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Anisotropic diffusion in FePt thin films
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A complete picture of Fe self-diffusion in epitaxial L10-ordered FePt thin films is presented. Isotopic multilayers
of [57FePt/natFePt]10 on MgO(110) were annealed at temperatures between 653 and 743 K. Nuclear resonant
scattering reveals the decay of the isotopic superstructure due to diffusion. The well-defined orientation of the
lattice in FePt-thin films allows us to resolve the strong anisotropy of diffusion in the tetragonal structure. The
diffusion along the a-axes of the L10 structure is up to two orders of magnitude faster than along the c-axis,
which is in line with the commonly assumed diffusion mechanism in this structure. The anisotropy is therefore
much higher than in comparable structures such as TiAl. An important subtopic of the study is to compare the
classical kinematical evaluation to an analysis employing the full dynamical scattering theory including hyperfine
parameters of the nuclear resonances.
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I. INTRODUCTION

In our information society stable high-density data storage
is of great importance. Various materials are being investigated
as storage media for such devices. Two promising approaches
for next-generation storage devices have been identified:
perpendicular data recording in thin films1,2 and patterned
media of monodisperse nanoparticles.3–5 In both cases FePt
is one of the most promising candidates, because of the large
magnetocrystalline uniaxial anisotropy (∼7 J cm−3) of the L10

phase in general6 and the thermal stability of this material in
particular.7 The tetragonal L10 phase of FePt exists over a wide
compositional range, from 0.45 to 0.65 atomic fraction of Fe,
and remains ordered up to 1553 K. Information about atomic
motion in thin films is crucial for their synthesis and stability.
This calls for a detailed investigation of the fundamental
mechanism of diffusion at temperatures as low as possible.

The standard method for determining macroscopic dif-
fusion coefficients in solids is the tracer technique.8 By
dramatically decreasing the length scales in the samples and
employing x-ray reflectometry, this basic idea is applicable
at slower diffusivities (e.g., at lower temperatures). Although
it would be possible to extract the full information from
scattering on a single interface, multilayers are used to
amplify the essential parts of the scattering experiment by
superposition, thus increasing the contrast of the experiment.
So analogously to Bragg scattering, the layered superstructure
generates intensity maxima at rather low angles corresponding
to the large superstructure period in the film. Additionally, for
an approximately periodic structure a simple expression for the
evaluation in terms of diffusion can be found in Eq. (5). This
concept was first proven valid for interdiffusion in chemically
inhomogeneous multilayers.9 To study self-diffusion in chem-
ically homogeneous solids, nuclear sensitive methods have to
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be introduced. Besides neutron reflectometry,10 it is possible
to utilize the well-known nuclear transition of 14.4 keV of the
Mössbauer isotope 57Fe for nuclear resonant scattering.11 For
this purpose samples with a one-dimensional superstructure
are required, preferably of a period just about one order of
magnitude above the lattice constant. These features are best
achieved by films with an isotopic substructure in depth.12,13

In addition, the orientation of the lattice can be chosen by a
suitable substrate, thus enabling the measurement of diffusion
in different directions and therefore resolving its anisotropy.

Assuming the kinematical approximation for the scattering
process, one can derive a direct relation between the decay of
the superstructure Bragg peak intensity of a multilayer and
the diffusion constant.9 In this article, however, we apply
the full dynamical scattering theory including nonperiodic
boundary conditions, the distinct hyperfine parameters, and
the integration time window of the detector.

II. THEORY

The appropriate theoretical framework for describing the
temporal evolution of a sample with a layered concentration
profile c is simply the one-dimensional diffusion equation with
constant diffusion coefficients D:

(
∂t − D∂2

x

)
c(t,x) = 0. (1)

Note that, in contrast to diffusion in chemically inhomoge-
neous systems, the chemical composition is uniform here,
therefore no concentration dependence of D complicates the
picture.

