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The many-body diffusion quantum Monte Carlo (DMC) method with twist-averaged boundary conditions is
used to calculate the ground-state equation of state and the energetics of point defects in fcc aluminum using
supercells up to 1331 atoms. The DMC equilibrium lattice constant differs from experiment by 0.008 Å, or 0.2%,
while the cohesive energy using DMC with backflow wave functions with improved nodal surfaces differs by
27 meV. DMC-calculated defect formation and migration energies agree with available experimental data, except
for the nearest-neighbor divacancy, which is found to be energetically unstable, in agreement with previous
density functional theory (DFT) calculations. DMC and DFT calculations of vacancy defects are in reasonably
close agreement. Self-interstitial formation energies have larger differences between DMC and DFT, of up to
0.33eV, at the tetrahedral site. We also computed formation energies of helium interstitial defects where energies
differed by up to 0.34 eV, also at the tetrahedral site. The close agreement with available experiments demonstrates
that DMC can be used as a predictive method to obtain benchmark energetics of defects in metals.
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I. INTRODUCTION

The mechanical properties of metals are dominated by the
formation and migration energies of defects. Experimentally, it
is often difficult to measure desired defect properties directly,
so it is important to have accurate theoretical approaches to
calculate defect properties. The many-body diffusion quantum
Monte Carlo (DMC) approach1 is the most accurate method
for systems with more than ≈30 electrons, but it has not
previously been applied to defects in metals. Until today, the
most successful quantum mechanics-based defect calculations
in metals use density functional theory (DFT). However, the
approximate functionals used (i) lack sufficient specific and
universal accuracy and (ii) cannot be systematically improved;
furthermore, (iii) there are now many approximate functionals
to choose from, all giving different results. Thus, DMC results
are an ideal candidate to wholly replace DFT when benchmark
thermodynamic properties are required. Furthermore, the rela-
tive energies of reference phases (bulk metals and compounds)
would be of great value in thermodynamic databases and in
the subsequent prediction of phase diagrams (e.g., CALPHAD
and Thermocalc).

In semiconductors, DMC calculations of the formation
energies of point defects and surface energies have shown
that important corrections to DFT arise when electronic
correlations are fully taken into account. Deviations in for-
mation energies of more than 1 eV were found in silicon2

and diamond.3 Additionally, activation energies of common
chemical reactions obtained by DFT methods have been shown
to differ substantially from benchmark diffusion Monte Carlo
values4 and quantum chemical results. For metallic systems,
the size of the errors in DFT calculations of defects is
largely unknown, as more accurate benchmark calculations
do not currently exist. It is highly desirable to demonstrate the
feasibility of DMC, with its increased predictive accuracy, as
a replacement of DFT for challenging systems such as metals,
particularly as computer power increases.

Aluminum is an ideal starting point for carrying out initial
DMC calculations of defects since it is one of the simplest
metals with a close-packed fcc structure that contains no 3d

electrons. As a result it is considered a prototype material for
testing the validity of theoretical calculations. Aluminum is
well characterized experimentally, so there is an abundance of
data available. There have been previous quantum Monte Carlo
calculations of the bulk properties of aluminum; however, these
were done using the less accurate variational Monte Carlo,5,6

and the calculations had large statistical noise.
In this paper, we report well-converged results for the bulk

properties of fcc aluminum using DMC. We explore a larger
range of volumes in order to compare the ground-state equation
of state calculated with DFT. Our DMC calculations of the de-
fect properties of aluminum include the simplest point defect,
the vacancy for which numerous DFT7–9 and experimental
results10–14 are available. We compute the nearest-neighbor
divacancy binding energy, a defect that DFT calculations7,15

have found to be unstable. Since this instability is counter
to both experimental studies11,16 and simple bond-counting
arguments,17 it is important to perform calculations of this
defect with DMC, a method that, unlike DFT, does not rely on
approximations for exchange and correlation.

