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Extreme Poisson’s ratios and their electronic origin in B2 CsCl-type AB intermetallic compounds

X. F. Wang,1,2 Travis E. Jones,3,* W. Li,1,2 and Y. C. Zhou1,†
1Key Laboratory of Low Dimensional Materials & Application Technology (Ministry of Education), Xiangtan University,

Hunan 411105, China
2Faculty of Material and Photoelectronic Physics, Xiangtan University, Hunan 411105, China

3Molecular Theory Group, Colorado School of Mines, Golden, Colorado 80401, USA
(Received 4 January 2012; revised manuscript received 15 March 2012; published 23 April 2012)

Negative Poisson’s ratios have been observed in a variety of metals and alloys. However, the electronic origin
of this effect remains unclear, as is evident by our limited knowledge about intermetallics showing this behavior.
In an effort to clarify the electronic origin of a negative Poisson’s ratio, we have performed a systematic and
comprehensive study of extreme (both positive and negative) Poisson’s ratios behavior in the B2 CsCl-type AB
intermetallic family (including 14 common intermetallics and 128 rare-earth-metal transition or main-group-metal
intermetallics) by way of density functional theory calculations. We found a pronounced correlation between the
extreme Poisson’s ratios and the elastic anisotropy, with approximately 70% of the B2 intermetallics showing
intrinsic auxetic behavior. We went on to examine the topology and geometry of the electron charge density
and found that the extreme Poisson’s ratios are attributable to the directionality of the bonds of the material.
Auxetic materials were found to have nondirectional bonds, and nonauxetic compounds had directional bonds.
Our findings provide an essential electronic perspective to forecast the auxetic behavior, and suggest a new
application for intermetallic compounds.
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I. INTRODUCTION

While everyday experience suggests that when a material
is stretched in one direction it becomes thinner in the
perpendicular directions, lateral extension in response to a
longitudinal tensile strain is not forbidden by thermodynamics.
In fact, such negative Poisson’s ratios are observed in many
solids.1,2 Materials that exhibit this novel and counterintuitive
behavior, now characterized as auxetic materials, have a
wide range of potential technological applications such as
electrodes that amplify the response of piezoelectric sensors,
aircraft gas turbine engines, improved honeycomb dielectrics,
self-adaptive vibration damping materials, improved sound
and shock absorption materials, and artery dilators.1,3,4 Early
reported auxetic materials relied heavily on their re-entrant
geometries, which should be tailored by deliberate design
of material architecture.5,6 Since then, auxetic behavior has
been observed in single-crystal materials including elemental
metals, alloys, and metal oxides.3,4,7,8 For example, Baughman
et al. showed that 69% of the cubic elemental metals have
negative Poisson’s ratios, and their auxetic behavior can
be correlated with their work functions.4 These crystals
are regarded as intrinsically auxetic materials because the
auxetic behavior of the defect-free structure is a result of
atomic/electronic structure of the material. Thus, the elastic
deformation mechanisms of their internal atomic structure
have attracted the interest of many researchers.1 For the
elemental metals, a mechanism based on interactions between
hard spheres in specific crystal planes can give rise to auxetic
behavior.4 However, this mechanism only considers the rigid
action between hard spheres, disregarding the effect of the
electronic structure. Such a mechanism can not suitably
describe the auxetic behavior of alloys. Despite the utility of
these materials and the lack of a fundamental understanding
of the role of electronic structure in auxetic behavior, reports
exploring the relationship between electronic structure and

the auxetic property of alloys are still scarce. Here, we present
one such study using the simplest intermetallic alloys, the B2
CsCl-type AB intermetallic compounds.