For the classical interpretation of scattering from diffusing
concentration profiles, the diffusion equation, (1), is solved via
Fourier expansion of the concentration c:

c(t,x) =
∑
m

Cm(t)eiqmx. (2)

In this way one finds an exponential decay of the spatial Fourier
coefficients of the concentration profile Cm as a function of
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time t ,

Cm(t) = Cm(0)e−q2
mDt , (3)

with the scattering vector of the Bragg peak qm. The scattered
intensity I in the kinematical approximation is again related
to the Fourier transform of the concentration,

I (t,q) = |A(t,q)|2 ∝
∣∣∣∣
∫

dx c(t,x)e−iqx

∣∣∣∣
2

, (4)

with the scattering amplitude A. Based on these assumptions,
DuMond and Youtz9 derived a simple relation between the
decay of the intensity I of the superstructure peak at a
scattering vector qm and the elapsed diffusion time t ,

ln
I (t,qm)

I (0,qm)
= ln

∣∣∣∣ Cm(t)

Cm(0)

∣∣∣∣
2

= −2q2
mDt, (5)

allowing for direct access to the diffusion constant D.
Analogous to Bragg scattering, the layered superstructure

generates intensity maxima at rather low angles corresponding
to the large superstructure period in the film. The Laue condi-
tion q · x = 2πm with the scattering vector q yields, for the
first-order maximum m = 1 in the small angle approximation,
a scattering angle of θ ≈ πh̄c/E0x. For an x-ray energy of
E0 = 14.4 keV and a superstructure period of x = 4 nm, we
obtain θ ≈ 11.2 mrad.

Various aspects of the approach as outlined above were
recently criticized in connection with this type of experiment.14

In particular, the kinematical approximation ceases to hold (i)
in the vicinity of the critical angle and (ii) for nuclear resonant
scattering. The full dynamical treatment of the scattering
including all hyperfine parameters and respective distributions
as well as the detection time window is therefore necessary.

The first step is to solve the diffusion equation, (1),
with suitable boundary conditions, which in our case is an
initial concentration variation c(0,x) = g(x) and Neumann-
type boundary conditions at the film surface x = 0 and the
substrate interface x = d [more precisely, ∂xc(t,0) = 0 and
∂xc(t,d) = 0]. The fundamental solution f of the form of a
normal distribution

f (t,x) = (4πDt)−1/2 e−x2/4Dt (6)

may then be used to solve the diffusion equation in the
reciprocal domain q, because in this way the convolution
reduces to a simple multiplication as

c(t,x) = (f ∗ g)(t,x) = F−1((Ff )(Fg))(t,q), (7)

with the Fourier transform operator F . The Neumann-type
boundary conditions for the diffusion equation are included
by mirroring the starting composition at one end ensuring
full periodicity and vanishing concentration gradient on the
boundaries.

The dynamical theory for the calculation of the reflectivity
of such layered samples is outlined in Appendix B.

III. EXPERIMENT

The small dimensions call for high-quality samples. The
bulk lattice constants for the intermetallic tetragonal L10

MgO(110)

c
a

a
MgO(100)

c

a

a

FIG. 1. (Color online) L10-FePt on MgO. (a) c variant on the
(100) plane of the previous study;13 (b) 45◦ canted structure on a
(110) plane. The upward-pointing (red) arrow indicates the measured
diffusion direction.

phase of FePt are a1 = a2 = a = 0.38504(8) nm and a3 =
c = 0.37212(3) nm,15 respectively, resulting in a lattice misfit
of 9% on a MgO(001) surface (0.421 nm). The induced strain
is often reduced by various buffer layers (i.e., Pt). To avoid
island growth16 and guarantee a flat film surface, however, the
FePt films for this study are directly grown on MgO under
well-tested conditions.17 Unfortunately it is not possible to
prepare a film with the magnetic main axis, which is along
the c lattice direction, purely parallel to the film surface (a
variant) on MgO(001) at low enough temperatures to avoid
dilution of the isotopic multilayers, as it is for the c variant
(perpendicular).13 On MgO(110), however, Laenens et al.
found a way to prepare FePt films with the structure rotated
about one of the a-axes by 45◦. From this orientation, shown
in Fig. 1(b), and the results on diffusion in the c-direction in
Ref. 13, we can deduce the diffusion constant in the a-direction
and complete the picture of Fe self-diffusion in FePt.

The samples were prepared by molecular beam epitaxy
at a substrate temperature of 623 K and a pressure p <

10−10 mbar. The layer composition is [57FePt(1.6 nm)/natFePt-
(2.4 nm)]10/MgO(110). The true chemical composition of
Fe56Pt44 determined by Rutherford backscattering, although
on the Fe-rich side, is still well in the center of the L10 phase.

