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Various lattice geometries and boundary conditions are used to investigate valence-bond-solid (VBS) ordering
in the ground state of an S = 1/2 square-lattice quantum spin model—the J -Q model, in which four- or six-spin
interactions Q are added to the standard Heisenberg exchange J . Ground-state results for finite systems (with up
to thousands of spins) are obtained using an unbiased projector quantum Monte Carlo method. It is found that
great care has to be taken when extrapolating the order parameter to infinite lattice size, in particular, in cylinder
geometry. Even though strong VBS order exists in two dimensions, and is established clearly with increasing
system size on L × L lattices (or Lx × Ly lattices with a fixed aspect ratio Lx/Ly of order 1), only short-range
VBS correlations are observed on long cylinders (when Lx → ∞ at fixed Ly). The correlation length increases
with the cylinder width, until long-range order sets in at a “critical” width. This width is very large even when
the 2D order is relatively strong. For example, for a system in which the order parameter is 70% of the largest
possible value, Ly = 8 is required for ordering. Extrapolations of the VBS order parameter based on correlation
functions (the square of the order parameter) for small L × L lattices can also be misleading. For a 20%-ordered
system, results for L up to ≈20 appear to extrapolate clearly to a vanishing order parameter, while for larger
lattices the scaling behavior crosses over and extrapolates to a nonzero value (with exponentially small finite-size
corrections). The VBS order parameter also exhibits interesting edge effects related the known emergent U(1)
symmetry close to a “deconfined” critical point, which, if not considered properly, can lead to wrong conclusions
for the thermodynamic limit. The observed finite-size behavior for small L × L lattices and long cylinders is
very similar to that predicted for a Z2 spin liquid. The results therefore raise concerns about recent numerical
work claiming Z2 spin-liquid ground states in 2D frustrated quantum spin systems, in particular, the Heisenberg
model with nearest and next-nearest-neighbor couplings. Based on the results presented so far, a VBS state in
this system cannot be ruled out.
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I. INTRODUCTION

A valence-bond solid (VBS) is a state of a quantum spin
system in which there is no magnetic long-range order, but
lattice symmetries (translational and some times rotational) are
broken due to dimerization or, more generally, polymerization
of the system into one with a larger unit cell than the
underlying lattice. One can think of the spins within a unit
cell of a VBS (or within different groups of spins in a
large complex unit cell) as having an enhanced probability
of forming a total spin singlet. In this paper, manifestations of
VBS order in ground states of finite systems are investigated,
using unbiased quantum Monte Carlo (QMC) simulations of
S = 1/2 spins on the two-dimensional (2D) square lattice
with interactions—Heisenberg exchange supplemented by
certain multispin interactions—leading to columnar order in
the thermodynamic limit.1 The approach to the infinite-size
2D limit is investigated for different boundary conditions. The
models considered can be tuned from strong to weak VBS
order (and also through a critical point), enabling bench-mark
investigations of asymptotics and crossover behaviors. In
particular, consequences of near-criticality of the VBS order
on the finite-size behavior can be examined in detail. The
stability of VBS order on long cylinders (Lx × Ly lattices
with Lx � Ly) is also addressed. This geometry is often
used in density matrix renormalization (DMRG) studies,2,3

with recent intriguing results pointing to the absence of
VBS order and the existence of spin liquids in frustrated
models whose ground states have been debated for a long
time.4–6

In the following introductory sections, several background
facts motivating further studies of VBS order are discussed
and some of the known properties of VBS states are briefly
reviewed. The purposes of the studies reported here will then
be detailed, followed by an outline of rest of the paper.

A. VBS states and frustrated interactions

VBS states have been known for a long time to exist
in 1D frustrated quantum spin chains. In particular, in the
S = 1/2 Heisenberg chain with nearest- and next-nearest-
neighbor couplings J1 and J2, the ground state at coupling
ratio g = J2/J1 = 1/2 is exactly a product of singlets formed
on alternating nearest-neighbor bonds (a pattern which can
be realized in two different ways; hence the ground state is
twofold degenerate).7 Away from this special, exactly solvable
point, there are fluctuations modifying the simple product
state. Numerical exact diagonalization studies have shown
that long-range dimerization survives down to gc ≈ 0.241.8–10

For g < gc, the ground state exhibits critical spin and VBS
correlations (like the standard Heisenberg chain with J2 =
0).11 At higher g, the simple dimer VBS order persists at least
up to g ≈ 0.6, above which more complicated VBS or spiral
spin states likely form.12,13

The frustrated 2D square-lattice J1-J2 Heisenberg model
(with nearest-neighbor couplings J1 and the J2-interactions
connecting spins across the diagonals of each four-spin pla-
quette) also has a nonmagnetic ground state in some window
of coupling ratios 0.4 � g � 0.6 (outside of which the ground
state is Néel antiferromagnetic for smaller g and exhibits stripe
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FIG. 1. (Color online) A cylindrical, semiperiodic 2D square
lattice with open edges (left and right sides) and periodic boundary
conditions in the vertical direction (i.e., the open links at the top and
bottom are connected to each other).

antiferromagnetic order for larger g).14–17 However, in this
case, it has been difficult to determine the exact nature of
the ground state. Many studies over the past two decades
have suggested a VBS, with either columnar or plaquette
(four-spin unit cell) order,15–27 but spin-liquid ground states
(which have no broken symmetries but may have topological
order)28 have also been proposed.14,29 Very recently, results
of DMRG calculations on cylindrical semiperiodic lattices
(with open edges in one direction—see Fig. 1) were used to
argue more specifically that the ground state of the system for
0.41 � g � 0.62 is a Z2 spin liquid.6 A concurrent calculation
based on tensor-product states also claimed the absence of
VBS order.30

A story similar to that of the J1-J2 Heisenberg model
has played out in recent years in the case of the S = 1/2
Heisenberg model with only nearest-neighbor interactions on
the geometrically frustrated kagome lattice. Many calculations
initially suggested a VBS ground state (in this case with a
complex 12- or 36-site unit cell),31–35 but the most recent
DMRG studies support a Z2 spin-liquid scenario4,5 (as also
predicted in early analytical work).36 Here, as well, cylindrical
lattices played a crucial role in obtaining the numerical data.

B. Deconfined quantum-critical points and VBSs
with emergent U(1) symmetry

When the Néel order of a 2D antiferromagnet such as
the S = 1/2 Heisenberg model is destroyed in a continuous
quantum phase transition, one scenario is that the putative
spin-liquid state is immediately unstable to the formation
of a VBS. This has been argued to lead to a “deconfined”
quantum-critical point separating the Néel and VBS states.37,38

The phase transition is associated with deconfinement of
spinons. Being generically continuous, due to subtle quantum
interference effects, this type of transition violates the classical
“Landau rule,” according to which a transition between
two ordered states breaking unrelated symmetries should be
generically first order.

In the low-energy field-theory argued to describe the
deconfined quantum-critical point (the 2 + 1 dimensional
noncompact CP1 theory),37 the VBS fluctuations correspond
to a U(1) gauge field to which spinons are coupled. There
is a dangerously irrelevant operator (a quadrupled monopole
operator), which reduces the U(1) symmetry to a fourfold (Z4)
symmetry inside the ordered VBS state (in which the spinons
become confined). On the square lattice, this corresponds

to the four degenerate columnar VBS patterns. Close to the
critical point, the Z4 symmetry only becomes apparent beyond
a length-scale �, which is larger than the standard correlation
length ξ associated with the magnitude of the order parameter.
At distances below � there are angular fluctuations of the
VBS order parameter (Dx,Dy), which in a system with x

order, (|Dx | > 0,Dy = 0), induces Dy order on length scales
up to �, with this length diverging as � ∼ ξ 1+a with a > 0. At
distances much below �, the angle of the VBS order parameter
fluctuates in an essentially U(1) isotropic manner.

The deconfinement scenario appears to be realized in a class
of “J -Q” models,1,39–43 in which the Heisenberg exchange J

is supplemented by certain multispin interactions—products
of two or more two-spin singlet projectors acting on differ-
ent spin pairs. These interactions lead to the formation of
local correlated singlets, thereby reducing, and eventually
destroying, the Néel order. Results of QMC calculations
(which are not affected by sign problems in this case) are
consistent with a single critical point separating the Néel
state and a VBS. While some works suggested that the
transition is weakly first order,4,95 the most recent studies
point to a continuous transition with anomalously large scaling
corrections.41–43 Moreover, emergent U(1) symmetry has been
explicitly observed in the VBS order parameter distribution.1,4

By studying the U(1)-Z4 crossover, the exponent a was
estimated in Ref. 40 to be a = 0.20 ± 0.05.

C. Stability of the spin liquid

For the frustrated spin systems discussed above in Sec. I A,
deconfined quantum-criticality, i.e., a gapless spin liquid
existing only at a singular point, is also an alternative to
the transition out of the Néel state into an extended spin-
liquid phase. At the heart of this issue is the question
of the stability of the spin-liquid state.44 The deconfined
quantum-criticality scenario implies that some spin liquids are
generically unstable, at least under some commonly satisfied
conditions, but stable spin liquids can also exist.

Recently Cano and Fendley succeeded in constructing a
long-sought local (but complicated) Hamiltonian45 that is the
parent Hamiltonian of the prototypical resonating valence-
bond (RVB) spin liquid, i.e., the equal superposition of
all nearest-neighbor valence bond configurations (with the
Marshall sign rule built in).46–48 This state, however, is a U(1)
spin liquid with exponentially decaying spin correlations but
critical VBS correlations,49,50 and not the kind of fully gapped
Z2 spin liquid proposed in the context of the frustrated models
discussed above [but a U(1) spin liquid is also a possible
ground-state candidate of this model].51 As a consequence
of its close relationship with the critical Rokhasr-Kivelson
dimer model,49,50 one would expect this state to be generically
unstable to perturbations of the Cano-Fendley Hamiltonian,
leading to the formation of a VBS. Viewed from the perspective
of a class of quantum states, the introduction of longer bonds
either maintains the critical VBS,49 or leads to a Z2 spin
liquid,52,53 but the Hamiltonian for these extended RVB states
is not known.

Stable Z2 spin liquids are known with Klein Hamiltonians
on particular decorated lattices,54 but the degree of stability
of these states when moving away from the limit of high
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decoration is not known. The Kitaev honeycomb-lattice
model,55 which has a Z2 liquid state, can also be related to
a model of SU(2) interacting spins on a decorated honeycomb
lattice.56 However, there is still no rigorously known example
of a Z2 spin-liquid ground state of a local SU(2) invariant
Hamiltonian on one of the simple standard 2D lattices (square,
triangular, honeycomb, kagome, etc). This lack of a prototyp-
ical system underlies the quest to find Z2 liquids in numerical
studies of frustrated quantum spin Hamiltonians.4–6,29,30 Z2

spin-liquid states have already been confirmed in QMC studies
of frustrated quantum XY models.57

D. Detection of spin liquids and VBS order

It is highly nontrivial to unambiguously confirm 2D spin-
liquid states based on numerical calculations on relatively
small lattices. The main difficulty here is to exclude weak
VBS order (while the absence of magnetic order is easier
to confirm, e.g., by demonstrating a nonzero spin gap).
There is therefore much interest in finding positive signals
for various spin-liquid phases, e.g., using unique finite-size
scaling properties of the entanglement entropy.58,59 Other
signals related to the topological aspects of spin liquids
have also been proposed.6,52 However, regardless of what
properties are investigated, great care has to be taken in view
of the small lattices accessible for systems with frustrated
interactions. Due to sign problems, unbiased QMC studies of
the ground states of these systems are essentially impossible60

(although some progress has been made here recently at
elevated temperatures).61 Variational QMC methods can be
used29,62 but are not reliable, because very different states can
have almost the same energy. Exact diagonalization studies
can reach ≈42 spins,63–65 while DMRG calculations now can
reach hundreds of spins.3 Tensor-product state methods (which
can be regarded as generalizations of the matrix-product
based66 DMRG scheme) can reach much larger sizes, but
are complicated by the fact that extrapolations also have to
be carried out in the bond dimension of the tensors.30,67,68 In
DMRG calculations, there is a similar issue with regards to
the maximum number of states that can be kept, which is what
limits the accessible system sizes (since that number of states
in this case has to grow exponentially with the system size).