The B2 CsCl-type AB intermetallics have generated sig-
nificant interest for their superior mechanical properties, and
are being, or will be, utilized in applications which include
aerospace, industrial, and commercial materials. Ample re-
search has focused on the mechanical properties of this
intermetallic family, especially the plastic deformation mech-
anisms, including stain-induced martensitic transformation
paths9 and defect energies calculations.10–14 For example, B2
TiNi exhibits a reversible martensitic transformation from
a B2 to a B19′ structure making it a shape-memory alloy,
which is an important alloy for medical devices such as
surgical tools, coronary probes, and stints.9,15,16 The B2
phase of CuZr plays a crucial role in the transformation-
mediated ductility of CuZr-based bulk metallic glass (BMG)
composites. It greatly improves the ductility BMG composites
with working-hardening capability and may turn BMGs into
reliable structural materials.17–19 And while until recently the
binary B2 intermetallics were considered to be brittle, a new
class of ductile RM (where R = a rare-earth and M = a
main-group or transition metal) intermetallics was discovered
by Gschneidner et al. in 2003.14 Of the approximately
150 reported RM intermetallic compounds, few are brittle,
providing a good opportunity to further our understanding of
the nature of the mechanical behavior of intermetallics.10–13,20

However, the elastic response of these materials has yet to be
systematically investigated. Specifically, independent elastic
constants for most B2 intermetallics have not been obtained,
whether auxetic behavior occurs in these alloys has not been
confirmed, and the intrinsic origin of their elastic response
is unknown. This paper addresses these questions from the
perspective of electronic-structure theory.

While the elastic response of an alloy is determined by its
electronic structure, the structure-property relationships that
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describe an alloy’s elastic properties by way of its chemical
bonds are incomplete because traditional pictures of bonding
fail to explain the mechanical properties of materials.21–25 A
fundamental understanding of the electronic origins of elastic
response is, however, crucial to form a complete picture
of mechanical behavior. Such a picture can be found in
the electron charge density, which is a quantum mechanical
observable.

The Hohenburg-Kohn theorem posits that all ground-state
properties are a consequence of the electron charge density,26

which has led researchers to search for the relationship
between a materials charge density and its properties.27–29

Eberhart and Jones have demonstrated that an extension of
Baders topological theory of molecular structure, the quantum
theory of atoms in molecules (QTAIM),28 can be used to
calculate the properties of individual bonds, and hence predict
mechanical properties of materials.30–32 While calculating
the properties of these topological bonding volumes can be
difficult, they can often be approximated by the geometry of
the charge density at its topological bond points. By way of
example, Eberhart has shown that a strong correlation exists
between the geometry of the total electron density ρ(�r) at its
topological bond points and elastic constants in fcc metals.21

Eberhart and Jones have extended this work to alloys and
defects and discussed the relationship between the charge
density topology and geometry and the mechanical properties
for various alloys and defects.21–25,33–35 For instance, charge
density shear moduli relationships for dilute substitutional
solution AlLi alloys,24 and relationships between dislocation
glide in bcc metals and the topology of the charge density
at the dislocation cores,22 have been studied. The success
of this theory makes it an attractive starting point to probe
the electronic origin of auxetic behavior in B2 intermetallic
compounds.

The remainder of the paper is organized as follows. The
computational methodologies employed in the current study
are given in Sec. II. Single-crystal elastic constants of the B2
intermetallics are listed in Sec. III A. Section III B contains
a derivation of the method for calculating the extreme (both
positive and negative) Poisson’s ratios in cubic crystals. The
elastic anisotropy and extreme Poisson’s ratios, and their
relationships for B2 intermetallic compounds, are presented
in Sec. III C. Then, in Sec. III D, we report the details of
the analysis of the charge density of the B2 intermetallic
compounds and the resultant structure-property relationships
describing extreme Poisson’s ratios of B2 intermetallic com-
pounds. Finally, conclusions and acknowledgments are given
in Sec. IV.

II. METHODOLOGY

In order to systematically explore the auxetic behavior of B2
CsCl-type intermetallic compounds, we investigated 142 sets
of elastic constants of B2 CsCl-type intermetallics, including
14 common B2 intermetallics and 128 known B2 CsCl-type
RM (R = rare-earth elements, M = metallic elements from
groups 2, 8–13) intermetallic compounds.14,20 The details of
the B2 CsCl-type RM alloys are summarized as a Periodic
Table of the elements in Fig. 1.

Group 8 9 10 11 12 (or 2) 13 

Period 
La Ce Pr Nd Sm Gd

Sc M Y 

Tb Dy Ho Er Tm Yb
3 Mg Al 

4 Co Ni Cu Zn Ga 

5 Ru Rh Pd Ag Cd In 

6 Os Ir Pt Au Hg Tl

 Metallic CsCl-B2 

The high temperature polymorph CsCl-B2 

FIG. 1. (Color online) The diagram of present investigated alloys
in the B2 RM intermetallics, which are arranged in a partial section
of the Periodic Table from groups 2 and 8–13.