An x-ray diffraction scan on the as-prepared samples with
the scattering vector perpendicular to the surface reveals
intensity maxima at Bragg angles of 16.48◦ and 34.77◦
for the (110) and (220) plane of FePt, respectively, besides
the MgO(220) peak at 31.15◦. On the one hand, from the
FePt(220) diffraction we can conclude that the (220) planes
are in fact grown parallel to the surface. On the other hand,
however, the sheer existence of the (110) peak also implies
that in part of the film the c-axis is oriented parallel to the
surface, which translates to domains, where the measured
superstructure decay corresponds to diffusion purely parallel
to planes spanned by the a-axes.

These results are also confirmed by conversion electron
Mössbauer spectroscopy (CEMS) measurements analogous
to those in Ref. 18. In an L10 lattice the main axis of the
magnetic hyperfine field is always parallel to the c-axis.19 The
relative intensity of the second and fifth to the inner resonances
3:f (θ ):1:1:f (θ ):3 is directly related to the angle θ between
the wave vector of the incoming photon and the direction of
the magnetic hyperfine field, which is the c-direction in the
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FIG. 2. (Color online) CEMS spectra of the FePt samples. The
as-prepared sample (top) shows significant fractions of domains with
different orientation. The measured samples (bottom) show good
ordering, with the majority of domains (site 1) having the c-axis
oriented 45◦ to the incoming photons (⊥ surface). In the domains of
the other two sites with different hyperfine parameters the c-axis is
oriented parallel to the surface.

tetragonal structure, by

f (θ ) = 4 sin2 θ

1 + cos2 θ
. (8)

The acquired spectra are fitted using three independent sites
by a Voigt-based method for arbitrary distribution of magnetic
hyperfine fields20 displayed in Fig. 2. The hyperfine parameters
are simultaneously fitted for all samples, as they are parts of
one large, homogeneously prepared sample. Only the standard
deviation of the normal distribution of the magnetic hyperfine
field of site 3 of the as-prepared sample T1 was decoupled to
account for higher disorder and resulted in σB = 1.11 T. The
other parameters are listed in Table I. Besides the as-prepared
one, the samples show the majority, on average, a fraction of
w = 0.72, of domains with a 45◦ canted structure as intended
for the experiment. The other two sites suggest so called a-
variant domains with the magnetic axis parallel to the surface.
In this fraction the diffusion constant is thus purely measured

in the a-direction. The majority, however, contributes with a
reduced diffusion constant, discussed in more detail below.
The resulting hyperfine parameters are finally used in the
calculation of the nuclear resonant reflectivity.

The scattering experiment was conducted at beamline
ID22N of the ESRF, which is optimized for nuclear resonant
scattering.21 The samples were successively annealed at a fixed
temperature (653, 673, 698, 723, or 743) K in a quartz-tube
furnace in a vacuum of better than 10−6 mbar. After the heat
treatment the samples were pulled out of the furnace to essen-
tially freeze the diffusion. The nuclear resonant �-2� scan was
accumulated ex situ on the beamline under ambient conditions.
The simultaneously collected electronic reflectivity revealed
an overall thickness of the isotopic multilayer of 39.7 nm.

The delayed nuclear reflectivity for each scattering vector
q is acquired over a time window of 170 ns after the
x-ray illumination, which is roughly the time between two
electron bunches in the 16-bunch mode of the synchrotron. The
intensity is integrated starting at 15 ns to avoid any disturbance
by the prompt signal due to the electronic reflectivity, which
is orders of magnitude more intense.21 The measured nuclear
reflectivities for successive annealing steps are illustrated in
Fig. 3 (top) for the sample annealed at 698 K.

IV. RESULTS

The solution of dynamical scattering of Eq. (B3) is only
valid for stacked homogeneous layers. Hence, one has to
discretize the continuous solution of the diffusion equation
into a sufficiently large number of homogeneous layers (in
our case, 100) with varying enrichment of the 57Fe isotope.
As mentioned above, the Neumann-type boundary conditions
for the diffusion equation are included by mirroring the
starting composition at one end. In general, the problem of
dynamical scattering on a layered film [Eq. (B1)] is only
numerically solvable; to this end, we use the program package
CONUSS.22,23 All parameters of the nuclear resonances, the
hyperfine magnetic field, and its weights, orientations, and
distributions derived from CEMS are considered accordingly.
The choice of the start of the detection window in the range
of 0–20 ns did not influence the results for our samples, as it
basically only scaled the overall intensity.