E. Lattice shapes and boundaries

As already mentioned, in DMRG studies it has become
popular to use lattices in the form of cylinders with semiperi-
odic boundary conditions (with periodic boundaries along the
long direction and open short edges), as illustrated in Fig. 1.
An aspect ratio Lx/Ly > 1 improves the convergence with
the number of states kept, as compared to a fully periodic
lattice with equal length in both directions (for a given
total number of lattices sites).2 The better convergence with
samples of this shape can be traced to the inherently 1D
nature of the DMRG procedures and how the generated states
can incorporate entanglement.66 It has also been argued that
cylindrical Lx/Ly > 1 samples, some times in combination
with modifications of the boundaries (e.g., using field terms
breaking some symmetry), have other favorable effects as well

on the convergence of various order parameters as a function
of the system size.2,3

In QMC studies of sign-problem free models, periodic
L × L lattices are normally used. In cases where the couplings
are spatially anisotropic, it has proved helpful to use Lx × Ly

lattices with Lx �= Ly ,69,70 while in other cases no particular
advantages of such rectangular lattices were noted.10 Open
boundaries have been considered in QMC work primarily in
cases where the perturbing effects of the edges are the actual
targets of investigation.71,72 In a previous QMC study of a
VBS state, it was also noted that open boundaries can be used
to break the fourfold symmetry of the 2D VBS completely
and stabilize a unique VBS pattern, as an alternative of
studying VBS correlation functions in periodic lattices with
no explicitly broken symmetries.73

F. Purpose of the paper

The main purpose of the present paper is to systematically
investigate the role of the lattice shape and boundary conditions
on the finite-size scaling properties of the VBS order param-
eter. VBS states have in the past few years been conclusively
demonstrated in several 2D J -Q models,1,39,40,74,75 and also in
1D chains (where the same kind of dimerization transition
takes place as in the frustrated J1-J2 chain)76,77 and 3D
systems.78 Different types of VBS patterns can be realized,
depending on the arrangements of the singlet projectors on the
lattice. These models have been studied with large-scale QMC
simulations, mainly for the purpose of investigating the nature
of the Néel-VBS transition.1,39–43,74,75 Here, the main focus
will instead be on the VBS state itself (including its crossover
behavior close to criticality), using the J -Q models to obtain
generic bench marks for finite-size scaling of this kind of
order parameter. An efficient approximation-free ground-state
projector QMC method79,80 was used to obtain results for both
strongly and weakly VBS ordered systems on square lattices
with different shapes and boundaries.

In order to make contact with the currently favored manner
of applying the DMRG method,2,3 cylindrical systems with
open edges in one direction will be studied extensively. The
convention adopted here is that the edges parallel to the y

axis are open, and periodic boundary conditions are applied
in the other direction. Such an Lx × Ly lattice is illustrated in
Fig. 1. In some cases, the open edges will be modified to favor
a certain VBS pattern, which is often also done in DMRG
studies.5,6 Fully periodic lattices will also be considered. Two
aspect ratios, Lx/Ly = 1,2, will be considered for both the
semiperiodic and fully periodic systems. The limit Lx → ∞
will also be taken for small Ly .

In addition to suggesting optimal approaches for extracting
the VBS order in the 2D thermodynamic limit, the results
presented here will also show that the issue of excluding VBS
order in a system with an unknown type of nonmagnetic ground
state may be more difficult than what has been anticipated
so far. In particular, the geometry of long cylinders can
give misleading results. Not only can calculations on such
systems completely miss 2D VBS order (because the system
is disordered with a short correlation length on the cylinders),
but also the claimed positive signals of a 2D Z2 spin liquid6,52

cannot be trusted when used with cylinders of practically
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accessible widths (because they are essentially 1D spin liquids
although the state orders in the 2D limit). The emergent U(1)
symmetry of the VBS state leads to interesting boundary
effects, which are also studied here.

G. Outline of the paper

In Sec. II, the J -Q models are specified in detail, the
correlation functions of interest are defined, the projector QMC
method is briefly outlined, and its convergence properties are
discussed and illustrated with an example. Extrapolations of
the infinite-size value of the order parameter is discussed
in Sec. III. Results for the J -Q3 model at J = 0 (the pure
Q3 model), which has very robust columnar VBS order, is
discussed first, in order to show how the different ways of
extrapolating the order parameter to the thermodynamic limit
agree well with each other. Results for three different lattice
types are compared; periodic L × L and 2L × L systems as
well as semiperiodic cylindrical 2L × L systems. The much
weaker VBS ordering in the Q2 and J -Q2 models is discussed
next, using the same lattices as above. Here, several subtle
issues are pointed out that affect extrapolations to infinite size
when the order is not strong, and, therefore, the length scales ξ

and � are large. The quantum-critical scaling form of the VBS
order parameter is also discussed, as a nearby critical point also
influences the finite-size behavior in systems off criticality. The
vector aspects of the columnar VBS order parameter (Dx,Dy)
and the effects of its emergent U(1) symmetry are studied in
detail in Sec. IV. The evolution of the x and y components of
the order parameter as a function of the distance from an open
edge is studied, with and without symmetry-breaking modifi-
cations of the edge. In Sec. V, the destruction of VBS order
on cylinders is studied in the limit Lx → ∞ and Ly fixed. The
most important results are summarized and their implications
are discussed in Sec. VI. Here, detailed comparisons with the
recent DMRG results6 for the J1-J2 Heisenberg model are
also made. Detection of the U(1)-Z4 symmetry of the VBS
order parameter based on probability distributions P (Dx,Dy)
generated in QMC calculations is discussed in an Appendix.

II. MODELS AND METHODS

A. J-Q models

A generic J -Q model is defined using products of singlet
projectors C(i,j ) on two sites:

C(i,j ) = 1
4 − Si · Sj . (1)

The standard Heisenberg model is just a sum of such singlet
projectors over the interacting bonds 〈i,j 〉 (here nearest-
neighbor sites on the square lattice):

HJ = −J
∑
〈i,j〉

C(i,j ), (2)

where the minus sign corresponds to antiferromagnetic inter-
actions. A Qn term consists of products of two or more (n)
singlet projectors acting on different bonds:

HQn
= −Qn

∑
a

n∏
b=1

C(i[a,b],j [a,b]). (3)

Q2

Q3

FIG. 2. (Color online) Q2 and Q3 terms on the square lattice.
The bars of length one lattice constant indicate the locations of
singlet projectors C(i,j ) on site pairs i,j . The Hamiltonian contains
all unique translations of these operators.

Here, a is a label corresponding to the lattice units within which
the singlet projectors are arranged and b labels the bonds (spin
pairs) on which the singlet projectors within these units act;
i[a,b] and j [a,b] above refer to the two sites connected by
bond b in unit a. In the simplest kind of Q2 term on the square
lattice, a denotes 2 × 2 plaquettes with the two projectors
within these plaquettes connecting spins either horizontally or
vertically (i.e., for a given 2 × 2 plaquette there are two labels
a: one corresponding to horizontal and one to vertical bonds).
This standard Q2 term will be considered here, along with a
similar Q3 term with the projectors arranged in columns. Both
these cases are illustrated in Fig. 2. In general, the sum over
projectors is such that the Hamiltonian does not break any of
the symmetries of the lattice.

The J -Qn model defined by the Hamiltonian H = HJ +
HQn

hosts a VBS ground state when Qn/J is sufficiently
large. In general, VBS formation is favored for a large enough
number n of singlet projectors (with the minimum being
typically n = 2 or 3 in two dimensions) if the arrangement
of them is compatible with some symmetry-breaking pattern
of strong and weak bond singlets. In this paper, the pure Q2

and Q3 models without any J term will be studied primarily,
but some results for J -Q2 systems with J/Q2 > 0 will also
be presented.

B. Projector QMC

J -Q models with minus signs as in Eqs. (2) and (3)
do not have QMC sign problems and can be studied with
very efficient QMC loop algorithms. Here, the ground-state
projector method developed in Ref. 80 is used. It is based on
applying a high power of the Hamiltonian to a “trial” state |�0〉,

|�m〉 = (−H )m|�0〉, (4)

where (−H )m is written as a sum over all possible strings of the
individual J and Q terms in Eqs. (2) and (3). Denoting such a
string of singlet projectors by Pm(i), with i formally indexing
the different strings, an operator expectation value is written as

〈A〉m =
∑

ij 〈�0|P T
m (j )APm(i)|�0〉∑

ij 〈�0|P T
m (j )Pm(i)|�0〉 , (5)

where P T
m (j ) is the string Pm(j ) in reverse order.
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The QMC method implements importance sampling of the
operator strings P T

m (j )Pm(i), which is done in two steps, as
described in detail in Ref. 80 in the case of the Heisenberg
model (and the modifications of the scheme when a Q term
is present are straightforward and have been discussed briefly
in Ref. 10): first, all the operators in the J and Q terms are
split into their diagonal and off-diagonal components in the
basis of spin states |Sz

1, . . . ,S
z
N 〉 used. The diagonal operators

can be moved around on the lattice as long as each operator is
compatible with the spin state on which it acts (with only
operations on anti-parallel spins allowed). The full set of
operators is sampled by changing the types of some operators
from diagonal to off diagonal, or vise versa, on the same lattice
unit a, using an efficient loop algorithm.81–83

The ground state of a bipartite J -Q model (i.e., with each
singlet projector connecting two spins on different sublattices)
being guaranteed to be singlet, it is particularly convenient
to use a trial state expressed in the valence bond basis in the
singlet sector. The convergence of 〈A〉m to the true ground-state
expectation value 〈0|A|0〉m is then dictated by the gap to
the second singlet. For a periodic lattice (or a semiperiodic
cylinder), a transitional-invariant trial state also filters out
excited states with nonzero momentum from the outset.
Translational invariance in the applicable lattice direction(s) is
easily ensured by using an amplitude-product state48 for |�0〉,
i.e., a superposition written in terms of bipartite valence bond
states |v〉,

|�0〉 =
∑

v

cv|v〉. (6)

Here, the sum includes all tilings of the N -site lattice into N/2
bipartite two-spin singlets, i.e.,

|v〉 =
∣∣∣∣∣
N/2∏
i=1

(
i,j v

i

)〉
, (7)

where (i,j ) = (|↑i↓j 〉 − |↓i↑j 〉)/
√

2 with i and j sites on
sublattice A and B, respectively, and the weight cv of a given
tiling v into singlets depends only on the “shapes” l = (lx,ly)
of the bonds in |v〉:

cv =
∏

l

h(l)nl, (8)

where nl is the number of bonds of shape l.
Amplitude-product states are very easy to sample in the

course of the projection according to Eq. (4), as also described
in Ref. 80. The detailed form of the amplitude h(l) is not crucial
when the state is used as a trial state. Variationally optimized
amplitudes lead to faster convergence with the power m,
but even without optimizing the convergence properties are
good.80 In the work reported here, amplitudes decaying with
the bond length l as l−3 were used (in which case the trial state
itself has Néel order, but this is very quickly destroyed by the
projection procedure in a VBS state).

C. Correlation functions

In order to characterize the ground state, the spin (s)
and dimer (d) correlation functions are computed. These are

defined in the standard way as

Cs(rij ) = 〈S(ri) · S(rj )〉, (9)

Cdα(rij ) = 〈Bα(ri)Bα(rj )〉, (10)

where rij = ri − rj is the spatial separation of the operators
and Bα , α = x̂,ŷ, is the dimer operator on nearest-neighbor
bonds oriented in the α direction, e.g., for α = x̂

Bx̂(r) = S(r) · S(r + x̂). (11)

One can also define cross correlations 〈Bx̂(ri)Bŷ(rj )〉 but they
will not be needed here. The correlation functions can be easily
computed using loop estimators based on the transition graphs
generated when the sampled valence bond states in the ket and
bra states of Eq. (5) are propagated by the string of singlet
projectors. The estimators are discussed in detail in Refs. 76
and 84.

Columnar and plaquette VBS states can both be detected
by the columnar VBS order parameter, which when averaged
over the whole lattice of N = LxLy sites can be defined by
the operators

Dx = 1

N

∑
x,y

Bx̂(x,y)(−1)x, (12)

Dy = 1

N

∑
x,y

Bŷ(x,y)(−1)y. (13)

In a columnar state with the lattice rotational symmetry
completely broken, either Dx or Dy has a nonzero expectation
value, while in a plaquette state they are both nonzero and
equal. The J -Q models studied here host only columnar VBS
states. However, as we will be discussed below, in a columnar
state on a finite lattice one can have both nonzero 〈Dx〉 and
〈Dy〉, due to boundary and shape effects.

In periodic and semiperiodic systems where the degeneracy
of the possible VBS patterns is not broken, one can only detect
the VBS with the corresponding correlation functions, e.g., the
squares of the order parameters defined above. In particular, it
is useful to consider the total squared order parameter

D2 = D2
x + D2

y. (14)

The magnitude of the order parameter in a corresponding
symmetry-broken state is D = 〈D2〉1/2 (which can be taken
as a definition of the value D of the order parameter). In
nonsquare samples it is also illuminating to investigate the
components 〈D2

x〉 and 〈D2
y〉 individually, to see how the lattice

shape (and boundaries) affects the symmetry breaking. As
will be demonstrated in the following sections, this issue is, in
fact, of key importance for interpreting numerical results for
nonsquare samples.