A. Ab initio calculations of elastic constants
of the B2 intermetallics

The ab initio calculations were carried out using the
Vienna ab initio simulation package (VASP),36 which solves the
electronic band structure based on the density functional theory
(DFT).37 Because of the presence of rare-earth elements,
the projector augmented plane-wave (PAW) pseudopotential
supplied by VASP was used,38 the validity for RM binary
alloys of which has been widely verified.39,40 Some rare-earth
elements, such as Eu and Lu, generated erroneous results and
were not included in this work, due to the itinerant nature of
the f electrons and the difficulty of calculating their energies
accurately in DFT.39,41 The exchange and correlation energy
was treated within the generalized gradient approximation of
Perdew-Wang 91 (GGA-PW91).42 For comparison, another
generalized gradient approximation, the Perdew, Burke, and
Ernzerhof (GGA-PBE), was also employed.43 There are three
versions of potentials for rare-earth elements in VASP, i.e.,
the standard version, the divalent version, and the trivalent
version. In order to ensure the correctness of the calculations
in this study, the choice of these potentials was made following
the discussions in Refs. 40 and 44. The wave functions were
expanded in a plane-wave basis with a cutoff energy of
500 eV. The k-point sampling in the Brillouin zone (BZ) of the
crystalline B2 cubic lattice was treated with the Monkhorst-
Pack scheme,45 using a 15 × 15 × 15 k-point mesh for the
geometry optimization and a 21 × 21 × 21 k-point mesh for
the static calculation. All calculations were performed using
the accurate setting within VASP to avoid wraparound errors.

For a cubic crystal, there are only three independent nonzero
elastic constants in the contracted Voigt notation: they are C11,
C12, and C44. They can be computed from the curvature of
the internal energy versus strain curves when the appropriate
strains are chosen. These three modes and their nonzero strain
states adopted here are as follows:46 (1) ε11 = ε22 = γ ,
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ε33 = (1 + γ )−2 − 1; (2) ε11 = ε22 = ε33 = γ ; and (3) ε12

= ε21 = γ /2, ε33 = γ 2/(4 − γ 2). Deformation magnitudes γ

from −0.012 to 0.012 in steps of 0.003 were applied in the
first and second strain modes, γ from −0.04 to 0.04 in steps of
0.01 were adopted in the third strain mode. There is a second
common form of the third strain mode, which is related to C44,
and can be expressed as ε12 = ε23 = ε31 = γ .47 We compared
the calculated values of C44 for CuY and AgY, as well as 14
common B2 intermetallics, using the two different strains and
found no appreciable differences. We chose to use only the
second strain mode for the remainder of this work.

B. Analysis of charge density topologies and geometries

In order to analyze the relationship between the electron
charge density and the elastic properties of the B2 intermetallic
compounds, we used TECPLOT to locate the critical points of
the total electron charge density and calculate the Hessian
at those points.48 We employed a fine charge density grid,
approximately 25 points per angstrom, to ensure convergence
of the derivatives.

III. RESULTS AND DISCUSSION

A. Single-crystal elastic properties of B2 intermetallics

Table I lists the calculated and measured single-crystal
elastic constants of the common B2 intermetallics (including
CuY and AgY).14,15,49–57 The calculated elastic constants of the
128 B2 RM intermetallics are tabulated in the Supplemental
Material available online (Table S).58 The requirements of
mechanical stability in a cubic crystal are (C11 + 2C12) > 0,
(C11 − C12) > 0, C44 > 0. All of the Cijs (i,j = 1, 1; 1, 2; 4,
4) values for B2 intermetallics satisfy these criteria.

At this point, it should be noted that at 0 K, the temperature
at which the DFT calculations were performed, some of these
systems are mechanically unstable due to a soft mode off the
� point.59–62 In an effort to obtain elastic moduli comparable
with those measured at finite temperature, we suppressed this
soft mode by performing our total energy calculations on two-

atom unit cells. The calculated, symmetry-suppressed elastic
constants are generally in good agreement with the observed
high-temperature values. Inspection of Table I shows that most
of our data are within ±5% of previously reported results. In
the worst case, NiTi, our calculated C11, C12, and C44 differ
from experimental data measured at 298 K (Ref. 53) by 9%,
21%, and 34%, respectively.