Besides the intensity normalization, the product Dt , called
the diffusion progress throughout this article, is the only
free parameter in fitting the calculated reflectivity to the
experimental data. The mean square deviation of the calculated
reflectivities from the measured ones is minimized via a
Nelder-Mead algorithm to find the best estimator for Dt . This

TABLE I. CEMS parameters for the three sites. All the hyperfine parameters, i.e., the isomer shift (IS), the quadrupol splitting (QS), and
the magnetic hyperfine field B and its distribution σB , were simultaneously fitted for all the samples, except the magnetic field distribution of
the first sample was decoupled to account for higher disorder. The fractions of the different sites are listed.

IS QS B σB θ Fraction of sites by sample

Site (mm s−1) (mm s−1) (T) (T) (deg) T1 T2 T3 T4 T6 T8

1 0.277 0.207 28.36 0.68 45 0.28 0.65 0.84 0.69 0.77 0.68
2 0.269 0.000 30.97 2.13 90 0.52 0.25 0.12 0.23 0.18 0.26
3 0.321 0.207 27.76 0.20 90 0.20 0.10 0.04 0.08 0.05 0.06
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FIG. 3. (Color online) Nuclear resonant reflectivity Inuc for the
57FePt/FePt multilayer at 698 K versus scattering vector q for
increasing annealing time from top to bottom. Data (filled symbols)
were shifted for better visibility. Colored lines are the calculated
dynamical nuclear reflectivities corresponding to the discretized
solutions of the diffusion equation for the enrichment of 57Fe at depth
x of the film as shown below.

procedure is repeated for every sample. The fits established in
this way are drawn in Fig. 3 for the sample annealed at 98 K.
The diminishing nuclear Bragg peak clearly corresponds to the
decrease in the variation of the tracer enrichment in the sample.
The high-frequency oscillation reflects the total thickness of
the multilayer and is not affected by isotopic diffusion. From
the slight deviation of the experimental data one can conclude
that there is, however, some sort of composition imperfection
of the samples which could not be resolved by our model.

For a certain temperature the estimator for Dt is plotted
versus the time duration of the annealing t (Fig. 4). In this
representation the slope of a straight line fitted to the data is
the diffusion constant D. Because of the elevated temperature
and enhanced mobility in the vicinity of the surface during
sample preparation, the initial composition is not perfectly
step-like. The initial state of the samples should be the same,
as they are cut from one large homogeneous sample, therefore
we require the intersection of all the fitted lines at the ordinate.

0 1 2 3 4 5 6
t (104 s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
t 0

+
D

t
(n

m
2
)

743 K

723 K

698 K

673 K

653 K

FIG. 4. (Color online) The fitted diffusion progress Dt plotted
versus the anneal time t for all temperatures, together with a linear
fit. The slope of the fitted lines provides the diffusion constant.

In our case this joint initial diffusion progress is Dt0 = 0.3787
nm2. The resulting values for D are listed in Table II.

In the case of the dynamical scattering evaluation the two
domains with fractions w and 1 − w have been incorporated in
the theory by two different normal distributions of Eq. (6) with
D1 = (Da + Dc)/2 ≈ Da/2, assuming Dc � Da , and D2 =
Da for D, respectively. On the other hand, the kinematical
evaluation according to Eq. (5) can be corrected in a similar
manner. If the domains of the different sites are assumed to
be distributed equally over the depth of the sample, we may
solve the diffusion equation for two independent atom groups.
Keeping in mind that in domains of site 2 and site 3 the c-axis
is parallel to the surface, the diffusion direction is the same and
we can treat them as one domain. In this picture the scattered
intensity in the kinematic approximation is

I (t,q) ∝
∣∣∣∣
∫

dx e−iqx(wc1(t,x) + (1 − w)c2(t,x))

∣∣∣∣
2

. (9)

Expanding the individual concentrations using Eqs. (2) and
(3) and assuming an equal initial composition Cm1(0) =
Cm2(0) ≡ Cm(0), we arrive at an adapted expression (see
Appendix A) for the logarithmic relative intensity decay over
time in comparison to Eq. (5) for D1 = Da/2, D2 = Da , and

TABLE II. Total annealing time t and diffusion constants for
kinematical and dynamical evaluation, Dkin and Ddyn, respectively,
for different annealing temperatures T .