In the cylindrical semiperiodic systems, it is useful to define
the order parameter in such a way that the perturbing effects
of the open edges are partially eliminated. As in Ref. 6, for
such systems with Lx > Ly the summations in Eqs. (12) and
(13) will normally be taken over only the central sites within
a square of size Ly × Ly .

In cases when the lattice coordinates (x,y) are needed
explicitly in the further discussion of correlation functions
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in the later sections, the numbering convention will be x ∈
{0, . . . ,Lx − 1} and y ∈ {0, . . . ,Ly − 1}.

D. Convergence tests

To examine the convergence properties of the projector
method, the state (4) after m operations with H can be written
in terms of eigenstates |n〉 of H as

|ψm〉 =
∑

n

cnE
m
n |n〉, (15)

where cn are the expansion coefficients of the trial state in
the energy basis. Assuming that the ground-state energy E0

is the largest in magnitude, |E0| � |En|,∀n > 0, which is
the case for sure with a Hamiltonian expressed using the
singlet projectors (1) and the signs as in Eqs. (2) and (3),
an expectation value of an operator A not commuting with the
Hamiltonian can be expanded as

〈A〉m = 〈0|A|0〉 + 2〈1|A|0〉c1

c0

(
E1

E0

)m

+ · · · . (16)

Here, |1〉 is the first excited state in the symmetry sector
considered, which with an amplitude product state obeying all
applicable lattice symmetries is a singlet that is fully symmetric
with respect to all the symmetry operations (translations,
reflections, and rotations of the lattice). With the gap � =
E1 − E0 and a large projection-power m, Eq. (16) can be
written as

〈A〉m = 〈0|A|0〉 + c exp

(
−m

N

�

|e0|
)

, (17)

where e0 is the ground-state energy per site, e0 = E0/N ,
and c is a constant. In order to achieve good convergence,
one should therefore use a size-normalized projection power
m/N � 1/�.

The gapped VBS state being of primary interest here, �/ε0

approaches a nonzero constant as the system size increases.
One may then expect good convergence properties with
an essentially size independent m/N . However, for system
sizes accessible in practice, the gap still typically decreases
significantly with the system size. In addition, the density of
states above the gap increases as well. As a consequence,
m/N has to be increased with the system size to ensure good
convergence. Since the number of operations required for one
full sweep of Monte Carlo updates of a configuration in the
projector method is of order m,80 the computation time in
practice grows faster than N .

All results presented here were tested for convergence
by carrying out several calculations with different projection
powers m/N ∝ L (with L = max[Lx,Ly] for nonsquare
lattices) and making sure that there is no remaining detectable
dependence on m. An example of a detailed convergence test
is shown in Fig. 3. Typically, m/N = L/2 was sufficient to
ensure good convergence. In principle, the singlet-singlet gap
can be extracted by fitting the exponential form (17) to data
such as those in Fig. 3 (as shown in the inset), but such gaps
will not be studied here.
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FIG. 3. (Color online) The VBS order parameter as a function
of the projection power m (normalized by the system size N ) in
simulations of the Q3 model on a periodic 32 × 32 lattice. The inset
shows an exponential fit of the form (17).

III. EXTRAPOLATION OF VBS ORDER

Previous ground-state and finite-temperature QMC studies
have confirmed that both the J -Q2 and J -Q3 models, with the
singlet projectors arranged as in Fig. 2, have VBS-ordered
ground states for large Qn/J .1,4,39,40 The maximal order
parameter obtains for J = 0 (pure Qn models) and, naturally,
the order is more robust in the Q3 model. The previous studies
were mainly concerned with the critical and near-critical
aspects of the Néel and VBS order parameters—the critical
exponents as well as the emergent U(1) symmetry seen in the
VBS order parameter (Dx,Dy).

In this section, some important aspects of the VBS order
parameter will be discussed first, in particular the expected
consequences of its emergent U(1) symmetry. Then, turning
to numerical results, the magnitude of the VBS order parameter
of the pure Q3 model will be extracted first, to illustrate the
convergence as a function of the lattice size for several cases
of lattice shapes and boundary conditions. The J -Q2 model,
including the pure Q2 case, is then considered in order to
investigate potential problems arising when the VBS order is
weaker. The quantum-critical scaling will also be discussed
briefly, as it is directly related to the extrapolation problems
when the VBS can be considered near critical.

A. Nature of the VBS order parameter

Note first that the maximal columnar VBS order parameter
is obtained for the state with no fluctuations in the valence
bond basis—the state with nearest-neighbor singlets on all
bonds of every second column. If the singlets are oriented in
the x direction, then the order parameter components defined
in Eqs. (12) and (13) have the expectation values 〈Dx〉 = 3/8
(up to an arbitrary sign) and 〈Dy〉 = 0. If the symmetry is
not broken and the ground state is an equal superposition of
the four degenerate valence-bond states with horizontal and
vertical bonds, then the expectation value of the squared VBS
order parameter (14) is 〈D2〉 = 〈Dx〉2 + 〈Dy〉2 = 9/64 in the
limit of an infinitely large system. For finite systems, there
are corrections to this value, however, which are related to
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the nonorthogonality and over-completeness of valence bond
states.49,84

The emergent U(1) symmetry property of the VBS order
parameter1,37,38,85 and its related length-scale � will be of
importance in order to understand many of the results to be
discussed here and in the later sections. For L � �, the order
parameter (Dx,Dy) on an L × L lattice behaves essentially as
an isotropic 2D vector, while for L � � the order parameter
locks to one of the four angles nπ/2. This is further discussed
in the Appendix. Here, for Lx �= Ly lattices, with or without
open edges, the U(1)-Z4 crossover will manifest itself also in
how (on what length scale) the 90◦ rotational symmetry of the
VBS order parameter is broken on a lattice which does not
have this symmetry.

It should be noted that symmetry crossovers such as the
U(1)-Z4 case discussed here also occur in many classical
systems with dangerously irrelevant perturbations (i.e., ones
that do not change the universality class of a phase transitions
but reduce the degeneracy of the ordered state), e.g., the 3D
XY -model with a q-fold symmetry-breaking field of the form
cos(qθi) (with q � 4).87,88 There are several numerical studies
of the scaling dimension of such a dangerously irrelevant
perturbation and the nature of the crossover and its length
scale �.89–93

B. Strong VBS order in the pure Q3 model

Figure 4 shows the size dependence of 〈D2〉 of the Q3

model computed on periodic L × L and 2L × L lattices. For
the latter systems, the individual expectation values 〈Dx〉2 and
〈Dy〉2 are also shown (while these are of course both equal
to 〈D2〉/2 for the L × L lattices). Here, the convergence of
〈D2〉 to a nonzero value when L → ∞ is apparent for both
types of lattices. It is interesting to note that both the x and
y components are nonzero on the 2L × L lattices for small
L, but for larger systems the symmetry is completely broken,
eventually leading to 〈D2

x〉 → 0, 〈D2
y〉 → 〈D2〉. Thus, on the
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FIG. 4. (Color online) Size dependence of the squared order
parameter and its x and y components of the Q3 model computed on
periodic L × L and 2L × L lattices. The curves passing through the
〈D2〉 data are second-order polynomial fits (excluding the systems for
which this form cannot be used). The error bars are much smaller than
the plotting symbols (typically the standard deviation is ≈2 × 10−5).

nonsquare periodic lattices, the columnar state with the bonds
oriented parallel to the shorter lattice direction (here Ly) is
energetically favored. This remains true also for larger aspect
ratios Lx/Ly .

The crossover from partially broken to fully broken x-y
rotation symmetry, which in Fig. 4 takes place for the 2L × L

systems for L ≈ 20, should be related to the emergent U(1)
symmetry of the VBS order parameter.1,37,38 As discussed in
the Appendix, for the Q3 model no perfect U(1) symmetry can
be detected on periodic L × L lattices (since the length-scale
� is very short), but for a wide range of sizes the system is in
a crossover regime between U(1) and Z4 symmetry. The range
of L over which the crossover to a purely y-ordered VBS takes
place in Fig. 4 is roughly where all traces of U(1) symmetry
vanish on the L × L lattices (as discussed in Appendix).

Turning now to the quantitative behavior of the total order
parameter for the largest systems in Fig. 4, as expected the
order parameters for both lattice types extrapolate to the same
value in the thermodynamic limit. Fits of the data for the
largest systems to second-order polynomials are shown. Note,
however, that this form is strictly not correct. For a discrete
broken symmetry one would expect the asymptotic finite-size
corrections to be exponentially decreasing with increasing
system size. It is not easy to reach sufficiently large systems to
observe this behavior, however. The second-order fits look
reasonably good on the scale of the plot, but in fact they
are not of high quality statistically when 6–8 data points are
included. Including higher powers helps somewhat, but this
can lead to fitted forms that do not behave monotonically
as 1/L → 0. Such problems with the polynomial fits reflect
a crossover to the eventual exponentially rapid convergence.
Using second-order fits for the largest few system sizes still
should result in a reasonably accurate extrapolated order
parameter. Normally, such an extrapolation should give a lower
bound on the actual value, but this cannot be guaranteed in
the presence of statistical errors. In the case considered here,
the results for L × L and 2L × L extrapolate to 0.0691 and
0.0684, respectively, with the fits shown in Fig. 4. Because of
the issues with the, strictly speaking, wrong form of the fitting
function, it is not meaningful to compute error bars on these
numbers—the purely statistical errors are smaller than the
variations among fits with different polynomials and number
of data points included. For the purposes of the investigations
in this paper, the issue of statistical errors is only of minor
importance, however (while the systematical errors due to a
wrong fitting form are important).

Data for cylindrical 2L × L systems are shown Fig. 5.
Here, the order parameters are computed on the central L × L

square. In sharp contrast to the fully periodic 2L × L systems,
here it is the x component of the order parameter that survives
in the thermodynamic limit. Thus, the open edges along the
y direction favor the bonds ordering perpendicularly to them,
and this effect wins over the competing effect, demonstrated in
Fig. 4, of the aspect ratio Lx/Ly > 1 favoring bonds ordering
in the y direction. Quadratic fits to 〈D2〉 and 〈D2

x〉 for a few
of the largest system sizes extrapolate to 0.0685 and 0.0694,
respectively, in good agreement with the results for the periodic
systems.

As a consequence of the open boundaries inducing
an x-oriented VBS, the ordering pattern in this case is
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FIG. 5. (Color online) Size dependence of the squared order
parameters of the Q3 model on cylindrical 2L × L lattices (using
the central L × L square for computing the expectation values). The
smooth curves are second-order polynomials fitted to the 〈D2〉 data
for several of the largest system sizes.

nondegenerate. Therefore the unsquared order parameter 〈Dx〉
is nonzero and should, in the thermodynamic limit, take a
value agreeing with the squared order parameters extracted
above; 〈Dx〉 → 〈D2〉1/2. The expectation value of the nearest-
neighbor spin correlator (11) indeed oscillates considerably as
a function of the location along the x direction, as shown in
the inset of Fig. 6 for the 32 × 16 cylinder. The dimer order is
clearly the strongest at the edges but remains large also in the
interior of the system.

A local VBS order parameter for a system with bonds
ordered along the x axis can be defined as

Dx(x) = 〈Bx(x,y)〉 − 1
2 〈Bx(x − 1,y) + Bx(x + 1,y)〉,

(18)
which is independent of y on the semiperiodic cylindrical
lattices (and can be averaged over y in the QMC calculations).
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FIG. 6. (Color online) Local columnar x order parameter (18)
of the Q3 model computed at the center of a 2L × L cylinder.
The smooth curve is of the exponential form (17) and extrapolates
to 0.264. The inset shows the location dependent bond correlation
function 〈Bx(x)〉 for a 32 × 16 system.

This quantity at the central column is shown as a function
of the inverse system size in the main plot of Fig. 6. Here, an
asymptotic exponentially fast convergence can be seen clearly,
which is illustrated with a fit to the form (17). This fit is of good
statistical quality and extrapolates to 0.264, in good agreement
with the values for 〈D2〉1/2 obtained above. The magnitude of
the order parameter of the Q3 model is, thus, 70% of the largest
possible value (3/8) for a columnar VBS.

C. Reduced order in the Q2 and J- Q2 models

In the pure Q2 model, the VBS order is considerably weaker
than in the Q3 model. The first study of this model gave the
order parameter D ≈ 0.070, or about 20% of the maximal
value, based on extrapolations of L × L results for L � 32.1

While this order may still be regarded as quite strong, problems
with extrapolating it correctly based on small to moderate
lattice sizes already start to become apparent.