The generally good agreement between the measured
elastic moduli and the calculated symmetry-suppressed moduli
seen here can be justified by considering that the change
in elastic moduli with temperature is primarily influenced
by changes in volume.63,64 In most systems, the T = 0 K
lattice constant found using modern GGAs is in excellent
agreement with experimentally measured finite-temperature
lattice constants,36,38–44,65 making the T = 0 K total energy
calculation of elastic moduli accurate on average, although
outliers such as NiTi may be present.

Inspection of Table I reveals that the Cijs we calculated
using PAW pseudopotentials with GGA show an improvement
over results obtained using ultrasoft pseudopotentials with
GGA, and the same precision as results found by way of
the full-potential linearized augmented plane-wave (FLAPW)
method. Furthermore, one can see from the results in Table I
and Table S there is only a small discrepancy between
GGA-PW91 and GGA-PBE, suggesting that our calculated
elastic moduli are robust and reliable.

B. Extreme Poisson’s ratios of B2 intermetallics

For specified directions, the Poisson’s ratio (PR) is
v(�n, �m) = ε �mε�n, where ε �m is a lateral contraction in direction
�m and ε�n is the longitudinal extension in direction �n during
the stretching of a body, respectively. Once the single-crystal
independent elastic constants of the B2 intermetallics are
obtained, Poisson’s ratio can be expressed in terms of the
elastic constants or the elastic compliances. The general
formula for the PR of cubic material in a directional (�n, �m), in
terms of the elastic constants, has been given by Paszkiewicz
et al.:66

v(�n, �m) = (C11 + 2C12)(C11 − C12 − 2C44)D(�n, �m) + 2C12C44

2(C11 + 2C12)(C11 − C12)C44
E(�n), (1)

where E(�n) is Youngs modulus,

1

E(�n)
= 1

3(C11 + 2C12)
− 1 − 3P (�n)

3(C11 − C12)
+ 1 − P (�n)

2C44
. (2)

D(�n, �m) = n2
1m

2
1 + n2

2m
2
2 + n2

3m
2
3 and P (�n) = n4

1 + n4
2 + n4

3
are the two functions of the �n and �m directions for directional
dependence of PR. Considering that the �n and �m vectors
are mutually orthogonal, we can rewrite them in spherical
coordinates to express D(�n, �m) and P (�n) as

D(�n, �m) = cos2(β)[cos2(α)cos2(u) + sin2(α)sin2(u)]

1 + tan2(w)

+ sin2(β)tan2(w)

1 + tan2(w)
, (3)

P (�n) = cos4(β)

[
1 − 1

2
sin2(2α)

]
+ sin4(β), (4)

tan(w) = −cos(α)cos(u) + sin(α)sin(u)

tan(β)
, (5)

where α (or u) is the azimuthal angle and β (or w) is the
polar angle in spherical coordinate system, corresponding to
the �n (or �m) direction in the orthogonal coordinate system,
respectively. The PRs in arbitrary direction can be obtained
via three variables, α, β, u with expressions (1)–(5). We can
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TABLE I. A comparison of ab initio elastic properties (including bulk modulus K) of selected B2 intermetallics (this study) with the
available reported data.

Alloy C11 (GPa) C12 (GPa) C44 (GPa) K (GPa) vmin vmax A Ref.

CuZr 139.2 111.4 44.7 120.7 − 0.2 0.9 3.6 a
137.3 108.9 44.9 118.4 − 0.1 0.9 3.2 b
138.0 112.0 45.0 120.6 − 0.1 0.9 3.5 c49

TiZn 140.7 107.2 97.0 116.9 − 0.4 1.1 5.8 a
140.6 106.2 99.2 117.6 − 0.4 1.1 5.8 b
143.5 99.0 94.0 113.8 − 0.3 0.9 4.2 c50

109.0 d50

NiTi 176.5 156.1 46.8 162.9 − 0.2 1.1 4.6 a
179.5 156.4 49.5 164.1 − 0.2 1.1 4.3 b
183.0 146.0 46.0 159.0 0.0 0.8 2.5 c15