T t Dkin Ddyn

Sample (K) (103 s) (10−22 m2 s−1) (10−22 m2 s−1)

T4 653 53.1 0.064(10) 0.056(11)
T2 673 50.7 0.060(9) 0.056(12)
T3 698 11.4 0.505(38) 0.583(47)
T6 723 2.7 1.65(35) 1.14(23)
T8 743 1.8 2.79(80) 2.18(36)
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FIG. 5. (Color online) Arrhenius plot of diffusion constant D

versus inverse temperature T for the c-direction13 and a-direction,
evaluated by kinematical and dynamical scattering theory, respec-
tively. The slope represents the activation energy of the diffusion
jumps resulting in 1.90(23) and 1.92(23) eV for kinematical and
dynamical evaluation, respectively, compared to the previously
measured 1.65(29) eV.13

0 � w � 1,

ln
I (t,q)

I (0,q)
= 2 ln

∑
i

wie
−q2Dit

= 2 ln (we−q2D1t + (1 − w)e−q2D2t )
= −q2Dat + 2 ln (w + (1 − w)e−q2Dat/2), (10)

which considers the smaller effective diffusion constant
measured for the majority domain canted to the actual diffusion
in the a-direction.

Finally, the activation energies of the fundamental diffusion
jump can be extracted from the Arrhenius plot in Fig. 5.
Here the diffusion constant is plotted versus the inverse
temperature and compared with the conventional kinematical
evaluation along the same direction and the diffusivity in the
perpendicular direction.

V. DISCUSSION

The difference in the activation energies 1.90(23) eV (kine-
matical evaluation) and 1.92(23) eV (dynamical evaluation)
is negligible and well in the range of the standard deviation.
Therefore we can basically confirm the results of the kinematic
evaluation. Additionally, the diffusion constants are only about
20% lower for the dynamical evaluation in the range examined
here. Interestingly, the activation energies are in the same
region as the previously measured one [1.65(29) eV] in the
perpendicular direction.

These values for the activation energy are lower compared
to Fe-tracer24,25 or chemical26 diffusion data in FePt, which
were, however, obtained at much higher temperatures. Lower
activation energies are usually explained by grain boundary
diffusion with a high concentration of point defects.27 Due
to the probed length scales, which are barely an order of
magnitude above the lattice constant, only an extremely
high density of such defects would be able to influence the

diffusivities measured with our method, which is in noted
contrast to the case of conventional tracer diffusion experi-
ments. The high epitaxial quality of our samples, however,
is confirmed by TEM images17 for the c-variant samples,
revealing antiphase boundaries and dislocations mainly at the
interface to the substrate. Furthermore, the dislocation lines
are oriented perpendicular to the measured diffusion. Due to
the good agreement in the activation energies of the c variant,
1.65(29) eV,13 and the direction investigated here, we may dis-
regard these influences in this study. The rather low activation
energy is also confirmed by in situ resistometry measurements
on a similar FePt isotopic multilayer by Kozubski et al.28

Additionally, they observed a similar multiscale character of
the activation energies in order-order transitions investigated
by Monte Carlo simulations.

To recapitulate, we believe that the activation energy in our
measurements on two different samples so far and in different
crystallographic directions has a solid base experimentally.
New tracer or interdiffusion measurements filling the huge gap
in the temperature between our data and the data in Ref. 24
would therefore be desirable.

The Fe diffusion rate parallel to the a plane, which is
enhanced by up to two orders of magnitude compared to
the diffusion rate along the c-axis, qualitatively confirms the
expectation of diffusion mainly in the Fe sublattice. However,
the anisotropy is surprisingly high compared with that of other
intermetallics of the same structure.