We also examine two other types of defects: First, self-
interstitials can arise due to irradiation with energetic particles,
through plastic deformation or through their production in
thermal equilibrium at high temperatures. We have obtained
DMC results for the formation energies of the 〈100〉-dumbbell,
the octahedral, and the tetrahedral self-interstitials. Second,
experimental studies of irradiated aluminum show the presence
of He bubbles.18–20 The formation and growth of helium bub-
bles can alter a material’s mechanical properties through void
swelling, embrittlement, and surface blistering.21,22 Since irra-
diation, through He implantation or transmutation, gives rise
to He atoms at substitutional or interstitial lattice sites, the en-
ergetics of these types of defects are important. Presented here
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are DMC-calculated formation energies for He at the substitu-
tional, octahedral, and the tetrahedral interstitial sites, which
are compared with previous DFT calculations.23 We demon-
strate that twist-averaged boundary conditions offer far su-
perior statistics over DFT-calculated single-particle finite-size
corrections for DMC calculations of defects and also remove a
dependence on data from other methods. Overall the calcula-
tions reported here used several million processor hours, which
is affordable on large computer clusters and supercomputers.

II. BULK ALUMINUM

The DMC approach1 is a stochastic method for evolving a
wave function using the imaginary-time Schrödinger equation.
In principle, and in contrast to most electronic structure meth-
ods, the systematic errors can be measured and systematically
reduced.24,25 In practice, the most significant sources of error
are (i) the fixed-node and fixed-phase approximations, a vari-
ational solution to the Fermion sign problem, (ii) adequately
sampling the Brillouin zone, which, in contrast to insulators,
is a significant problem in metals, and (iii) pseudopotential
error and corresponding locality error (although these may be
avoided through all-electron calculations26).

For our DMC calculations we used the CASINO code,27 with
guiding wave functions formed by a product of Slater determi-
nants for up- and down-spin electrons and a Jastrow correlation
function. The single-particle orbitals in the determinants were
obtained from DFT calculations using the generalized gradient
approximation (GGA) for the exchange-correlation term since
it should perform better than the local-density approximation
(LDA), where the electron distribution shows large spatial
variations as it does at a vacancy in aluminum.7 (For bulk
aluminum GGA is more accurate than LDA.) For GGA we
used the Perdew-Burke-Ernzerhof (PBE) form29 rather than
the Perdew-Wang-91 (PW91) form30 since it gives better
values8 for the vacancy formation energy. The DFT calcula-
tions were performed using the plane-wave PWSCF code31 with
Troullier-Martins nonlocal pseudopotentials. For the nonlocal
pseudopotentials we used the locality approximation32 in the
DMC calculations. The orbitals were evaluated in DMC via
real-space cubic splines.33 For the DMC simulations we used
5280 walkers with a time step of 0.01 au, which our test
calculations revealed gave time-step errors of our reported
defect energies of less than 0.01 eV.

Calculations of solids using DMC require finite simulation
supercells with periodic boundary conditions imposed on
the Hamiltonian. This leads to finite-size effects that can be
divided between single-particle and many-body contributions.
In a metal the DMC kinetic energy contains large single-
particle contributions due to the sharp Fermi surface, which
impacts our calculations in two ways.

First, in a real metal the number of orbitals with energies
below the Fermi level is usually not equal to the number of
electrons required in the simulation cell. In DFT calculations
one can use partial occupations of these orbitals to create a
closed-shell configuration guaranteeing that the charge density
has the correct symmetry. In a DMC calculation with a guiding
wave function containing a single determinant for the spin-up
electrons and for the spin-down electrons the use of partial
occupations is not an option. Gaudoin et al.6 found differences
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FIG. 1. (Color online) The black circles with error bars are the
calculated DMC ground-state energies of bulk fcc aluminum ob-
tained using twist-averaged boundary conditions with 10 × 10 × 10
twists. The red diamonds with error bars are the calculated DMC
ground-state energies of bulk fcc aluminum obtained without using
twist-averaged boundary conditions. The DFT corrections EDMC

∞ =
EDMC

N + EDFT
∞ − EDFT

N were added to the results that did not use
twist-averaged boundary conditions. Both sets of calculations were
done using 5 × 5 × 5 supercells containing N = 125 atoms.

in aluminum as large as 0.1 eV/atom in variational Monte
Carlo total energies depending on the occupations of the
orbitals at the Fermi level. As our calculations show in Fig. 1
for aluminum an error on the order of 0.1 eV/atom is too large
to accurately discern the equilibrium lattice constant.