Figure 7 shows results for periodic L × L systems with
4 � L � 72. A fifth-order polynomial can be fitted very well
to all these data and extrapolates to 0.0063, about 10% lower
than the previous result. However, if only L � 20 data are used,
a second-order polynomial is sufficient and the extrapolated
value is significantly lower: 〈D2

x〉 = 0.0058. This illustrates
the fact that polynomial fits based on small systems are not
very reliable, because of the eventual exponential convergence
(which is not yet fully apparent for the system sizes accessible).
The resulting relative uncertainties are much larger than
in the strongly ordered Q3 model. The extrapolated value
depends significantly on what system sizes are included in
the fit and the order of the polynomial used. For the system
sizes studied here, a pure exponential form does not yet
work.

An important aspect of the finite-size scaling behavior in
the Q2 model is that the data for small to moderate lattices do
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FIG. 7. (Color online) Size dependence of the squared VBS order
parameter of the pure Q2 model on periodic L × L lattices. The
solid black curve in the main graph shows a fit of the L � 12 data
to a second-order polynomial (which extrapolates to an unphysical
negative value when L → ∞). The solid red curve shows a fifth-order
polynomial fit to all the data, while the dashed black curve shows a
quadratic fit to only the L � 20 data. The inset shows the behavior
for the largest systems on a more detailed scale.
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FIG. 8. (Color online) Size dependence of the squared total VBS
order parameter 〈D2〉 and its individual x and y components of the
pure Q2 model on fully periodic 2L × L lattices. The curve displayed
for 1/L � 0.125 is a 4th order polynomial fit to the 〈D2〉 data for
L � 16.

not even clearly point to an ordered ground state. Figure 7 also
shows a second-order fit to only the L � 12 data points. The
fit is statistically sound, but extrapolates to a negative value.
Without access to larger system sizes it is not possible, using
fitting procedures like this in 1/L, to determine whether the
ground state of the infinite 2D lattice is ordered or disordered.
At least L = 20 is needed with 1/L extrapolations to definitely
conclude that the ground state is ordered. It can be noted
that an asymptotic ∝1/L2 behavior is expected if there is no
long-range order, but this form should apply only for L much
larger than the correlation length. Note that the correlation
length itself is also not easy to extract from the correlation
functions unless L � ξ (which is not the case here).

Figure 8 shows results for periodic 2L × L lattices. Using
polynomials to reliably extrapolate results to the infinite-size
limit is again difficult. An example, using a fourth-order
polynomial with data for L � 16 is shown which extrapolates
to 〈D2〉 = 0.0063. Here, it is again clear that the polynomial
is not the correct form, because the fitted curve deviates
significantly for the smaller systems not included in the fit.

The behavior of the individual x and y components in
Fig. 8 appears to be qualitatively different from that observed
in the Q3 model (see Fig. 4). In the more strongly ordered Q3

model, the y component is always significantly larger than the
x component, and for large systems it completely dominates
(the x component vanishing). In the Q2 model, the length
scale � of the crossover from U(1) to Z4 symmetry is much
larger, and the dimer order parameter acts as an essentially
isotropic vector even for the largest lattices considered here. A
crossover to a behavior where the x component vanishes (as in
the Q3 model) should take place for larger system sizes, but,
according to the analysis for L × L lattices in the Appendix,
the crossover length is beyond what can currently be studied
with QMC calculations, with there being only weak signals
of a columnar state. Since the two components are almost
equal in magnitude in Fig. 8, not knowing about the peculiar
finite-size effects due to emergent U(1) symmetry one may
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FIG. 9. (Color online) Size dependence of the squared total order
parameter 〈D2〉 and its x and y components, computed for the Q2

model on cylindrical 2L × L lattices (including only the spins on
the central L × L square in the definition of the order parameters).
The curves are polynomial fits. In the case of D2

y , no constant term
was included. The inset shows the data for large systems on a more
detailed scale.

draw the erroneous conclusion from these data of the system
being a plaquette VBS.

It is interesting to note in Fig. 8 that the emergent x-y
symmetry is not manifested yet for the smallest systems. This
reflects the fact that the continuous angular nature of the VBS
order parameter only appears upon coarse-graining and L <

10 is not sufficiently large for representing a continuous VBS
angle. The two crossover length scales, into and out of an U(1)
symmetric order parameter, have been investigated in detail
in classical systems (clock models) exhibiting emergent U(1)
symmetry.92

As in the Q3 model, on the open-edge cylinders with
Lx > Ly the favored VBS ordering pattern is that with the
bonds primarily in the x direction. Figure 9 shows results for
2L × L cylinders. Here, the effect of the edges to strongly
favor x ordering overcomes the tendency to U(1) symmetry,
and there is never any size range for which the x and y

components are almost equal. Also here the behavior of both
components for small lattices exhibit a naive extrapolation to a
negative order parameter. For larger lattices 〈D2

x〉, crosses over
to a form extrapolating clearly to a nonzero value, while the
y component extrapolates to zero. A fourth-order polynomial
fit to all the x-component data gives 〈D2

x〉 = 0.0047. This
is significantly lower than the value quoted above for the
examples of extrapolations of L × L data. However, the
extrapolation is again sensitive to the lattice sizes included
and the form of the fitting function used.

It is also useful to examine the long-distance VBS correla-
tion function, which should contain less finite-size corrections
to the infinite-size order parameter than the sums over
all correlations. The squared order parameter (14) contains
significant nonasymptotic contributions from short distances.
Using the real-space dimer correlation function defined in
Eq. (10), the staggered part in the case of the x component
(and an analogous form for the y component) can be extracted
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FIG. 10. (Color online) Staggered component, Eq. (19), of the
long-distance dimer correlations in the Q2 model on periodic L × L

and 2L × L lattices. Here, r is the longest distance on the lattices;
r = (Lx/2,Ly/2). The curve through the L × L data is a high-order
polynomial fit. The inset shows the 2L × L data on a more detailed
scale.

according to

C∗
dx(x,y) = 1

2Cdx(x,y) − 1
4 [Cdx(x − 1,y)

+Cdx(x + 1,y)], (19)

where a factor 1/2 has been included in order for C∗
dx(x →

∞,y) → 〈D2
x〉, with Dx defined in Eq. (10), in the ther-

modynamic limit. Figure 10 shows results for the longest
distance on periodic L × L and 2L × L lattices. For the
L × L systems the sum of the x and y components is shown,
along with a high-order polynomial fit that extrapolates to the
infinite size order parameter D2 = 0.0061. This extrapolation
should be reasonably reliable, because the data for the
largest systems flatten out clearly, reflecting the asymptotic
exponential convergence (unlike the integrated quantity 〈D2〉
in Fig. 7, where no flattening-out is yet seen). For the 2L × L

system no reliable extrapolation is possible, because both
components exhibit nonmonotonic behavior. The sum of the x

and y correlations for large L is nevertheless very close to the
L × L results.

It can also be noted in Fig. 10 that the individual components
of the correlation function at long distance show somewhat
less prominent x-y symmetry than the integrated correlators
in Fig. 8, although they are both still roughly equally large.
Again, in the thermodynamic limit one of the components,
likely the x component, will have to turn down over and vanish,
as the Lx > Ly geometry favors ordering in the y direction.

In the previous section, it appeared that the most reliable
way to extract the order parameter in the thermodynamic limit
is to exploit the symmetry-breaking open edges, using 〈Dx(x)〉
defined in Eq. (18). Figure 11 shows such results for open-edge
cylinders of size L × L as well as 2L × L. Here, the induced x

order appears to extrapolate to a value below the one obtained
in Fig. 10 based on the long-distance correlation function—for
the 2L × L systems 〈Dx(L − 1)〉 is almost size independent
for the largest systems, and one might hence conclude that it
has converged. The square of this value is 〈Dx〉2 ≈ 0.0732 ≈
0.053, which seems too low compared to the results in Fig. 10.
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FIG. 11. (Color online) Open-edge induced order parameter of
the Q2 model at the center of cylindrical L × L and 2L × L lattices.
The horizontal line corresponds to the value of the infinite-size order
parameter from the extrapolation in Fig. 10.

The reason for this apparent inconsistency should again
be related to the emergent U(1) symmetry of the VBS order
parameter; in addition to the x component of the order
parameter induced by the open edges, there still remains, for
the accessible lattice sizes, a non-negligible y component. This
component is not locked-in by symmetry-breaking boundaries,
however, but averages to zero if measured without first taking
the square of its operator. The existence of a non-negligible
fluctuating y component nevertheless reduces the induced
〈Dx〉 from the full value, which should satisfy D2 = 〈Dx〉2 +
〈D2

y〉 for large systems. It is only when the system size exceeds
the U(1) length scale � that one can expect the full order
parameter to condense into the component 〈Dx〉, and this
length scale cannot at present be reached for the Q2 model.
This shows again that the problem of extracting the VBS order
parameter in the thermodynamic limit is a very delicate one.

The examples shown here demonstrate that, when the VBS
order is relatively weak (the length scale � is large), it is
important to look at the full order parameter, including both the
x and y components. The long-distance correlation function
(see Fig. 10) on L × L periodic lattices seems to be the fastest
converging quantity, and it is in most cases best to use L × L

lattices for extrapolations.
When turning on the Heisenberg exchange J , the VBS order

of the J -Q2 model is reduced and vanishes when J/Q2 ≈
0.045.41 Here two cases are considered, J/Q2 = 0.03 and
0.10, with the latter corresponding to a near-critical Néel
state. Figure 12 shows results for the total squared VBS order
parameter and the staggered part of the dimer correlation
function (19) averaged over the x and y directions. With 〈D2〉
graphed versus 1/L it is again difficult to extrapolate to infinite
size based on small lattices. Here, the lattices are nevertheless
sufficiently large for it to be apparent that the system at
J/Q2 = 0.03 is VBS ordered, while for J/Q2 = 0.1 the decay
is much more rapid and consistent with no VBS order. The
corresponding long-distance correlations show these behaviors
much more clearly, with the J/Q2 = 0.03 data exhibiting the
expected exponentially fast convergence to a nonzero value
for the largest sizes. Still, if data only for L up to ≈10 were

134407-10



FINITE-SIZE SCALING AND BOUNDARY EFFECTS . . . PHYSICAL REVIEW B 85, 134407 (2012)

0 0.05 0.1 0.15
1/L

0.00

0.01

0.02

C
d* (r

m
a

x),
  <

D
2 >

 J/Q=0.03, C
d
(r

max
)

 J/Q=0.10, C
d
(r

max
)

 J/Q=0.03, <D
2
>

 J/Q=0.10, <D
2
>

FIG. 12. (Color online) The staggered part, Eq. (19), of the long-
distance correlation function (at rmax = √

2L) and the total dimer
order parameter for the J -Q2 model at J/Q2 = 0.03 and 0.10 on
periodic L × L lattices.

available, it would not be possible to unambiguously confirm
the presence of long-range VBS order, even though the order
parameter here is still above 10% of the maximum value.

Note that the long-distance correlation function decays
exponentially as a function of 1/L in a non-VBS state, i.e.,
much faster than the 1/L2 behavior of the total squared order
parameter. It is therefore also much easier to confirm the
absence of long-range order by studying the long-distance
correlations.

D. Quantum-critical scaling

Ultimately, the difficulties in extrapolating the VBS order
parameter to infinite size based on small systems will in
many cases be related to critical scaling in the proximity of
a quantum-critical point (or “pseudo-critical” scaling in cases
where the transition out of the VBS state is weakly first order).
A small system exhibits quantum criticality also slightly away
from the critical point. Hence data for a series of lattices may
appear to extrapolate to a disordered state, even though the
infinitely large 2D system is on the VBS side of a quantum
phase transition. According to conventional finite-size scaling
theory, the window around the critical point within which
a system of linear size L exhibits scaling is proportional to
L−1/ν , where ν is the exponent governing the divergence of
the correlation length. Depending on the prefactor, this window
may be sizable for practically reachable lattice sizes. As will be
shown next, this is one reason why fits to small-lattice data can
give misleading results, e.g., in the case of Q2-model results
in Fig. 7.

In addition to illustrating the near-critical VBS, the scaling
of the Néel order parameter will also be briefly discussed here.
According to past studies, both the J -Q2 and J -Q3 models
are strong candidates1,40 for the deconfined quantum-criticality
scenario,37 according to which both order parameters should
be critical exactly at the same point. Results for the J -Q2

model will be discussed here.
While all numerical results so far are consistent with a single

Néel-VBS transition point, it has proved remarkably difficult to
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FIG. 13. (Color online) Size dependence of the VBS (top) and
Néel (bottom) order parameters of the J -Q2 model at four different
coupling ratios. The point J/Q2 = 0.0447 should be very close to the
quantum-critical value according to the scaling analysis of the spin
stiffness carried out in Ref. 41. The straight lines fitted through the
J/Q2 = 0.0447 data (for system sizes L � 32) have slope −1.27 in
both cases.

determine the location (J/Q2)c of this transition precisely. The
most recent QMC studies point to a continuous transition with
unusually large scaling corrections in the quantities normally
used to extract the critical point, e.g., the spin stiffness and
Binder cumulants.41–43 These corrections have made it difficult
to reliably extrapolate the critical coupling ratio (J/Q2)c to in-
finite size. By using a logarithmic scaling correction to the spin
stiffness (which was not predicted in the original field-theory
description of deconfined quantum-critical points but may
appear with a modified action),96 (J/Q2)c = 0.0447 ± 0.0002
was obtained in Ref. 41. Using a conventional correction
∝L−ω, with small ω and a large prefactor (which potentially
could be a consequence of the dangerously irrelevant operator
responsible for the Z4 symmetric VBS), gives a similar result.