Anisotropic diffusion measurements are very rare for L10

single crystals. Studies on L10-FePt (0.54 atomic fraction of
Fe, close to the fraction of 0.56 of our sample) report an
anisotropy of only 1.2 to 1.7, i.e., faster iron diffusion along
the a than along the c-axis.24,25 This value increases only
slightly, to a factor of 1.6 to 3.6, in the Pt-rich composition with
0.42 atomic fraction of Fe. The anisotropy of Ti diffusion in
L10-TiAl is 1 order of magnitude.29,30 Anisotropies of impurity
diffusion in TiAl31 can be larger as well as smaller than 1,
which proves that activation energies play a crucial role in the
case of impurities.

In the case of perfect stoichiometry we assume that any
Fe diffusion in the c-direction will require higher energy due
to the creation of Pt antisites, and therefore the energetically
favored diffusion paths are exclusively in the a planes. The
raw formation enthalpies from ab initio calculations32 for Fe
(Pt) antisites and vacancies, 1.05 (0.66) and 2.58 (3.2) eV,
respectively, can be renormalized for structural antisites33 in
the Fe-rich composition to the effective formation enthalpies of
0 (1.71) and 3.105 (2.675) eV, respectively, to achieve the right
kinetics. For diffusion in the c-direction, diffusion paths via
the classical six-jump cycle34 (see also Mehrer8) and direct
jumps to a next-nearest neighbor site are both energetically
disadvantageous. The very high order of the FePt phase
clearly supports this view. In our slightly off-stoichiometric
Fe-rich samples a small fraction of diffusion paths of similar
energetics to the a planes through structural Fe antisites exists.
Nevertheless, in our opinion the reason for the high anisotropy
is the far higher number of energetically favoured diffusion
paths on the atoms own sublattice. These are diffusion jumps
which in no way disturb the lattice order.

Additional diffusion paths through Fe antisites would,
however, mainly influence diffusion in the c-direction, which
was measured on samples closer to stoichiometry. Despite
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their far lower numbers, the good agreement of the activation
energy in the different directions suggests that diffusion
in the c-direction similarly occurs through antisites on the
Pt sublattice, which could be another reason for the high
anisotropy. Nevertheless, from these considerations we expect
even higher anisotropy for Pt. Overall, the presence of antisites
could decrease the formation energy of vacancies considerably
and calls for further ab initio calculations.

There is one more factor acting in the same way as
energetically favored diffusion paths: the correlation effect for
the vacancy jump as a diffusion vehicle. In the paper by Ikeda
et al.,29 the smaller diffusion coefficient of Ti in the direction
parallel to the c-axis was explained in terms of the stronger
correlation effect for vacancy jumps between sublattices. This
claim was modified in the later paper,25 but certainly some
part of the anisotropy could also be understood by taking only
vacancy correlation effects into account.

In summary, anisotropy of iron diffusion in L10-FePt is a
result of energetic barriers and vacancy correlations. We can,
however, not separate the relative impacts of all these factors.

Taking into account all these factors, we conclude that
L10-FePt displays the highest anisotropy of the iron diffusion
coefficient in the c vs perpendicular to the c-axis among all
L10 systems reported so far. We cannot conclude which factor
is the most important and leave this problem as a challenge for
future ab initio calculations.

A full dynamical treatment for multilayer diffusion in-
corporating all the hyperfine parameters was employed to a
real resonant reflectivity experiment. Within the variance the
results are in good agreement with the classical evaluation
method. In samples with a higher ratio of nuclear resonant
absorption to photoabsorption, however, significant deviations
can be seen, which will be the object of a different publication.

APPENDIX A: KINEMATICAL EVALUATION FOR
MULTIPLE DOMAINS

In single crystals of a tetragonal lattice there are always
three possible orientations for the different domains. For
anisotropic diffusion, Eq. (5) has to be modified. Approxi-
mately equally distributed domains of concentration ci and
sizes smaller than the transversal coherence length can be
weighted by the abundance wi and summed over coherently,
proceeding as

I (t,q) ∝
∣∣∣∣∣
∫

dx e−iqx
∑

i

wici(t,x)

∣∣∣∣∣
2

=
∣∣∣∣∣
∫

dx e−iqx
∑

i

wi

∑
m

Cmi(0)e−q2
mDi t eiqmx

∣∣∣∣∣
2

=
∣∣∣∣∣
∑

i

wi

∑
m

Cm(0)e−q2
mDi t

∫
dx e−i(q−qm)x

∣∣∣∣∣
2

=
∣∣∣∣∣
∑

i

wi

∑
m

Cm(0)e−q2
mDi t δ(q − qm)