A second complication for DMC calculations of metals
arises as the system size is varied, which can produce band
crossings as energy levels pass through the Fermi level. This
can create discontinuous changes in the nodal surface of the
guiding wave function as the symmetry of the occupied orbitals
changes, leading to discontinuities in the DMC energy as
shown in Fig. 1. For simulation cells containing 64 or 125
atoms we found that single-particle DFT corrections EDMC

∞ =
EDMC

N + EDFT
∞ − EDFT

N were ineffective in removing the large
discontinuities we found in calculated DMC energies as the
volume was varied. However, the use of well-converged twist-
averaged boundary conditions34,35 was effective in producing
smooth energy versus volume curves at these systems sizes, as
shown in Fig. 1. Our calculations with 64 and 125 atoms used
�-point centered grids with 13 × 13 × 13 and 10 × 10 × 10
twists, respectively.

With twist-averaged boundary conditions the remaining
finite-size effects arise from many-body contributions36 that
scale as

E∞ = EN + c/N. (1)

As shown in Fig. 2 this equation agrees well with our
DMC energies using twist-averaged boundary conditions for
simulation cells containing between 27 and 1331 atoms.

We used Eq. (1) to obtain infinite-size extrapolated DMC
total energies from calculations using 64- and 125-atom
simulation cells with twist-averaged boundary conditions
using a range of lattice constants shown in Fig. 3. The energy
points were fit to a quartic and a Murnaghan equation of state.28

Both fits yielded an equilibrium lattice constant of 4.030(1) Å.
This compares well with the experimental value, 4.022 Å, with
zero-point energy and finite-temperature effects removed.5 In
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FIG. 2. (Color online) The circles are calculated DMC ground-
state energies of fcc aluminum with lattice constant a = 4.046
Å using twist-averaged boundary conditions for simulation cells
containing 27, 64, 125, 216, and 1331 atoms with a �-point centered
grid of 17 × 17 × 17, 13 × 13 × 13, 10 × 10 × 10, 9 × 9 × 9, and
1 × 1 × 1 twists, respectively. The statistical error bars are smaller
than the circles. The dashed line is a guide to the eye. The solid red
line is a fit to the data using Eq. (1) where N , the number of atoms,
is 64, 125, and 216. This fit has a correlation coefficient of −0.9997.

contrast DFT calculations with LDA and GGA (PBE) yield
3.960 and 4.046 Å, respectively.

For the DMC cohesive energy we initially obtained
3.341(1) eV using the fixed nodes defined by the GGA
orbitals, compared with the experimental value of 3.43 eV
with zero-point energy and finite-temperature effects removed,
4.21 eV using LDA, and 3.52 eV using GGA (PBE). Although
the fixed-node DMC results with GGA nodes are already
the most accurate, to assess the possible nodal error we also
performed DMC calculations with twist-averaged boundary
conditions and extrapolation to an infinite-sized supercell
using optimized backflow wave functions (with backflow
transformations that contained electron-electron, electron-
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FIG. 3. (Color online) (top) Comparison of equilibrium lattice
constants and cohesive energies for fcc aluminum calculated using
DMC with backflow [4.030(1) Å, 3.403(1) eV], using DFT with
LDA (3.960 Å, 4.21 eV)5 and GGA (PBE) (4.046 Å, 3.52 eV), and
experiment (4.022 Å, 3.43 eV) with zero-point energy and finite-
temperature effects removed.5 (bottom) DMC energies for various
lattice constants, with a quartic and a Murnaghan fit.28 DMC data
were obtained using twist-averaged boundary conditions and were
extrapolated to infinite-sized supercells with single-determinant fixed
nodes. A shift of 0.063 eV was applied based on DMC calculations
using backflow wave functions (see text).

nuclei, and electron-electron-nuclei terms37) at the optimum
lattice constant and also for an isolated atom. Backflow wave
functions can be substantially more accurate than single-
determinant nonbackflow wave functions, typically yielding
an additional few percent DMC correlation energy in atomic
calculations and nearly 100% of the correlation energy in the
homogeneous electron gas.37 However, since backflow is too
expensive to apply routinely, we have used the backflow result,
similar to how corrections for all electrons have been applied,26

to shift our single-determinant fixed-node energies in Fig. 3.
The backflow cohesive energy is 3.403(1) eV. A complete
backflow evaluation of the lattice constant might further reduce
the residual differences from experiment.