In Fig. 13, the two order parameters are graphed versus the
system size on log-log scales for coupling ratios close to the
critical value. The Néel order parameter 〈M2〉 (the squared
sublattice magnetization) is the size-normalized (π,π ) Fourier
transform of the spin correlation function (9). Both order
parameters indeed exhibit critical scaling at (J/Q2) = 0.0447.
For other couplings the curves fan out in the way typical for
critical points.

Interestingly, at J/Q2 = 0.0447 both order parameters
scale as L−(1+η) with η ≈ 0.27 (with a purely statistical
error bar of about 0.01) when L � 32 systems are used in
the fits. For the sublattice magnetization, this exponent is
slightly smaller than in previous works,39,40 while the VBS
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exponent is somewhat larger than in Refs. 1 and 40. If these
exponents are truly exactly the same, it would imply a duality
of the effective low-energy field theory that had not been
anticipated,37 but further detailed work, using larger system
sizes and studying several coupling ratios in the neighborhood
of J/Q2 = 0.0447, will be required before such a claim can be
made (and it could also be a coincidence that the two exponents
are almost equal). Note also that the value of η quoted here
may also still be affected by subleading scaling corrections.

For coupling ratios larger than the critical value, in Fig. 13
exemplified by J/Q2 = 0.1, the VBS order parameter turns
downward, reflecting the faster decay to zero. Asymptotically,
in the Néel state, the decay should follow the 1/L2 form, but
this can only be observed when the lattice size exceeds the
correlation length (which is very large this close to the critical
point). The sublattice magnetization turns upward, reflecting
an extrapolation to a nonzero value. For smaller J/Q2, here 0
and 0.03, the behavior is the opposite, reflecting a VBS state
with no coexisting VBS order.

For the present purpose of detecting VBS order, an
important aspect of the critical scaling is that, once a critical
point has been identified, upward deviations from the power-
law scaling, as seen in Fig. 13 at J/Q2 = 0 and 0.03, still
can demonstrate an ordered state when moving away from
criticality. It may be easier, in many models, to establish a
critical point (or a first-order transition) than to accurately
extrapolate the infinite-size value of the order parameter
in a state with significant fluctuations (an order parameter
significantly smaller than its maximum possible value). Based
on the knowledge of the existence of a phase transition, it may
be possible to establish long-range order even in the presence
of strong quantum fluctuations. This will be the case especially
in calculations limited to much smaller systems.

IV. BOUNDARY SYMMETRY BREAKING

One interesting aspect of the results presented in the
previous section, exemplified in Figs. 4 and 5, is that the
boundary conditions dictate which of the order parameter
components, 〈D2

x〉 or 〈D2
y〉, is the one surviving in the

thermodynamic limit. For 90◦ rotationally symmetric periodic
L × L lattices, both order parameters are of course equal
by symmetry (and spontaneous symmetry breaking in the
thermodynamic limit will randomly select one of the direc-
tions), but in other cases only one of them should survive
in the thermodynamic limit (i.e., the lattice shape acts like
a symmetry-breaking field). Exactly how the symmetry is
broken should be model dependent, and also dependent on
fine details of the boundary conditions. Note that there are no
“neutral” boundaries for a VBS, i.e., any boundary conditions
should favor one component of the order parameter above the
other (expect perhaps for some unusual fine-tuned boundaries
with adjustable couplings).

Here, the Q2 and Q3 models will be used to illustrate the
complexity of the boundary issues further, with direct mea-
surements of the order-parameter components 〈Dx〉 and 〈Dy〉
in systems where the edges break either the x-translational
symmetry or both the x and y symmetries. The boundary
effects are particularly interesting in view of the emergent U(1)
symmetry, due to which both order parameter components can

FIG. 14. (Color online) A cylindrical lattice with modified open
edges favoring columnar VBS order with vertical bonds. The thick
vertical bars represent Q2 terms excluded from the summation in the
Hamiltonian, Eq. (3).

survive up to large system sizes, as already shown in Sec. III B
in the case of periodic systems. Here, the ability of boundaries
to twist the local order parameter in the (Dx,Dy) plane will be
studied.

Two types of 2L × L cylindrical lattices will be used. In
addition to the case discussed so far, where the y-oriented
edges are open and uniform, a modified boundary that breaks
the translational symmetry in the y direction will also be
studied. The modification acts as a field inducing Dy order
at the edges. It is interesting to observe the interplay of this
effect and the competing effect of the open boundary to lock
in Dx ordering when Lx is even (as demonstrated in Fig. 6).
This aspect of the VBS ordering is also important in view of
DMRG studies, where modified boundaries are often used.3,5,6

Here, the boundary modification will simply be accomplished
by excluding from the Hamiltonian the Q2 or Q3 terms with
vertical bonds closest to an edge on every second row, as
illustrated in Fig. 14 in the case of Q2 terms. Results obtained
with only one of the edges modified will be compared with the
case of both edges modified in the same way.

The local variations of the VBS vector order parameter
(Dx,Dy) of the J -Q2 model were previously investigated for
L × L lattices with all open edges.72 The formation of a vortex-
like structure in the order parameter was noted. In the cases
studied here, there is still translational symmetry with period
two along the y axis and, therefore, a 1D description of the
order parameter as a function of the x coordinate suffices. The
local x and y order parameters are defined using the dimer
operator Bx̂ in Eq. (11);

Dx(x) = [〈Bx̂(x,y)〉 − 1
2 〈Bx̂(x − 1,y)〉

− 1
2 〈Bx̂(x + 1,y)〉](−1)x, (20)

Dy(x) = [〈By(x,y)〉 − 〈Bx̂(x,y + 1)〉](−1)y. (21)

These quantities are independent of the y coordinate (and an
average is taken in the simulations to improve the statistics).
A VBS angle θ (x) can also be defined,

θ (x) = atan

[
Dy(x) + Dy(x + 1)

2Dx(x)

]
, (22)

such that θ = 0 and θ = π for a fully x or y oriented VBS
order, respectively. The reason for using the sum Dy(x) +
Dy(x + 1) in the numerator under atan() is that an x-oriented
column of bonds labeled by x is located between the y-oriented
columns at x and x + 1 (although such a detail of the definition
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FIG. 15. (Color online) Location-dependent expectation value of
the VBS order parameter of the Q2 model on 2L × L cylinders with
the left (x = 0) edge modified by the symmetry-breaking perturbation
(inducing y-oriented order) illustrated in Fig. 14. The right edge is
kept uniform. The top panel shows both the bare dimer expectation
value 〈Bx̂(x)〉 and the dimer order parameter 〈Dx(x)〉 extracted from
it according to Eq. (20) for L = 8. The middle panel shows the y

order parameter defined according to Eq. (21) for L = 8,16, and 32.
The bottom graph shows the VBS angle extracted from the x and y

order parameters according to Eq. (22).

of the local angle is not strictly important, and there are
other equally good definitions giving the same result for large
systems).

Figure 15 shows results for the Q2 model with only one
modified edge. Oscillations in the bare dimer expectation
value 〈Bx̂(x)〉 are present (top panel) as in the case of the
uniform edge in Fig. 6. In this case, however, the function
is not reflection symmetric, due to the unequal left and right
edges of the cylinder. The order parameter Dx(x) is the largest
at the edges. Away from the edge it decays toward a value at
the center of the system which is somewhat smaller than the
locked-in order parameter previously extracted based on the
data in Fig. 9 (which can be seen by analyzing data for several
system sizes, not shown here). This is because the modified
edge also leads to some amount of y order (middle panel of
Fig. 15), and although this induced order decays rapidly when
moving away from the modified edge it does not go away
completely, even close to the opposite edge.

The rather smooth decay of the y order to almost zero at the
opposite edge can be explained as due to the open edge strongly
favoring x ordering in its vicinity, even with the modification
that breaks the y translational symmetry. The modified edge
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FIG. 16. (Color online) Location dependent expectation values
of the x and y VBS order-parameter components, Eqs. (20) and (21),
of the Q2 model on 2L × L cylinders with both edges modified by
a symmetry-breaking perturbation (favoring y-oriented bond order).
The corresponding VBS angle extracted using Eq. (22) is shown
in the bottom panel. The horizontal dashed line is at � = π/4
(corresponding to equal x and y order parameter parameters).

therefore induces both x and y order, i.e., the VBS angle (22) is
0 < θ < π/2. Since the second edge does not break the y trans-
lational symmetry explicitly, the x ordering can completely
dominate there, leading to a very small 〈Dy〉. The smooth
transition from mixed x and y to almost pure x order is seen
clearly in the VBS angle graphed in the bottom panel of Fig. 15.
Away from the edges, the total order parameter for large sys-
tems, D = (〈Dx〉2 + 〈Dy〉2)1/2, approaches the value extracted
for this model in the previous section. A maximum in the angle
develops with increasing size close to the modified edge.

Figure 16 shows results for systems with the y symmetry
broken at both edges. Also in this case it would appear that
both the x and y order parameters survive throughout the
whole system in the thermodynamic limit. Convergence of
both components as well as the angle at the center of the
system is seen. The VBS angle here being only slightly less
than π/2 corresponds to an almost equal mixture of x and y

order.
In spite of the apparent convergence of the VBS angle to a

value close to π/2 in Fig. 16, the survival of both x and y order
in the thermodynamic limit due to the modified edge is illusory.
Since the VBS order is columnar, eventually, for very large
systems, one would expect only x or only y order to survive.
The explanation of the behavior seen is again the very large
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FIG. 17. (Color online) Same as Fig. 16 for the Q3 model.

U(1)-Z4 crossover scale in the Q2 model (as discussed in the
Appendix). It is then interesting to look at the same quantities
in the Q3 model, where there is no clear U(1) symmetry (as
also shown in the Appendix), i.e., the length scale � is very
short in this case. Results analogous to those in Fig. 16 for
the Q2 model are shown in Fig. 17 for the Q3 model. In
this case, one can see clearly how the y component vanishes
with increasing system size away from the edges, while the
x order stabilizes to a constant value. Since the x component
is the surviving one, its approach to its bulk value should
be governed by the standard VBS correlation length ξ . The
decay of the y component should reflect �, however (since the
presence of y order is due to the angular twisting of the order
parameter). This is a direct physical method to access the U(1)
length scale, providing an attractive alternative to studying the
order-parameter distributions discussed in Appendix.

The decays of the two components are analyzed quanti-
tatively for a larger system in Fig. 18. Excluding the points
immediately adjacent to the edge, the decays are of almost
pure exponential form (with an even-odd effect seen for the y

component), giving ξ = 1.9 extracted from the x component
and � = 6.5 from the y component. A similar analysis for
the Q2 model (not shown here), based on systems with up to
128 × 64 sites, gives ξ ≈ 25 (and � much larger still), but this
estimate is not reliable because the form of the decay is affected
by the proximity to the critical point and is far from a pure
exponential at the accessible distances. Larger system sizes
are required in this case, especially for extracting �, which is
larger than 100 lattice constants according to the analysis in the
Appendix (perhaps being several hundred lattice constants). A
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FIG. 18. (Color online) The x and y components of the induced
order parameter close to a modified edge of the Q3 model on a
128 × 64 lattice. These data are the same as those shown in the top
(x) and middle (y) panels of Fig. 17 for smaller systems, but with the
nonzero constant behavior at the center of the system subtracted off
in the case of the x component. The lines are exponential fits, giving
decay lengths 1.9 and 6.5 for the x and y components, respectively.

systematic study of the divergence of the decay lengths of the
J -Q3 model upon approaching the quantum-critical point will
be presented elsewhere.

V. LONG CYLINDERS

In the previous sections, the 2D limit was approached in
systems with fixed aspect ratio Lx/Ly . In principle, the limit
can also be accomplished with one of the lengths taken to
infinity first, e.g., Lx → ∞ for fixed Ly and then Ly → ∞.
The behavior of the long-distance correlation functions, and,
therefore, the squared VBS order parameter 〈D2〉, should not
necessarily be expected to be smooth, however. Although VBS
ordering amounts to breaking a discrete symmetry, and order
can therefore, in principle, exist for any Ly in the infinitely long
1D cylinder geometry, the survival of the order for small Ly

is not guaranteed. Clearly, there will be enhanced fluctuations
associated with the 1D nature of these systems, which may
destroy the ground-state order of a Hamiltonian exhibiting
long-range VBS order in the 2D limit.