178.2 147.6 49.0 143.7 − 0.1 0.9 3.2 c51

162.4 129.2 34.8 126.0 0.1 0.7 4.0 d53

AlZr 145.4 85.2 27.1 105.3 0.3 0.4 0.9 a
145.7 86.2 29.8 106.0 0.4 0.4 1.0 b

103.2 c52

CuZn 121.7 110.3 80.7 114.1 − 0.7 1.5 14.2 a
123.4 110.9 84.3 115.1 − 0.7 1.5 13.5 b
120 117 80 − 0.9 1.8 d54

140 110 85 − 0.4 1.1 d55

AgMg 80.9 56.6 47.4 64.7 − 0.2 0.9 3.9 a
79.8 55.5 47.8 63.6 − 0.2 0.9 3.9 b

− 0.2 0.8 d56

AgZn 97.1 88.7 51.8 91.5 − 0.6 1.5 12.4 a
97.3 88.0 54.0 91.1 − 0.6 1.5 11.5 b

AgCd 78.3 74.9 44.5 76.0 − 0.8 1.7 25.8 a
76.8 72.7 45.1 74.1 − 0.8 1.7 22.3 b

AuZn 123.7 113.9 44.0 117.2 − 0.5 1.4 9.0 a
124.1 113.5 46.8 117.0 − 0.5 1.4 8.8 b

− 0.43 1.28 d56

− 0.52 1.38 d56

147.4 133.9 62.2 − 0.5 1.4 9.2 d57

AuCd 93.2 91.6 38.4 92.4 − 0.9 1.9 45.2 a
91.8 89.9 39.6 90.6 − 0.9 1.8 42.8 b

− 0.7 1.57 d3

AlTi 150.3 96.2 68.4 114.2 − 0.1 0.7 2.5 a
150.9 97.6 70.1 115.4 − 0.1 0.7 2.6 b

109.7 c52

NiAl 210.1 135.8 115.9 158.6 − 0.2 0.7 3.1 a
207.0 116.4 106.8 157.9 − 0.2 0.7 3.2 b

PtTi 203.8 181.2 46.9 188.7 − 0.2 1.1 4.1 a
203.3 182.2 48.5 189.3 − 0.2 1.1 4.6 b

PdTi 169.8 150.3 44.7 156.8 − 0.2 1.1 4.6 a
168.6 150.4 45.9 156.5 − 0.3 1.2 5.0 b

CuY 115.0 47.6 35.8 70.1 0.3 0.3 1.1 a
114.3 47.1 36.7 69.5 0.3 0.3 1.1 b
116.4 47.4 34.5 70.4 0.3 0.3 1.0 c14

116.0 47.7 31.9 70.5 0.3 0.3 0.9 d14

AgY 98.1 53.3 35.5 68.2 0.1 0.5 1.6 a
96.1 51.9 35.7 66.6 0.1 0.5 1.6 b

105.3 50.3 37.2 68.6 0.2 0.4 1.4 c14

102.4 54.5 32.6 70.5 0.2 0.4 1.4 d14

aThis study (PAW, GGA-PW91).
bThis study (PAW, GGA-PBE).
cReported calculated results.
dReported experimental results.
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FIG. 2. (Color online) The variations in maximized PRs as a
function of stretching directions as an isosurface for CuZr alloy.
Each point on the surface represents the maximum value of the PRs
for stretching the body along the n direction (i.e, α,β in a spherical
coordinate system) passing through this point. The distance of the
point from the origin is equal to the magnitude of the PRs.

get an extreme value of PRs with a certain proper u for a given
stretch direction (α, β). Figure 2 shows an isosurface of the
variation in maximized PRs as a function of α and β for CuZr.
Each point on the surface represents the maximum value of
the PR for stretching the body along the n direction (α, β in
spherical coordinate system) passing through that point. The
distance of the point from the origin is equal to the magnitude
of this maximized PR. It is obvious that the maximum PR
appears in 〈110〉 stretch directions, which is in accordance
with others reports.3,4 Thus, we can use simpler expressions
derived by Baughman et al. to calculate the extreme PRs of
the B2 intermetallics in terms of the elastic constants. They
are given as follows:4

vmax = v([110],[001])