∣∣∣∣∣
2

= |Cq(0)|2
∣∣∣∣∣
∑

i

wie
−q2Dit

∣∣∣∣∣
2

, (A1)

where we assumed an approximately equal starting com-
position throughout the domains Cmi(0) ≡ Cm(0). For a
certain wave vector q, typically the first Bragg peak of the
superstructure, and the abundance normalization

∑
i wi = 1,

we may further write

ln
I (t,q)

I (0,q)
= ln

|Cq(0)|2∣∣∑i wie
−q2Dit

∣∣2

|Cq(0)|2| ∑i wi |2
= 2 ln

∑
i

wie
−q2Dit . (A2)

Unfortunately in this case there is no longer a strict linear de-
pendence on t , so nonlinear fitting algorithms, i.e., Levenberg-
Marquardt, have to be applied to extract the diffusion
constants Di .

APPENDIX B: NUCLEAR RESONANT SCATTERING

The problem of dynamical scattering on an in-plane infinite,
homogeneous but in-depth x varying layer can always be
written in the form

∂x A(x) = i F(x)A(x), (B1)

with the electric field amplitudes A and the propagation matrix
F. For a homogeneous layer of thickness d the solution for
this system of coupled linear differential equations is

A(d) = ei Fd A(0). (B2)

Therefore the solution for N homogeneous layers with the
individual propagation matrices Fj and thicknesses dj and
the overall thickness d = d1 + · · · + dN is

A(d) = ei FNdN · · · ei F1d1 A(0) ≡ SA(0). (B3)

In this way the scattering amplitude of an in-depth, slowly
varying layer can be calculated in a good approximation
by dividing it into a large number of sublayers, applying
dynamical scattering theory to the individual layer. A similar
approach with infinitesimal layers led to Eq. (B1) in the first
place. The discretization is done by an algorithm repositioning
the layer interfaces to minimize the squared deviation to the
continuous solution of the diffusion equation.

If the propagation equation, (B3), with the total scattering
matrix S is written in matrix form,[

A+(d)
A−(d)

]
=

[
S++ S+−
S−+ S−−

] [
A+(0)
A−(0)

]
, (B4)

then A+ and A− denote the field amplitudes propagating
into and out of the sample, respectively. The components are
themselves two-dimensional vectors and matrices to account
for polarization dependence. After applying the boundary
condition that there is no incident wave to the bottom of the
sample A−(d) = 0, the reflected amplitude is given by

A−(0) = −S−−−1 S−+ A+(0). (B5)

This theoretical approach was developed by Batterman and
Cole35 and extended to nuclear resonant scattering,36 which
is presented in a more intuitive way for the grazing incidence
geometry in Ref. 23. The scattering properties of the individual

134302-6



ANISOTROPIC DIFFUSION IN FePt THIN FILMS PHYSICAL REVIEW B 85, 134302 (2012)

layer j are included in the respective propagation matrix Fj ,
consisting of separate electronic and nuclear resonant atomic
scattering amplitudes. The nuclear resonant amplitude holds
all the hyperfine parameters of the 57Fe atoms in the FePt
structure and is weighted by the enrichment of the individual
layer.
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R. Rüffer, and A. Gupta, Phys. Rev. B 74, 104301 (2006).

14M. A. Andreeva, N. G. Monina, and S. Stankov, Moscow Univ.
Phys. Bull. 63, 132 (2008).

15H. Kudielka and P. Runow, Z. Metallkd. 67, 699 (1976).
16M. Kim, S. Shin, and K. Kang, Appl. Phys. Lett. 80, 3802 (2002).
17B. Laenens, F. M. Almeida, N. Planckaert, K. Temst, J. Meersschaut,

A. Vantomme, C. Rentenberger, M. Rennhofer, and B. Sepiol,
J. Appl. Phys. 105, 073913 (2009).

18B. Laenens, F. M. Almeida, A. Vantomme, and J. Meersschaut,
Acta Phys. Pol. A 112, 1313 (2007).

19T. Shinjo and W. Keune, J. Magn. Magn. Mater. 200, 598 (1999).
20D. G. Rancourt and J. Y. Ping, Nucl. Instrum. Methods B 58, 85

(1991).
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