A well-known system with discrete symmetry breaking
is useful for illustrating the potentially unsmooth 1D to 2D
crossover: the Ising model with nearest-neighbor coupling Jz

in a transverse magnetic field hx has a phase transition to
an ordered (in the z spin direction) state at a critical value
(hx/Jz)c. On a 1D linear chain the critical ratio is (hx/Jz)c = 1,
while on the 2D square lattice it is (hx/Jz)c ≈ 3.05.97 For an
Lx × Ly lattice with Lx → ∞ one can expect (hx/Jz)c to be
a monotonic increasing function of Ly . Therefore, for a fixed
field 1 < hx/Jz < 3.05, one can expect cylinders with small
Ly to be disordered, while above some “critical” Ly the system
will be ordered. One can expect the same kind of behavior of a
2D VBS as well, when restricting it to a finite cylinder, unless
the 2D order parameter is extremely large so that even the
smallest cylinder remains in the ordered phase.
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In the discussion below, only cylinders of even Ly will be
considered, so that the lattice is commensurate with columnar
VBS order in both the x and y directions. J -Q models with
odd Ly cannot be studied with the QMC method used here,
because of sign problems arising due to geometric frustration
of the spin interactions.

A. Destruction of VBS order on cylinders

As shown in Sec. III B, the ground state of the pure Q3

model is strongly VBS ordered, the order parameter being at
70% of the maximum possible value. One might expect this
to be sufficient for the order to be stable also on thin cylinders
when Lx → ∞. However, it turns out that such cylinders of
width Ly = 4 and 6 are disordered, while for Ly = 8 and above
the order parameter is already close to the 2D limiting value.
For the pure Q2 model, where the 2D order parameter is about
20% of the maximum value, no order was found on Lx → ∞
cylinders with Ly up to 12. Larger widths were not studied
due to prohibitively long computation times. The results for
both models are summarized in Fig. 19. The results underlying
these conclusions are discussed next.

It is useful to define correlation functions averaged over
the short (y) direction. The following functions, based on the
definition (10) of the elementary dimer correlator, can be used
to detect columnar VBS order with the bonds oriented either
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FIG. 19. (Color online) VBS order parameter and correlations
lengths on infinite (Lx → ∞) Q2 and Q3 cylinders of width
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FIG. 20. (Color online) VBS correlation functions, as defined in
Eq. (24), for y-oriented dimers in the Q3 model as a function of the
separation in the x direction on cylinders in the Lx → ∞ limit. For
Ly = 4,6, fitted curves of the form C ∝ exp(−x/ξ )/xα to the x � 4
data are also shown (with α ≈ 0.5 in both cases).

along the x or the y direction:

Sdx(x) = 1

Ly

Ly−1∑
y=0

[
Cdx(x,y) − 1

2
Cdx(x − 1,y)

− 1

2
Cdx(x + 1,y)

]
, (23)

Sdy(x) = 1

Ly

Ly−1∑
y=0

Cdy(x,y)(−1)y. (24)

Here, it is appropriate to use periodic boundary conditions in
both lattice directions. In order to achieve the limit Lx → ∞,
aspect ratios Lx/Ly up to 32 were studied for Ly up to 12.

In the Q3 model, the y-dimer correlator Sdy(x) approaches a
nonzero constant for large x when Ly � 8, as shown in Fig. 20,
while for Ly = 4,6 the correlations decays exponentially with
distance. The behavior is not purely exponential but follows the
form Sdy(x) ∝ x−αexp(−x/ξ ), with α ≈ 0.5. This form with
α = 1/2 is the Ornstein-Zernike (mean-field) form expected
in a d = (1 + 1) dimensional system, where α = (d − 1)/2.
The correlation lengths extracted from fits to this form (with α

regarded as a free parameter, to produce somewhat better fits)
are shown in Fig. 19(a). The x-oriented correlation function
Sdx(x) is exponentially decaying for all Ly , i.e., these systems
are purely y ordered in the thermodynamic limit (as was also
found in Sec. III B for periodic 2L × L systems when L →
∞). For Ly = 4,6 the x correlation lengths are slightly smaller
than the y ones. The y correlation lengths are graphed in
Fig. 19(a).

In Fig. 21, both the x and y correlation functions for the
Q2 model are graphed for all even-width cylinders with Ly =
4, . . . ,12, along with fits to the exponential form discussed
above. The y correlation length ξy is the larger one (about
5–10% larger than ξx) and is graphed versus Ly in Fig. 19(a).
The correlation length grows roughly linearly with Ly for these
cylinders. It would be interesting to go to even larger Ly to
study the form in greater detail, and, of course, to find the
threshold width for ordering in this case (where presumably
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FIG. 21. (Color online) VBS correlation functions, as defined in
Eqs. (23) and (24), for x- (top panel) and y-oriented (bottom panel)
dimers in the Q2 model as a function of the separation in the x

direction on cylinders in the Lx → ∞ limit. Fits of the data for x > 4
to the form S ∝ exp(−x/ξ )/xα (with α ≈ 0.5 in all cases) are shown
as solid curves.

the correlation length should diverge, if one regards Ly as a
continuous parameter). The rather small correlation lengths
for Ly up to 12 suggest that it may be difficult to reach the
critical width with QMC calculations at present.

The destruction of the VBS order even on rather wide
cylinders is surprising. In the Q3 model, judging by the decay
of the x component of the order parameter in Fig. 18, the 2D
correlation length is approximately two lattice constants. The
lower width Ly = 8 for ordering on infinitely long cylinders is
therefore roughly four times the correlation length. Moreover,
related to the short correlation length, the 2D order parameter
is as large as 70% of the classical value. One might have
expected such a system to be describable essentially in terms
of classical (orthogonal, hard-core) dimers with quantum
fluctuations of the nature present in quantum dimer models. It
has been expected that a VBS under these conditions should
be ordered even on narrow cylinders.52 The results obtained
here suggest that the nonorthogonality of the singlets (the true
quantum dimers) has a dramatic effects of reducing the order
on cylinders, in contrast to this effect actually enhancing the
dimmer-dimer correlations relative to those in corresponding
dimer models in critical 2D systems.49,50 On the other hand,
to the author’s knowledge, quantum dimer models that order
in the 2D limit94 have actually not been extensively studied
in long-cylinder geometry. Such studies would clearly be
worthwhile, in light of the surprising results obtained here.

In the Q2 model, the correlation length should be in the
range 20 ∼ 30 (with, as already discussed above, the large
uncertainty being due to the fact that system sizes L � ξ are
needed to determine ξ accurately), and one can, thus, expect,

roughly, Ly ≈ 100 to be needed before ordering sets in on the
cylinders in this case.

One might speculate that the emergent U(1) symmetry
could play some role in destroying the VBS order on the
long cylinders. The local coarse-grained VBS order parameter
(Dx,Dy) is an essentially isotropic 2D vector up to a large
length scale � ∼ ξ 1+a with a > 0 (with the best estimate so
far40 being a = 0.20 ± 0.05). If the order parameter were truly
a vector with isotropic angular fluctuations, long-range order
on the 1D Lx → ∞ cylinders would be strictly prohibited.86

The almost continuous order parameter could then be argued
to contribute to the loss of order. If so, one would expect
a critical state to replace long-range order, however, of which
there are no signs here—the VBS order decaying exponentially
starting from short distances. There is no crossover from a
critical behavior, which might have been expected if almost
U(1) symmetric angular VBS fluctuations were responsible for
the destruction of long-range order. The role of emergent U(1)
symmetry on cylinders is nevertheless interesting and should
be studied more systematically in the future.

Regardless of the exact relationship between the 2D
correlation length and the ordering threshold on cylinders, the
very short correlation lengths found in the Q2 model (ranging
from about ξ ≈ 2 for Ly = 4 to ξ ≈ 8 for Ly = 12) show
the dangers of using the long-cylinder geometry for drawing
conclusions about the presence or absence of VBS order in
the 2D limit. Order likely appears in the Q2 model, and
probably in most models for which the existence of VBS order
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FIG. 22. (Color online) Boundary induced x and y components
of the dimer parameter of the Q3 model on 64 × 4 (top) and 128 ×
8 (bottom) lattices. Both edges are modified to induce y order, as
discussed in Sec. IV.
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is under debate, for Ly far exceeding the maximum size that
can currently be studied (especially if QMC methods cannot
be used and DMRG would be the best choice of method).

The above conclusions regarding ordered and disordered
cylinders reached based on correlation functions in long
periodic Lx × Ly systems can also be confirmed by examining
open-edge cylinders, in which a unique VBS can be locked in
for even Lx (as discussed in the case of 2L × L cylinders in
the preceding sections). Figure 22 shows results for longer Q3

cylinders in which the boundary perturbation inducing y order
was also applied at both edges (as in Fig. 14). For Ly = 4,
both order parameter components decay quickly away from
the edges, while for Ly = 8, the y component stabilizes at the
center of the system, at a value agreeing with that extracted
on the basis of the correlation functions [shown in Fig. 19(a)].
Here, although the open edges favor x order more than the
perturbations favor y order, the y component eventually wins
because that is the component favored just by having a finite
Ly , and this effect scales with Lx . In contrast, for the 2L × L

cylinders with the same types of edges, it is the x component
that survives in the thermodynamic limit, as seen in Fig. 17.

VI. CONCLUSIONS AND DISCUSSION

A. General summary and conclusions

Several benchmark results for the finite-size behavior of
the VBS order parameter have been presented in this paper.
The J -Q and pure Q models allowed investigations of both
strongly and weakly ordered ground states. The main general
conclusion (which should be valid for VBS states in many
systems) drawn from these studies is that even when the
VBS order is relatively strong on the infinite 2D lattice
(e.g., 10–20% of the maximum value attainable), results for
small and moderate lattices (e.g., with up to hundreds of
spins) can exhibit nearly critical behavior. The squared VBS
order parameter then appears to extrapolate to zero in the
thermodynamic limit. In the J -Q model, this behavior can
be traced to a rather large quantum-critical scaling regime
around the critical value of J/Q, where the behavior follows
closely that obtaining at a critical point.

The extrapolation to infinite size may at first sight seem
easier when symmetry-breaking boundaries are used (as is
often done in the context of DMRG studies),2 so that the order
parameter can be computed directly (having a considerably
larger value than its square when the VBS order is not very
strong). However, a small order parameter (10–20% of the
maximum value in the VBS systems considered here) is very
difficult to extrapolate accurately in this way, partially because
the symmetry is not completely broken on lattices of size
that can be studied in practice. In particular, the emergent
U(1) symmetry of the VBS order parameter implies that the
component not locked by the boundaries can survive in the
form of significant fluctuations up to very large system sizes,
but this aspect of the ordering may be completely missed if
one only examines the boundary-induced component of the
order parameter. While this effect by itself would probably
not lead to wrong conclusions regarding the presence or
absence of VBS order, it is still important for explaining
results that would otherwise seem inconsistent with each

other (e.g., when comparing the total squared order parameter
and a direct boundary induced order parameter, as was
done here in Sec. III C). The results presented here suggest
that the best quantity for extrapolating the order parameter
to infinite system size is the total (sum of the x and y

components) long-distance correlation functions on L × L

periodic lattices. Nonsquare lattices can lead to nonmonotonic
finite-size behavior.

Some of the small-system behaviors pointed out here are
generically well known and not limited to VBS order. There
are also many examples of finite-size scaling of results for
small lattices leading to wrong conclusions of the nature of the
ground state. For example, in Refs. 98 and 99, a spin-liquid
ground state was claimed to exist in a 2D system of weakly
coupled S = 1/2 Heisenberg chains. When QMC results for
larger systems became available,69 they showed a crossover of
the scaling and an asymptotic behavior in accord with a Néel
state for any value of the interchain coupling.

The additional complications due to emergent U(1)
symmetry1,37,38 are more specific to VBS ordering. Open
edges twist the vector order parameter (Dx,Dy) in ways which
depends on the model and the nature of the edge. For a VBS,
there is no “neutral” edge: any boundary affects the ordering
pattern in its neighborhood. While in the bulk VBS, in the
thermodynamic limit, only one of the components can survive
in a columnar state, at edges they can both be present. Due to
the large length scale of the crossover from the U(1) symmetric
order parameter, both components can also survive in the
interior of large systems. It would be interesting to study this
phenomenon also in systems with a more complicated (larger
unit cell) VBS order parameter.

