian in momentum space reads

HSW =
∑

k

�
†
kH(k)�k, (12)
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where �(k) = (b1,k,b2,k,b3,k,b4,k)T are the boson operators that annihilate magnons, and

H(k) = −2JS

⎡
⎢⎢⎢⎢⎣

0 eiφ12 cos(ky−kz)
cos(φ12) eiφ13 cos(kx+ky )

cos(φ13) eiφ14 cos(kz−kx )
cos(φ14)

0 eiφ23 cos(kx+kz)
cos(φ23) eiφ24 cos(kx−ky )

cos(φ24)

0 e−iφ43 cos(ky+kz)
cos(φ43)

0

⎤
⎥⎥⎥⎥⎦ + const, (13)

where kα = k · α̂ (α = x,y,z). The lower triangle of the matrix
is understood to be filled so that the matrix is Hermitian.
The phase factors φij in Eq. (13) are uniquely determined
by the DM vectors and the direction of the magnetic field
n = (nx,ny,nz) through the relation tan φij = (Dij · n)/J (see
Supporting Online Material of Ref. 13 for details).

One can diagonalize the spin-wave Hamiltonian at each
k and obtain the eigenvector |ψm(k)〉 with corresponding
eigenvalues ωm(k), where m (m = 1,2,3,4) is the band index.
Using the Kubo formula, one can calculate the thermal Hall
conductivity καβ . In the low-temperature region, the dominant
contribution comes from the small momentum region of the
lowest (m = 1) magnon band due to the Bose nature of
magnons and the fact that the lowest band is well separated
from the other bands near k = 0. Retaining only the first-order
terms in the DM interaction, the analytic expression for
the anomalous thermal Hall conductivity due to magnons is
obtained as

κ̄αβ ≈ −�2

2T

∫
BZ

d3k

(2π )3
ρ1(k) Im

〈
∂ψ1(k)

∂kα

∣∣∣∣∂ψ1(k)

∂kβ

〉

≈ �αβ

k2
BT

π3/2h̄a

(
2 + gμBH

2JS

)2
√

kBT

2JS
Li 5

2
(e− gμB H

kB T ), (14)

where � = 8JS + 2gμBH , ρm(k) = [exp(βωm(k)) − 1]−1

denotes the Bose distribution function, and the integral is over
the Brillouin zone (BZ). ψ1(k) and ω1(k) are, respectively,
the eigenvector of H(k) corresponding to the lowest magnon
mode and its dispersion. In the second line of Eq. (14),
Lin(z) = ∑∞

k=1
zk

kn is the polylogarithm, a the lattice constant,

and �αβ = εαβγ nγ D/(8
√

2J ) with the totally antisymmetric
tensor εαβγ . We, thus, have obtained the expression for κxy

in terms of the Berry curvature in the first line of Eq.
(14) as a result of the approximation neglecting the upper
bands. However, as recently pointed out by Matsumoto and
Murakami,22 the thermal Hall conductivity of magnons is, in
general, expressed by the Berry curvature without such an
approximation. By noting that there is an additional correction
to Eq. (14) that corresponds to the rotational motions of
magons, they derived the following formula:

καβ = 2T
∑

n

∫
BZ

d3k

(2π )3
c2(ρn(k)) Im

〈
∂ψn(k)

∂kα

∣∣∣∣∂ψn(k)

∂kβ

〉
,

(15)

where c2(ρ) = (1 + ρ)(log 1+ρ

ρ
)2 − (log ρ)2 − 2Li2(−ρ). Us-

ing the approximation that neglects the upper bands, we have

καβ ≈ 2T

∫
BZ

d3k

(2π )3
c2(ρ1(k)) Im

〈
∂ψ1(k)

∂kα

∣∣∣∣∂ψ1(k)

∂kβ

〉

= �αβ

4k2
BT

3π2h̄a

(
kBT

2JS

)5/2 ∫ ∞

0
c2

(
1

e
t+ gμB H

kB T − 1

)
t3/2dt.

(16)

Here we have restored the unit h̄ = kB = a/4 = 1. Note that
the integral in the second line of Eq. (16) is dimensionless.
The temperature and field dependencies of καβ clearly differ
from those of κ̄αβ in Eq. (14).