We expect the backflow correction in metallic systems
with atomic numbers higher than aluminum to be at least as
large as our computed correction in aluminum. This indicates
that to obtain cohesive energies to better than 0.1 eV, other
than by fortuitous error cancellation, backflow or other nodal
optimization must be considered.

We performed additional DMC total energy calculations of
bulk aluminum for atomic volumes smaller than those shown
in Fig. 3 by following the same procedure of using Eq. (1)
to obtain infinite-size extrapolated DMC total energies from
calculations using 64- and 125-atom simulation cells with
converged twist-averaged boundary conditions. A Murnaghan
fit of the energy-volume DMC data was used to obtain the
pressure for a range of atomic volumes. These calculated
DMC pressures are shown in the top part of Fig. 4 along
with pressures calculated with DFT using GGA (PBE). At this
scale the differences between the DMC and GGA pressures
are not visible. The solid black curve in the bottom part of
Fig. 4 shows the difference in pressures between GGA and
DMC. A common procedure for constructing an equation
of state of a material at low temperatures is to shift the
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FIG. 4. (Color online) (top) The red squares show the calculated
pressures of fcc aluminum using DFT with GGA (PBE). The black
circles are pressures obtained from a Murnighan fit of total energy
DMC calculations performed at a range of atomic volumes. At this
scale the GGA and DMC data are indistinguishable. (bottom) The
black solid line is the difference in pressure between the GGA and
the DMC calculations at the same range of atomic volumes. The
dashed red line shows the difference in pressures between the GGA
and the DMC calculations after the GGA energy-volume curve has
been shifted so that the equilibrium volumes of the GGA and DMC
calculations coincide.
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computed equilibrium lattice constant so that it coincides with
the experimental equilibrium lattice constant.38 Following a
similar procedure of shifting the GGA-calculated energy-
volume curve so that the GGA equilibrium lattice constant of
4.046 Å coincides with the DMC equilibrium lattice constant
of 4.030(1) Å yields a pressure difference between the GGA
and the DMC equation of states that increases markedly at
smaller atomic volumes, as shown by the red dashed line in
Fig. 4. This demonstrates that applying a rigid shift to DFT
equation of state calculations can result in larger errors than if
a shift is not applied.

III. DEFECTS IN ALUMINUM

The results of our calculations of point defects are presented
in Table I. The atomic positions were taken from complete
structure and volume-relaxed DFT calculations using GGA
at zero pressure. The calculated GGA and DMC vacancy
formation and migration energy agree with experiment. How-
ever, GGA no longer agrees with experiment when “surface”
corrections7,39,40 of 0.15 and 0.05 eV are added to the GGA
(PBE) functional producing 0.82 and 0.65 eV for the va-
cancy formation and migration energy, respectively. Previous
GGA (PBE) calculations8 of the vacancy formation energy
without the surface correction using 4 × 4 × 4 supercells
yielded values of 0.61 and 0.63 eV with norm-conserving
and projector augmented-wave pseudopotentials, respectively.
This difference with our GGA results is likely partially due to

TABLE I. Energies (enthalpies at zero pressure) for point defects
in fcc aluminum (eV) calculated using GGA (PBE) and DMC.
Formation and migration energies for a single vacancy are de-
noted Hf

v and Hm
v , respectively. Shown in braces are the GGA

values with “surface” corrections7,39 added. Formation and binding
energies for a nearest-neighbor divacancy are denoted H

f

2v and
Hb

2v , respectively. H
f

d , Hf
o , and H

f
t are the formation energies

for the 〈100〉-dumbbell, the octahedral, and the tetrahedral self-
interstitials, respectively. Formation energies for a He impurity at
a substitutional, octahedral, and tetrahedral sites are denoted H

f

He(s),

H
f

He(o), and H
f

He(t), respectively. Statistical errors bars for all DMC
energies are 0.01 eV. GGA and DMC calculations were done
using 7 × 7 × 7 and 5 × 5 × 5 supercells, respectively, with atomic
positions taken from complete structure and volume-relaxed GGA
calculations.