It should be noted that, although the concept of emergent
U(1) symmetry of VBSs was developed in the context of
deconfined quantum-critical points and has been confirmed
in the case of J -Q models,1,4,40 this aspect of VBS order is
most likely very general and manifested also in systems that
are not very close to such critical points (in some extended
parameter space)—in 2D systems in which “angular” VBS
fluctuations are possible once the correlation length is several
lattice constants or larger. The U(1) related boundary effects
should be absent in cases where the angular fluctuations are
absent, e.g., in the case of staggered VBS states.75,100

For the purpose of detecting VBS order, an important aspect
of the critical scaling is that, once a critical point has been
identified, upward deviations from the power-law behavior,
as seen in Fig. 13 at J/Q2 = 0 and 0.03 in the J -Q2 model,
demonstrate an ordered state although this may not be apparent
when carrying out extrapolations of the order parameter in
1/L (as in Fig. 7). In general, in a model with some tunable
parameter that can bring it into or out of a VBS state, it
may be easier to detect a phase transition than to extract
the exact value of the order parameter close to such a point.
On the one hand, many frustrated systems may have VBS
states that are always only weakly ordered and, hence, close
to a quantum critical point (or weakly first-order transition) in
some extended parameter space. Such systems should exhibit
near-critical scaling on small lattices. On the other hand, if no
critical scaling can be detected, and instead the order parameter
correlation function decays exponentially fast with distance (or
shows a tendency to decay faster than a power law), one can
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rather safely conclude that there is no VBS long-range order.
Also with this approach, one can of course not expect to draw
reliable conclusions unless the system sizes are sufficiently
large (and how large that is depends on the model).

A striking behavior that may be particularly prominent in
the case of VBS order was found here for lattices in the form
of long cylinders, of size Lx × Ly with Lx → ∞ and finite
even Ly . In this geometry, the order is unstable, and the system
exhibits only short-range VBS correlations, until Ly exceeds
some threshold that can be very large (perhaps 3–4 times the
VBS correlation length, according to results for the Q3 model).
Long cylinders are therefore not ideally suited for determining
the nature of the 2D state in which VBS order is a possibility
(systems with a small fixed Lx/Ly normally being better). In
particular, the method of positively confirming a Z2 spin liquid
by the absence of order on even-Ly systems is not applicable in
the “yes-no” sense proposed in Ref. 52. Instead, the finite-size
behavior has to be tracked as in any other extrapolation method.
The correlation length as a function of even Ly should converge
for a spin liquid and diverge for a VBS, as in Fig. 19, but it may
not be easy in practice to determine which of these behaviors
applies.

B. Comment on the possibility of a spin-liquid state
in the J1- J2 Heisenberg model

One motivation for the present study was to provide
guidance on detecting VBS order—or, alternatively, showing
the absence of such order—in calculations for frustrated 2D
models. The lattice sizes reachable for such systems with
unbiased calculations, primarily using the DMRG method,3,5,6

are still very limited. Methods based on tensor-product
states,26,30,34 beyond matrix-product states (which are closely
related to the DMRG scheme), are still typically too much
affected by various truncation errors and approximations to
be considered completely unbiased. The following discussion
will therefore be primarily aimed at DMRG calculations,
although many of the issues would apply more generally.

The issues raised here have particular relevance in the
context of a recent DMRG study of the J1-J2 Heisenberg model
on the square lattice.4,6 Several different ways of analyzing
VBS correlations were argued to consistently show the absence
of VBS order and positively confirm the properties of a Z2

spin liquid. However, many of the results presented can also
be explained by a VBS state, at least in some part of the
nonmagnetic phase, according to the results obtained here.
The key points supporting this view are summarized next.

In Fig. 3 of Ref. 6, second-order polynomial fits to the
VBS order parameter for 2L × L cylinders with L � 10 are
shown. The fact that these fits extrapolate to negative values
in the thermodynamic limit was taken as evidence for the
absence of VBS order. However, this kind of behavior is also
observed for the Q2 model on small lattices, as seen in Figs. 7
and 9 of the present paper, even though the order parameter
of this model is as large as 20% of the maximum possible
value. If VBS order exists also in the nonmagnetic phase of
the J1-J2 Heisenberg model, one should not expect it to be
very strong. Therefore, the finite-size behavior seen in Fig. 3
of Ref. 6 is at least qualitatively what would be expected
even if the state is a VBS. It should be noted that the fact

that the fitted functions extrapolate to negative values is in
itself a clear sign of the chosen functional forms not being
correct, as the squared order parameter cannot be negative.
Thus there must necessarily be a crossover to a different form
for larger systems—either to a pure 1/L2 form, if there is no
long-range order, or to an exponentially rapidly convergent
form tending to a nonzero value. The results for small systems
cannot distinguish between these different asymptotics.

The finite-size extrapolation issues may clearly also affect
the determination of the transition point between the Néel
antiferromagnet and the nonmagnetic state at g = J2/J1 ≈ 0.4
(while the transition point into the stripe antiferromagnet
at g = J2/J1 ≈ 0.6 is much easier to extract due to it
being clearly first order). The transition point g ≈ 0.41 was
determined in Ref. 6 based on extrapolations of the Néel
order parameter 〈M2〉 using second-order polynomials, and
these should be affected by similar problems as those pointed
out here for the VBS scaling (and it is also well known
that polynomials higher than second order have to be used
to extrapolate Néel order correctly based on small systems,
even in the strongly order Heisenberg model).69,80 The Néel
order should therefore survive up to somewhat larger g values.
Thus, at g = 1/2, on which most of the analysis of the VBS
scaling was focused in Ref. 6, the system may be rather close
to the transition point. If VBS order exists in the nonmagnetic
phase, it would therefore likely be very weak at this point. In
Fig. 3(a) of Ref. 6, the maximal value of the order parameter
〈D2

y〉, at g just below 0.6, is close to the values for the Q2

model in Fig. 9 of the present paper. Thus if the J1-J2 model
has VBS order, its peak value should be about 10–20% of
that of a perfect columnar state. It would be better to analyze
the VBS correlations closer to the maximal value, where the
extrapolation problems are minimized.

As discussed in Sec. III D, in systems where there is a
quantum phase transition into the state of interest, the best
way to deduce the nature of that state may be to first carefully
examine the phase transition. If there is critical scaling,
deviations from the power-law form of the order parameter
away from the critical point can be a good signal of long-range
order. However, as seen in the scaling plot for the near-critical
J -Q2 model in Fig. 13, if the accessible system sizes are only
up to L ≈ 10, even a system in which the VBS order parameter
is as large as 20% of the maximum value may in practice not
be distinguishable from a critical system when analyzing the
order parameter fluctuations. If the nonmagnetic state of the
J1-J2 Heisenberg model also has long range order, then one
should expect a similar behavior.

Replotting the g = 0.5 and 0.56 data for the VBS y

component of Fig. 3(a) of Ref. 6 on a log-log scale, one can
indeed observe behaviors close to power laws, as shown in
Fig. 23(a). In the same graph data for the J -Q2 model at
J = 0 and Jc = 0.0447 are also graphed. In this case, the x

component of the order parameter is shown, which, as seen in
Fig. 9, in this system is larger than the y component and is the
one surviving in the thermodynamic limit. In the J1-J2 model,
it is instead the x component that is somewhat larger.101

The comparison of the two models is complicated by the
fact that the average induced x order was subtracted in the
definition used in Ref. 6. That induced order is very small,
however,101 unlike what it is in the Q2 model (which, may

134407-18



FINITE-SIZE SCALING AND BOUNDARY EFFECTS . . . PHYSICAL REVIEW B 85, 134407 (2012)

4 6 8 10 20

10
-2

 D
2

 J-Q
2
 (J=0)

 J-Q
2
 (J=J

c
)

 J
1
-J

2
 (g=0.56)

 J
1
-J

2
 (g=0.50)

4 6 8 10 20
L

10
-2

10
-1

 M
2

(a)

(b)

FIG. 23. (Color online) Finite-size scaling of the squared VBS
order parameter (a) and staggered magnetization (b) calculated on
the central L × L square of cylinders of size 2L × L. DMRG results
for the J1-J2 model at g = 0.50 and 0.56, from Figs. 2(a) and 3(a)
of Ref. 6, are compared with QMC results for the J -Q2 model at
its critical point, (J/Q2)c = 0.0447, and at J = 0. In (a), the VBS
y component of the J1-J2 model and the x component (the larger
component) of the J -Q2 are shown. The line drawn close to the
J/Q2 = 0.0447 points has slope −1.27, corresponding to the critical
exponent η = 0.27 (as in Fig. 13), and that going through the g = 0.50
points has slope −1.8. The dashed line has slope −2, corresponding
to the expected asymptotic behavior in a non-VBS state. In (b), both
lines have slope −1.27 (η = 0.27).

indicate that the VBS order, if it exists in the J1-J2 model, is y

oriented on the cylindrical 2L × L systems, as was also noted
in Ref. 6).

For the open-edge 2L × L cylinders used in Fig. 23(a), the
J -Q2 results do not exhibit quite as good scaling as in the case
of the periodic L × L systems in Fig. 13, but for large systems
the behavior is still consistent with an exponent η ≈ 0.3. The
J1-J2 results for g = 0.5 follow a different behavior, however,
decaying as L−α with α ≈ 1.8. This is quite close to α = 2,
which is expected deep inside a non-VBS phase. For g = 0.56,
the data for the larger sizes deviate significantly upward from
the g = 0.5 points and cannot be fitted very well to a power
law. The slope on the log-log scale is ≈−1.52 for a line drawn
through the L = 8 and 10 points, but the data for smaller
systems fall above the fitted line, showing a flattening out with
increasing size. The reduction of the rate of decay is opposite
to the expectation for a spin liquid and an indication that the
system is VBS ordered in the infinite-size limit.

The behavior at g = 0.5 is puzzling. Since the VBS order
parameter here follows quite close to the form expected in a
spin liquid, one may conclude that this is what it is, and the

deviations from the ∼1/L2 form are due to remaining size
effects (i.e., the system size is not yet much larger than the
correlation length). A possibility suggested by the behavior
observed in Fig. 23 is that the J1-J2 model has a spin-liquid
phase following the Néel phase above g ≈ 0.4, followed in
turn by a VBS at larger g (since the g = 0.56 results seem
more indicative of weak VBS order). Another possibility is
that there is no spin liquid, but the Néel-VBS transition takes
place at g significantly larger than previously believed, so
that g = 0.5 would actually still be inside the Néel phase.
Looking at the raw data for the sublattice magnetization in
Fig. 2(a) of Ref. 6, it appears that this possibility cannot be
ruled out (considering again also the fact that the second-order
polynomial fits used should lead to an under-estimation of the
critical g where the Néel order vanishes). The behavior of
the triplet gap in Fig. 2(b) seems to go against this scenario,
however, although the way the gap was extracted, by targeting
higher states obtained while keeping the edges in the ground
state, may lead to strong corrections to the gap scaling.

To investigate possible near-criticality in the Néel order
parameter, the results from Fig. 2(a) of Ref. 6 for 〈M2〉
at g = 0.5 are replotted on a log-log scale in Fig. 23(b).
Interestingly, the behavior follows closely a power law, with
an exponent η very similar to that of the J -Q2 model. This
could indicate that the transition out of the Néel state indeed
takes place close to g = 0.5 and is in the same universality
class as the J -Q model. Note that, within the deconfined
quantum criticality theory,37 this kind of criticality of the
magnetic order would not necessarily require that the VBS
order emerges at this point as well, because the exponents
associated with the Néel order parameter are not affected
by the VBS (since the operator causing the VBS order is
dangerously invariant). Clearly, there is not sufficient data here
to make any firm conclusions about this scenario of a Néel to
spin-liquid transition, possibly followed by a subsequent liquid
to VBS transition at higher g, but the behavior is intriguing
and deserves further tests.

An important aspect of the analysis of Ref. 6, cited as
positive evidence for a Z2 spin liquid, is the behavior of
the order parameter on infinitely long cylinders. There is an
even-odd effect that had previously been found in liquid states
of quantum dimer models:52 For odd Ly and even Lx → ∞,
an x-oriented order parameter ∝exp(−Ly/ξy) is induced
because of geometric frustration effects. For even Ly , no order
is observed at all, regardless of the type of VBS (horizontal
or vertical columns) favored by the edges. Unfortunately,
odd-Ly J -Q cylinders cannot be studied with the QMC method
used here, because of sign problems. However, based on the
results presented here for even Ly it is already clear that this
kind of test for a Z2 spin liquid may not be that useful in
practice, because VBS order does not exist on the infinitely
long cylinders (for Ly up to some critical width that can be
expected to be inaccessible in practice for systems that are
weakly to moderately ordered in the 2D limit). In Ref. 6, it
was implicitly assumed that any system with 2D VBS order
will exhibit such order also on long thin cylinders.