In Figs. 8(a)–8(c), we show the fitting of the thermal Hall
conductivity at low temperature by Eq. (16) for the pyrochlore
ferromagnetic insulators. The ferromagnetic exchange inter-
action J is estimated by the specific heat data13 for Lu2V2O7

and the mean-field values J = kBTC/4S(S + 1) are employed
for Ho2V2O7 and In2Mn2O7. The field dependence is well
reproduced by Eq. (16) as shown in these figures. From the
fitting, we estimate the ratio of the DM interaction to the
ferromagnetic exchange interaction D/J as D/J = −0.38
for Lu2V2O7, D/J = −0.07 for Ho2V2O7, and D/J = 0.018
for In2Mn2O7. It should be noted that the estimated D/J

values have large error bars because it is quite sensitive to the
estimate of J . (We have the estimate for |D/J | ∼ 0.007–0.035
in the case of In2Mn2O7 if the error in the estimate of J is
within 30%.) Nevertheless, the estimated order of magnitude
|D/J | ∼ 10−1–10−2 is still meaningful, which is comparable
to those reported in TM oxides.23,24 The difference of the
sign of D/J between In2Mn2O7 and the pyrochlore vanadates
may be ascribed to the different electronic configuration (d1

for Lu2V2O7 and Ho2V2O7 and d3 for In2Mn2O7) while
the accurate estimation of many virtual hopping processes
is required to determine D and J . The first-principles band
structure calculation is the most reliable approach to the-
oretically estimate the D/J as employed by Xiang et al.
for Y2V2O7 using the DFT + U calculation.25 The detailed
comparison of the Dzyaloshinskii-Moriya interaction between
pyrochlore vanadates and In2Mn2O7 with band calculation is
a future problem. As exemplified in Fig. 4(c), theoretically
calculated thermal Hall conductivity κcalc

xy steeply increases
with temperature. This is qualitatively consistent with the
experimental observation in the low-temperature region. The
thermal Hall signal is within the noise level at 10 K but
clearly observed around 20 K to 30 K for all the pyrochlore
ferromagnets as shown in Figs. 3, 5, and 6. These may be
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FIG. 8. (Color online) Magnetic field variation of thermal Hall
conductivity (a) at 20 K for Lu2V2O7, (b) at 20 K for Ho2V2O7, and
(c) at 33 K for In2Mn2O7. The solid line indicates the magnetic-
field dependence given by the theoretical formula based on the
Dzyaloshinskii-Moriya interaction [Eq. (16)].

caused by the steep temperature dependence of the magnon
Hall effect. The weaker increase of experimentally observed
thermal Hall conductivity in the higher-temperature region
seems to be caused by the effect of the magnon-magnon
interaction, which is important in this temperature range but
neglected in the theory.

As we have seen, the thermal Hall signal due to the
magnon Hall effect is commonly observed in the py-
rochlore ferromagnetic insulators. The order of magnitude and
the temperature/field dependencies are quite similar among the
materials. The phenomenon of the magnon Hall effect seems
generic in pyrochlore ferromagnets.

IV. MAGNON HALL EFFECT IN PEROVSKITE LATTICE
SYSTEMS

In this section, we investigate the magnon Hall effect in fer-
romagnetic insulators with a perovskite-like crystal structure
and clarify the effect of lattice geometry on the magnon Hall
effect. The crystal structure of perovskite oxide ABO3 with the
GdFeO3-type orthorhombic distortion is shown in Fig. 1(b).
The crystal structure is composed of corner-sharing BO6

octahedra and interstitial A ions. The BO6 octahedra are tilted
alternatively in the orthorhombically distorted GdFeO3-type

FIG. 9. (Color online) [(a)–(d)] Magnetic, electric, and thermal
properties of ferromagnetic perovskite oxides La2NiMnO6, BiMnO3,
and YTiO3. (a) Temperature dependence of magnetization at a
magnetic field μ0H = 0.1 T. (b) Magnetization curves at T = 5 K.
(c) Temperature variation of resistivity. (d) Temperature variation of
longitudinal thermal conductivity.

structure. The rare-earth and transition metals usually occupy
the A and B sites, respectively.