GGA DMC Experiment

Hf
v 0.67 {0.82} 0.67 0.67(3) (Ref. 10), 0.67 (Ref. 11),

0.66(2) (Ref. 12)
Hm

v 0.60 {0.65} 0.60 0.62 (Ref. 13), 0.61(3) (Ref. 10),
0.65(6) (Ref. 14)

H
f

2v 1.37 1.44 1.17(7)a

Hb
2v − 0.03 − 0.10 0.17(5) (Ref. 41), 0.20 (Ref. 11)

H
f

d 2.70 2.94 3.0 (Ref. 10), 3.2(5) (Ref. 42)
Hf

o 2.91 3.13
H

f
t 3.23 3.56

H
f

He(s) 1.63 1.72
H

f

He(o) 3.26 3.58
H

f

He(t) 3.33 3.67

aComputed using Hf
v from Ref. 10 and Hb

2v from Ref. 41.

finite-size effects since we obtained 0.64 eV for the vacancy
formation energy using a 4 × 4 × 4 supercell. The GGA
results in Table I correspond to calculations using finite-size
converged 7 × 7 × 7 supercells. Convergence of the GGA
defect structures was established by computing the energies
using 4 × 4 × 4, 5 × 5 × 5, 6 × 6 × 6, and 7 × 7 × 7 super-
cells. The DMC results in Table I were done using 5 × 5 × 5
supercells with �-point centered grids of 10 × 10 × 10 twists.
The finite-size errors for our DMC calculations are likely to
be small since the largest GGA energy difference among all
of the defects comparing 5 × 5 × 5 and 7 × 7 × 7 supercells
was 0.02 eV. Shown in Table II are GGA and DMC data
demonstrating the convergence with supercell size for all the
defects considered.

For the nearest-neighbor divacancy with DMC we obtain a
negative binding energy, −0.10 eV, which implies that two
isolated vacancies are energetically preferred to a nearest-
neighbor divacancy. This agrees with previous DFT calcu-
lations which also found a similar negative binding energy,
−0.05 eV using LDA15 and −0.08 eV using GGA (PW91).7

Thus the disagreement between previous calculations and the
original interpretation of experimental data,11,16 which gave
positive binding, is likely not a result of DFT approximations.
Our results are consistent with the reinterpretation7 of the
data.

Experimentally,42 the 〈100〉-dumbbell was found to be
the lowest energy self-interstitial in aluminum. Of the self-
interstitials investigated we found that the 〈100〉-dumbbell has
the lowest formation energy. The calculated formation energy
was 2.94 eV using DMC and 2.70 eV using GGA. Our DMC
value agrees with the experimental estimates of 3.010 and
3.2(5) eV.42 For the 〈100〉 dumbbell we obtain a relaxation
volume of 2.25, which agrees closely with experimental
estimates of 1.9(4) and 1.7(4).42 Our GGA (PBE) result is
larger than a previous GGA (PW91) result39 of 2.43 eV. For
the self-interstitials we see differences between the calculated
DMC and GGA formation energies as large as 0.24 eV.

The DMC formation energy for a He substitutional defect
is 1.72 eV, while the energies for He interstitials are larger than
3 eV. The ordering of these energies is consistent with sites
with larger free volumes having lower energies. Previous DFT
calculations23 using GGA (PW91) obtained 1.53, 3.18, and
3.20 eV for He at the substitutional, octahedral, and tetrahedral
sites, respectively. Comparing our GGA and DMC calcula-
tions, we see differences between 0.09 and 0.34 eV for the He
impurity. Similar to the self-interstitials, the GGA exchange-
correlation errors are larger for these defects than for the
vacancy.

Relying on DFT corrections to minimize the single-particle
finite-size errors instead of twist averaging yielded poorer
convergence for defect energies. For example, the difference in
vacancy formation energies between 4 × 4 × 4 and 5 × 5 × 5
supercells was 0.23 eV compared with 0.01 eV with twist
averaging, while the result for divacancy binding was reversed,
as shown in Table II. DMC calculations in larger 6 × 6 × 6
supercells would be an order of magnitude more expensive
and may still be inferior to the twist-averaged results. The
use of twist averaging is essential in metals for defects and
excitations in which the fractional change in the total energy
due to the presence of the defect or excitation is inversely
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TABLE II. Energies (enthalpies at zero pressure) for point defects in fcc aluminum (eV) calculated using density functional theory (DFT)
with GGA (PBE) functional and diffusion Monte Carlo (DMC). The symbols for the formation and migration energies are the same as those used
in Table I. Except where indicated, the statistical errors bars for the DMC energies are 0.01 eV. The GGA and DMC calculations were done with
atomic positions taken from complete structure and volume-relaxed GGA calculations. For the GGA calculations we used 4 × 4 × 4, 5 × 5 × 5,
6 × 6 × 6, and 7 × 7 × 7 supercells with �-centered grids of 13 × 13 × 13, 10 × 10 × 10, 9 × 9 × 9, and 8 × 8 × 8 k points, respectively.
For the DMC calculations we used 4 × 4 × 4 and 5 × 5 × 5 supercells. For DMC without twist averaging we applied the single-particle
DFT corrections EDMC