It is also interesting to note that the induced order parameter
as a function of the distance from a modified edge of systems
in the Lx → ∞ limit is very similar in the J1-J2 and J -Q2
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FIG. 24. (Color online) VBS y order parameter component
induced by edges modified to break the y translational symmetry
(as explained in Fig. 14) in the Q2 model. Here, r is defined as
the distance from the second column of spins away from the edge,
since the edge modification extends to this location. The lines show
exponential fits, with decay lengths 1.8 (Ly = 4), 3.2 (Ly = 6), 4.8
(Ly = 8), and 6.6 (Ly = 10).

models. Figure 24 shows results for the pure Q2 model on
cylinders of width 4–10 in which the edge has been modified
to break the y translational symmetry, as discussed in Sec. IV
and illustrated in Fig. 14. Here, cylinders with aspect ratio
Lx/Ly = 16 were used (which is large enough to accurately
represent the Lx → ∞ limit). The edge-induced x and y order
parameters both decay exponentially, with very similar decay
lengths that are also close to the correlation lengths graphed
in Fig. 19 (obtained from correlation functions on systems
with all periodic boundaries). The y decay lengths are always
marginally larger. For L = 6 and 8, the decay lengths are about
1.5 times those in the J1-J2 model at g = 0.5, for which data
were shown in Fig. S6(b) of Ref. 6.

As discussed above and seen clearly in Fig. 23, the VBS
order parameter is likely significantly suppressed at g = 0.5
relative to what it is close to its maximum in this model
(which appears to be a bit above 0.56). One can therefore
expect to see decay lengths as large as those in the Q2 model
for larger g (close to 0.6). The rapid decay was in Ref. 6
interpreted as the system being insusceptible to VBS ordering
even in the presence of, at first sight, very favorable conditions
for inducing it. Again, when analyzed in light of the known
physics of the J -Q2 model, the results cannot be distinguished
from those of a rather substantially ordered VBS. It would be
illuminating to have J1-J2 data for Ly > 8, to see if the decay
length continues to grow or saturates.

In Ref. 6, the size dependence of the entanglement entropy
was also used as positive evidence of a Z2 spin liquid. It
would be very interesting to compute this quantity also for
the J -Q models. It is clear that the nontrivial aspects of
the VBS fluctuations could lead to behaviors not predicted
in the strong-VBS limit. Since the system on small lattices and
cylinders resembles a spin liquid, it would not be surprising if
the corrections to the area law of the entanglement entropy are
also similar, up to some large size where the true asymptotic
VBS behavior sets in. QMC calculations of the entanglement

entropy of the J -Q models will be carried out in future studies,
using the recent developments of methods to study the Renyi
versions of the entropies.102,103 This should clarify whether the
constant deviation from the area law cited in Ref. 6 is really
unique to Z2 spin liquids, or whether they can also appear (for
lattices of practically reachable size) in weakly ordered VBS
states. The scaling of the entanglement entropy at a deconfined
quantum-critical point is also of interest here.104

The conclusion reached from the above comparisons of
results for the J1-J2 model and the J -Q models is that they
exhibit rather similar behaviors, and, therefore, a VBS ground
state of the J1-J2 cannot be excluded. Some of the J1-J2 results
may also be consistent with a Z2 spin liquid at g ≈ 0.5, but the
point to note here is that most of the results presented so far
do not favor that kind of state over a VBS state. In particular,
the claimed positive signals for a Z2 spin liquid are also seen
in the confirmed VBS state of the J -Q models. If anything,
the very similar behaviors seen in the near-critical Q2 model
and the J1-J2 models should tilt the balance further in favor of
VBS order for g = J2/J1 close to 0.6. The behavior at g = 0.5
is very intriguing and not consistent with a near-critical VBS
of the same kind as in the J -Q models. It would be very useful
to analyze the VBS and magnetic correlations further in this
case, preferrably on larger lattices.

It would also be good to know in greater detail the effects
of truncation (the number of states kept) in the DMRG
calculations. The error ≈10−7 in Ref. 6 refers to the missing
weight in the density matrix. One can expect the errors in
the wave function to be approximately the square-root of
this error,3,66 but exactly how much the VBS correlations are
affected, especially for the largest systems, is not entirely clear.

C. Remarks on other potential spin liquids

The results presented here also are relevant to studies of the
kagome Heisenberg model, for which DMRG studies also have
indicated a spin-liquid state.4,5 A VBS is another candidate
state,33,34 which is not easy to exclude if the ordering is weak
(which should be expected, if this kind of order is present).
Since the most likely VBS patterns in this case are much
more complicated than the columnar state of the J -Q models
discussed here (with the most likely candidate states having
12- or 36-spin unit cells), it is not possible to relate results
in the same close manner as done above in the case of the
J1-J2 model. Nevertheless, the issues pointed out here should
be considered also when analyzing the kagome system, in
particular on long cylinders. It would be very desirable to reach
larger Lx × Ly lattices with the aspect ratio Lx/Ly kept fixed,
although this seems difficult at present. It would also be good
to push calculations based on the multiscale entanglement
renormalization ansatz (MERA)34 to higher precision. Such
a calculation had previously seemed to confirm the VBS with
36-site cell proposed earlier based on other techniques,31,33 but
the energy reached was not as low as that found with DMRG4,5

and exact diagonalization.64,65

The analysis and arguments presented in this paper also
suggest that it would be very useful to add to the nearest-
neighbor Heisenberg exchange some term that favors one of
the VBS states proposed previously, and to study the phase
transition out of this ordered state. Longer-range couplings
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may work, but some interaction similar to the multispin Q

terms discussed here could be even better suited for inducing
the desired type of VBS.

Spin liquid states have recently also been claimed to exist
in electronic Hubbard models and frustrated spin models on
the honeycomb lattice.105–107 For the Hubbard model, 2D
lattices with up to hundreds of sites were used.105 The VBS
correlations in this case decay very rapidly with distance, and
the system does not seem to exhibit the kind of problematic
scaling issues pointed out in this paper. On the other hand, work
on effective spin models constructed to capture the putative
spin-liquid state have not so far been conclusive.62,107–109 Also
here it would be useful to extend the models in such a way that
a VBS phase transition can be studied. The VBS should then
be the one to which the “bare” honeycomb model is the most
susceptible (which may in itself not be easy to determine in
this case).

D. Bench-mark challenge

Finally, as a challenge to DMRG, tensor-product, and
MERA techniques, it would be very interesting and useful to
see these methods applied to J -Q models as well. Comparing
with the known phase diagram and critical behavior extracted
on the basis of unbiased QMC simulations would be a very
good test of the capabilities of these methods to capture
nontrivial ground states and quantum phase transitions. If the
outcome is positive, it may be very useful to systematically
investigate the behavior when frustration is added to this
model, as was recently done in an exact diagonalization study
of a 2D model combining the Q2 interaction with the frustrated
J1-J2 Heisenberg model.110
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APPENDIX: U(1)-Z4 CROSSOVER OF THE VBS
SYMMETRY IN PERIODIC SYSTEMS

The emergent U(1) symmetry of a columnar VBS in the
neighborhood of a critical point can be characterized by
the probability distribution P (Dx,Dy) generated in QMC
simulations on periodic L × L lattices. A systematic study
aimed at extracting the scaling of the U(1)-Z4 crossover length
� was presented in Ref. 40. Here, additional results for the
pure Q2 and Q3 models will be presented in order to facilitate
comparisons with the boundary effects discussed in the main
text. Specifically, it will be shown that the lack of Dx-Dy

symmetry on 2L × L lattices, as seen in Fig. 4 for the Q3 model
for all system sizes, is matched by a clear Z4 symmetric order
parameter on all L × L lattices. Conversely, the symmetry
seen for the Q2 model on large lattices in Fig. 4 is consistent

L = 12 L = 24

0

max

FIG. 25. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q3 model on periodic L × L lattices with L = 12
(left) and L = 24 (right). The size of both squares corresponds
to the full space of possible values of the components Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

with only very small deviations (barely detectable) from U(1)
symmetry on L × L lattices with L as large as 128.

In the projector QMC simulations, each generated config-
uration is associated with a pair of order parameters (Dx,Dy),
which are matrix elements of the corresponding operators
defined in Eqs. (12) and (13) computed in the valence bond
basis. These matrix elements are of the form 3n/4N , where
n is an integer in the range [−N/2,N/2], with the extremal
values corresponding to both the bra and ket state (making up
the transition graph) having the same perfect columnar pattern
of valence bonds of length one lattice constant. The histogram
P (Dx,Dy) is constructed based on these matrix elements.

Figure 25 shows results for the Q3 model for L = 12
and 24. In this model, the histogram P (Dx,Dy) exhibits a
distinct fourfold symmetry even for the smallest systems (also
smaller than L = 12, not shown here, where the discreteness
of the distribution function also becomes apparent). The four
peaks sharpen with increasing lattice size, and above some
size the suppression of the weight between the peaks severely
impedes QMC fluctuations between the peaks. In Fig. 25, the
visibly different weight in the four peaks (with the right peak
having the smallest weight) is a consequence of this rarity of
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FIG. 26. (Color online) Size dependence of the columnar
anisotropy weight, defined in Eq. (A1), of the VBS order parameter
distribution in the Q3 model.
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FIG. 27. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q2 model on periodic L × L lattices with L = 64
(left) and L = 128 (right). The size of both squares corresponds to
10% of the maximum value Dmax/10 of the components, Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

“instanton” events between the peaks (i.e., the simulations “get
stuck” in one quarter of the configuration space). It should be
noted that this very slow simulation dynamics of the VBS order
parameter does not affect the estimate of the total squared order
parameter 〈D2〉 and most other physical quantities of interest.

The degree of Z4 symmetry of the order parameter can be
quantified by the function

W4 =
∑
Dx

∑
Dy

P (Dx,Dy) cos(4φxy), (A1)

where φxy is the angle corresponding to the point (Dx,Dy).
While this function (and the underlying probability distri-
bution) is not a physical observable, in the sense that it
is not a bona fide quantum mechanical expectation value,
it, nevertheless, reflects the fluctuations of the VBS order
parameter and can be used to characterize the the U(1)-Z4

crossover.
Results as a function of L for the Q3 model are shown

in Fig. 26. Here, the convergence W4 → 1 when L → ∞ is
apparent, as would be expected for a columnar VBS in the
thermodynamic limit. In principle, the curve W4(L) could be
used to define the length �, e.g., using W4(�) = 1/2, but there
is clearly an arbitrariness in choosing the particular number.
For studying the scaling of � when some parameter of the
Hamiltonian is changed (e.g., J/Q3) this ambiguity does not
matter. In Ref. 40, curves W4(L) for different coupling rations
were analyzed using standard finite-size scaling techniques,
with the results that � grows slightly faster than the correlation
length � ∼ ξ 1+a with a ≈ 0.2.

Comparing with the behavior of the squared order parame-
ters in Fig. 4, it can be noted that 〈D2

x〉 approaches 0 (and 〈D2
y〉

tends to a nonzero value) very quickly above L ≈ 20, which
is approximately where W4(L) = 1/2 in Fig. 26. On the other
hand, the decay of the edge-induced y component of the order

0 0.2 0.4 0.6 0.8 1
φ/2π

0.154

0.156

0.158

0.160

0.162

0.164

0.166

P
(φ

)

L=128

L=64

L=32

FIG. 28. (Color online) Angular distribution of the VBS order
parameter of the Q2 model for system sizes L = 32, 64, and 128. To
improve the statistics, these results were obtained by symmetrizing
the distributions using the expected 90◦ rotational symmetry. The
jaggedness of the curves (especially for L = 32) is due to the
discreteness of the allowed (Dx,Dy) values (with N possible values
for each component).

parameter in Figs. 17 and 18 (where the system far from
theedge has only x order) gives a length ≈6.5, which could also
be taken as a practical definition of �. This length corresponds
to W4 ≈ 0.1 in Fig. 26.

In contrast to the Q3 model, in the Q2 model no clear
Z4 symmetry is visible in P (Dx,Dy) up to systems as large
as L = 64 and 128, as shown in Fig. 27. These histograms
are ring-shaped, although for L = 128 the weight is not
evenly distributed because of lack of sufficient QMC statistics.
The VBS angle fluctuates very slowly in simulations of
large systems and very long runs are required in order to
obtain symmetric distributions. The data shown are based
on ≈3.5 × 108 Monte Carlo sweeps for L = 64 and 8 × 107

for L = 128 (which required more than 104 CPU hours in
both cases). By symmetrizing the distributions using 90◦
rotations, one can still detect small deviations from perfect
U(1) symmetry, as shown in Fig. 28. The peak positions again
correspond to a columnar state.

Note that in Fig. 27 the ring for L = 128 is considerably
thinner than for L = 64, with the radius (the location of the
maximum or average weight) remaining almost unchanged.
This reflects an expected reduction of the fluctuations of the
magnitude of the VBS order parameter with increasing system
size. Based on these results, the crossover length scale � for the
Q2 model should be �128, which explains why both order-
parameter components are essentially equal for the largest
systems in Fig. 8.
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