The antiferromagnetic interaction usually works between
the magnetic moments of nearest-neighboring transition met-
als in perovskite Mott insulators. In order to stabilize the
ferromagnetic order in the perovskite lattice, the staggered
ordering of two different transition metals is effective. This is
certainly realized in double perovskite oxide La2NiMnO6, in
which the Ni2+(t6

2ge
2
g) and Mn4+(t3

2g) ions show the staggered
alignment in the B-site sublattice.26 The crystal structure
is monoclinically distorted with the space group of P 21/n

in the low-temperature region. According to the Kanamori-
Goodenough rules, the ferromagnetic superexchange interac-
tion works between the Ni and Mn moments. The ferromag-
netic spontaneous magnetization is observed below 280 K in
La2NiMnO6, as shown in Fig. 9(a). The magnetization curve
saturates at low magnetic field, showing a typical ferromag-
netic behavior [Fig. 9(b)]. The saturated magnetic moment is
slightly smaller than the expected value [2.5 μB/(Ni,Mn)].
The resistivity increases rapidly with decreasing temperature
[Fig. 9(c)].

Another way to stabilize the ferromagnetic order in per-
ovskite oxides is orbital ordering. The orbital-order-induced
ferromagnetic state is realized in YTiO3 and BiMnO3. YTiO3

has one 3d electron per Ti site, which occupies one of
the triply degenerate t2g states. The degeneracy is lifted
by the four sublattice orbital ordering with d-type Jahn-
Teller distortion.27,28 We show the temperature dependence of
magnetization and the magnetization curve at 5 K for YTiO3

in Figs. 9(a) and 9(b), respectively. The ferromagnetic order
is stabilized by the orbital ordering below TC = 30 K. The
saturated magnetization almost coincides with the expected
value for the d1 electronic configuration (1 μB/Ti). A neutron
diffraction experiment observed the gapless magnon spectrum
in this material.29 The resistivity is too large to be measured
even at 300 K and, thus, is not shown in Fig. 9(c).
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FIG. 10. (Color online) Orbital ordering in BiMnO3.

In BiMnO3, four 3d electrons at the Mn site show the
high-spin configuration due to the large Hund coupling. While
three t2g states with the same spin direction are fully occupied,
there is only one electron in the doubly degenerated eg states.
As a result, the eg orbital is ordered with 16 Mn sites in the
unit cell as shown in Fig. 10.30 The temperature dependence
of magnetization and the magnetization curve are shown in
Figs. 9(a) and 9(b), respectively. The ferromagnetic order is
stabilized below around 100 K.31,32 The saturated magnetic
moment roughly coincides with the expected value (4 μB/Mn).
The resistivity is too high to be measured also in this case.

Figure 9(d) shows the longitudinal thermal conductivity for
La2NiMnO6, YTiO3, and BiMnO3. The magnitude of thermal
conductivity is small also for these perovskite ferromagnetic
insulators. For La2NiMnO6 and YTiO3, the thermal conduc-
tivity monotonically decreases with decreasing temperature.
On the other hand, it has a broad peak structure around 50 K
for BiMnO3.

We show the thermal Hall conductivity for La2NiMnO6 and
YTiO3 in Fig. 11 and that for BiMnO3 in Fig. 12. Finite thermal
Hall conductivity is not discernible for La2NiMnO6 and YTiO3

even below TC . On the other hand, we have observed the
negative thermal Hall signal below TC in BiMnO3. Similarly to
the cases of pyrochlore ferromagnets, the thermal Hall conduc-
tivity for BiMnO3 is nearly proportional to the magnetization
but tends to decrease with magnetic field after the saturation
at low temperature. The temperature dependencies of thermal
Hall conductivity and magnetization at μ0H = 1 T and 7 T
for BiMnO3 are plotted in Fig. 13. (Similarly to the previous
cases, we plot the averaged thermal Hall conductivity between
0.5 T and 1.5 T as the 1-T value and between 6.5 T and 7.5 T

FIG. 11. (Color online) [(a) and (b)] Magnetic-field variation
of thermal Hall conductivity for (a)La2NiMnO6 and (b)YTiO3. For
YTiO3, magnetic field is applied to the [100] direction of pseudocubic
crystal.

as the 7-T value.) The thermal Hall conductivity is suppressed
above TC ≈ 100 K even at 7 T while the magnetization is
large just above TC in the high magnetic field. Similarly to the
pyrochlore case, these behaviors can be explained in terms of
the magnon Hall effect.