∞ = EDMC
N + EDFT

∞ − EDFT
N . For the DMC calculations with twist averaging we did not apply DFT corrections and used

�-centered grids with 13 × 13 × 13 twists and 10 × 10 × 10 twists for the 4 × 4 × 4 and 5 × 5 × 5 supercells, respectively. Entries in the
table that were not determined are denoted N.D.

GGA DMC with DFT corrections DMC with twist averaging

4 × 4 × 4 5 × 5 × 5 6 × 6 × 6 7 × 7 × 7 4 × 4 × 4 5 × 5 × 5 4 × 4 × 4 5 × 5 × 5

Hf
v 0.64 0.65 0.67 0.67 0.58 0.81 0.66 0.67

Hm
v 0.59 0.59 0.60 0.60 0.50 0.40(3) 0.54 0.60

H
f

2v 1.36 1.35 1.36 1.37 1.31 1.29(3) 1.47 1.44
Hb

2v − 0.05 − 0.05 − 0.02 − 0.03 − 0.15(2) 0.33(5) − 0.15 − 0.10
H

f

d 2.82 2.72 2.72 2.70 N.D. N.D. N.D. 2.94
Hf

o 2.93 2.90 2.94 2.91 2.90 2.75 3.18 3.13
H

f
t 3.53 3.25 3.27 3.23 3.27 3.27 3.60 3.56

H
f

He(s) 1.61 1.61 1.62 1.63 1.41 1.98 1.64 1.72
H

f

He(o) 3.26 3.24 3.27 3.26 3.29 3.45 3.53 3.58
H

f

He(t) 3.44 3.35 3.35 3.33 2.89 3.55 3.71 3.67

proportional to the number of atoms in the supercell, i.e.,
“1/N” effects.

IV. CONCLUSIONS

In summary, DMC with twist-averaged boundary condi-
tions can be used to obtain an accurate equation of state of alu-
minum. Our DMC results confirm previous DFT calculations
that the nearest-neighbor divacancy is unstable in aluminum.
Our calculated formation and migration energies of point
defects show excellent agreement with available experiment,
demonstrating that DMC can be used to obtain benchmark
energetics of defects in metals and can be used as a baseline
where no experiment is available.
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18H. Rajainmäki, S. Linderoth, H. E. Hansen, R. M. Nieminen, and
M. D. Bentzon, Phys. Rev. B 38, 1087 (1988).

19R. C. Birtcher, S. E. Donnelly, and C. Templier, Phys. Rev. B 50,
764 (1994).

20D. Hamaguchi and Y. Dai, J. Nucl. Mater. 329, 958 (2004).
21Y. Katoh, M. Ando, and A. Kohyama, J. Nucl. Mater. 323, 251

(2003).
22R. Vassen, H. Trinkaus, and P. Jung, Phys. Rev. B 44, 4206 (1991).
23L. Yang, X. T. Zu, and F. Gao, Phys. B 403, 2719 (2008).
24C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and R. G. Hennig,

Phys. Rev. Lett. 98, 110201 (2007).
25M. Bajdich, M. L. Tiago, R. Q. Hood, P. R. C. Kent, and F. A.

Reboredo, Phys. Rev. Lett. 104, 193001 (2010).
26K. P. Esler, R. E. Cohen, B. Militzer, J. Kim, R. J. Needs, and M. D.

Towler, Phys. Rev. Lett. 104, 185702 (2010).
27R. J. Needs, M. D. Towler, N. D. Drummond, and P. López Rı́os, J.
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