The presence or absence of the magnon Hall effect in
perovskite oxides can also be well explained by the theoretical
model based on the DM interaction. In the ideal cubic
perovskite structure, where the midpoint between two TM
ions is a center of inversion symmetry, the DM interaction
is absent. In many materials, however, the DM interaction is
allowed because of the distortion, and it is not trivial whether
the magnon Hall effect can be observed or not.

As an example, we show the structure and the pattern of DM
vectors in the GdFeO3-type distorted perovskite structure in
Fig. 14. The a,b,c and x,y,z axes belong to the orthorhombic
and pseudocubic coordinate systems, respectively. In this
structure, there are four transition metals (1–4 in the figure) in

FIG. 12. (Color online) Magnetic-field variation of the thermal
Hall conductivity at various temperatures for BiMnO3.
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FIG. 13. (Color online) Temperature dependence of the thermal
Hall conductivity and magnetization at μ0H = 1 T and μ0H = 7 T
for BiMnO3.

a unit cell and the DM vectors between the neighboring sites
i and j are distributed as follows:

D12 = (αc,βc,0), D34 = (−αc,βc,0), (17)

D23 = (αab, − βab,γab), D41 = (αab, − βab, − γab). (18)

As described in the previous section, only the component of
the DM vectors parallel to the magnetic field contributes to

FIG. 14. (Color online) (a) DM vectors in perovskite structure
with GdFeO3-type distortion. For notational convenience, the equiv-
alent sites 3 and 5 (4 and 6) are distinguished. The a,b,c and x,y,z

axes belong to the orthorhombic and pseudocubic coordinate systems,
respectively. (b) DM vectors and flux pattern in the pseudocubic zx

plane. The positive direction of flux is taken to be counterclockwise.

the Berry curvature; hence, we illustrate the component of
DM vectors perpendicular to the lattice plane in Fig. 14(b) (y
component in the zx plane).

In the following discussion, we consider the situation in
which the magnetic field is applied along the psudocubic y axis
and magnon transfers in the zx plane. When the magnon moves
on the loop 1 → 2 → 3 → 4 → 1 in the Fig. 14(b), magnon
gains the phase factor φ (φ in the counterclockwise direction),
whereas a phase factor is −φ (φ in the clockwise direction)
when magnon moves on the next neighboring loop 1 → 4 →
3 → 2 → 1 because Dij = −Dji . Therefore, the flux, which
is the phase factor of magnons, are staggered in a zx plane. In
this case, the absence of the magnon Hall effect can be roughly
understood as follows. Suppose that the system is purely two-
dimensional as described in Fig. 14(b). Then, if we translate
the system by a half length of the lattice constant in the x

direction and apply the symmetry operation that rotates the
plane by angle π about the x axis, the flux pattern returns to the
original one. This immediately implies κzx = −κzx and, thus,
the thermal Hall conductivity of magnons is zero. Note that
the ferromagnetic spin configuration itself is reversed by the
above π rotation. A similar argument applies to the case where
the magnetic field is along the x direction or the z direction.
A more rigorous justification based on the symmetry of the
(three-dimensional) spin-wave Hamiltonian is given below.

In the following, we explicitly show the cancellation by
deriving the effective spin-wave Hamiltonian for the case of
staggered flux pattern and showing that the Berry curvature at
any k point is exactly zero because of symmetry reasons. Let
us start from the original spin Hamiltonian defined by

H =
∑
〈i,j〉

[Jij Si · Sj + Dij · (Si × Sj )] − gμBH
∑

i

S
y

i ,

(19)
where 〈i,j 〉 denote nearest-neighbor pairs. Here we consider
the ferromagnetic exchanges with Jij = −Jab on the xy plane
and those with Jij = −Jc along the z axis. Note that we have
neglected further neighbor exchange interactions. We then take
the y direction as a quantization axis of spins and apply the
standard Holstein-Primakoff transformation, yielding the spin-
wave Hamiltonian as

HSW =
∑

k

�
†
kH(k)�k, (20)

H(k) = −2S

[
0 D(k)

D†(k) 0

]
+ const, (21)

where �(k) = (b1,k,b3,k,b2,k,b4,k)T and

D(k) =
[

Jce
iφ cos kz Jab(cos kx + cos ky)

Jab(cos kx + cos ky) Jce
iφ cos kz

]
(22)

with φ = arctan(βc/Jc) − arctan(βab/Jab). Here we have per-
formed a gauge transformation which makes the Hamiltonian
less cumbersome. Note that kα = k · α̂ (α = x,y,z), where α̂

corresponds to half the lattice translation in the α direction.
We are now ready to show that the Berry curvature for each

band at any k is exactly zero. To this end, we make use of
the symmetry of the spin-wave Hamiltonian. The Hamiltonian
H(k) is invariant under the following transformation:

(�xH(k)�x)∗ = H(k), (23)
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where the matrix �x is defined by

�x =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠, (24)

and asterisk (∗) denotes the complex conjugate. Note that this
symmetry is not present in the spin-wave Hamiltonian for
the pyrochlore ferromagnet [Eq. (13)]. If we suppose that
the eigenvalue of H(k) is nondegenerate, we can determine
the form of the eigenvector that should be invariant under
the transformation in Eq. (23) as follows:

|ψm(k)〉 = [um(k),vm(k),u∗
m(k),v∗

m(k)]T , (25)

where m (m = 1,2,3,4) are the band indices. For the mth band,
the Berry curvature is given by

F
(m)
αβ (k) = −2Im

〈
∂ψm(k)

∂kα

∣∣∣∣∂ψm(k)

∂kβ

〉
. (26)

However, due to the special form of the eigenvector Eq. (25),
one can easily see that the right-hand side of Eq. (26) is
always zero. This proves that F

(m)
αβ (k) = 0 for any k. The

same symmetry applies to the case where the magnetic field
is applied along the z axis or x axis. Thus, we conclude that
the thermal Hall conductivity καβ should vanish in this system
irrespective of the direction of the field.

YTiO3 certainly has the GdFeO3-type orthorhombic crystal
structure. While the crystal structure of La2NiMnO6 is mon-
oclinic, it can be approximately viewed as GdFeO3 structure
because the difference of monoclinic angle from 90◦ is less
than 0.1◦.33 Therefore, the absence of thermal Hall effect in
YTiO3 and La2NiMnO6 is well explained by the above theory.
On the other hand, BiMnO3 have a larger unit cell with 16
Mn sites. In this case, the cancellation of the Berry curvature

due to symmetry reasons may be avoided, and, thus, a finite
thermal Hall conductivity is expected and actually observed.

V. SUMMARY

In summary, we have investigated the magnon-induced
thermal Hall conductivity in various ferromagnetic insulators.
In addition to the previously reported Lu2V2O7 case,13 the
finite thermal Hall conductivity is also observed in other
pyrochlore ferromagnets Ho2V2O7 and In2Mn2O7. The tem-
perature and magnetic field dependencies as well as the order
of magnitude are quite similar to those of Lu2V2O7, which
indicates that the observed thermal Hall conductivity in the
pyrochlore ferromagnets can be generically ascribed to the
magnon Hall effect due to Dzyaloshinskii-Moriya interaction.
In the perovskite ferromagnets, the thermal Hall signal is
indiscernible for La2NiMnO6 and YTiO3, which contains four
transition-metal (TM) sites in a unit cell, but a finite signal is
observed for BiMnO3 with the larger unit cell with 16 TM sites.
The presence or absence of magnon Hall effect can also be well
explained by the theory based on the Dzyaloshinskii-Moriya
interaction. Our study further revealed that the lattice geometry
affects the topological strucuture of the Bloch wave function
and, thus, is essential for the observed magnon Hall effect.
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