= 4C12C44

2C11C44 + (C11 − C12)(C11 + 2C12)
, (6)

vmin = v([110],[11̄0])

= −2C11C44 − (C11 − C12)(C11 + 2C12)

2C11C44 + (C11 − C12)(C11 + 2C12)
. (7)

Equations (6) and (7) can measure the maximum and
minimum PRs along the lateral directions when a [110] stretch
is applied, respectively. Namely, if a stretch is applied along
the face diagonal of the cubic cell, a maximum (compressive)
and a minimum (either compressive or extensive) lateral
strain will be detected along a perpendicular cube axis, and
a perpendicular face-diagonal direction, respectively.

Table I and Table S list the extreme PRs for 142 B2
intermetallics obtained using Eqs. (6) and (7) with the
calculated elastic moduli. The results show that more than
70% of the B2 intermetallics have negative PRs, suggesting
that auxetic behavior is a common feature in B2 intermetallic
compounds. Of the intermetallics listed in Table I, AuCd
has the largest value of extreme PRs (vmin = −0.908, vmax =
1.882, GGA-PW91), while auxetic behavior does not occur in
AlZr, CuY, and AgY.

C. Relationship between elastic anisotropy and extreme
Poisson’s ratios in B2 intermetallics

Generally, another index, A, is introduced to characterize
the anisotropic elastic response in cubic crystals. It is given
by the variation between C44 and C ′ = C11 − C12 through the
anisotropy ratio

A = 2C44

C11 − C12
. (8)

The larger the value of A is, the more anisotropic the elastic
response of the material is. When A reaches a minimum value
of 1, then it is defined to indicate elastic isotropy. Walton’s
recent analysis3 shows that a correlation exists between the
value of the elastic anisotropy index and the magnitudes of
maximum and minimum PRs in different solid materials. This
correlation is independent of crystal symmetry and chemical
nature of the materials. Moreover, negative Poisson’s ratios
occur in cubic materials in some combination of crystal load
direction when A > 3 (Ref. 66) or 4.3

To test the validity of the elastic anisotropy index in B2
intermetallic compounds, we plotted the calculated maximum
and minimum Poisson’s ratios of 142 B2 intermetallic com-
pounds against A in Fig. 3. Inspection of the figure reveals that
a strong correlation exists between the extreme PRs and A. The
extreme PRs all lie along two curves, which are approximately
symmetrical with a single point of intersection at A = 1.008
(GGA-PW91), i.e., vmax = 0.329 and vmin = 0.324 for NiSc.
Thus, we can make use of A as an auxetic index of B2 crystal
structure.

According to our calculated data (see Table I and Table S),
negative PRs can happen when A is larger than about 2.5. As
expected, owing to the large fraction of the B2 intermetallics
displaying auxetic behavior in comparison with other cubic
materials, the required anisotropy ratio of about 2.5 is a smaller
anisotropy than that seen in other auxetic cubic materials 3.66

Of the intermetallic compounds investigated in this study,
AuCd is the most anisotropic (A = 45.17, GGA-PW91),
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FIG. 3. (Color online) Plots of maximum and minimum Poisson’s
ratio against elastic anisotropy A for 144 B2 intermetallic compounds.
The solid and dashed lines show A = 4 and 2.5, respectively.
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FIG. 4. (Color online) Relation of extreme Poisson’s ratio to the
periodic system of M (transition or main-group metal) elements for
B2 RM intermetallics. The bars are grouped in blocks corresponding
to a fixed M element, with the M elements labeled at the bottom
of the figure with different colors. Within each M-element block,
the bars are ordered by increasing atomic number of the R element
(from Sc, Y, La, to Yb).

followed by AgCd alloy (A = 25.77, GGA-PW91), suggesting
that they are intrinsically auxetic.

In an effort to extract more information about the auxetic
nature of the B2 intermetallics, the extreme PRs of the RM

B2 intermetallics were plotted as a function of atomic number
of M (transition or main-group metal) elements, Z in Fig. 4.
Each bar shows extreme PRs of a specific RM intermetallic.
The bars are grouped in blocks corresponding to a fixed M

element, with the M elements labeled at the bottom of the
figure. Within each M-element block. the bars are ordered
by increasing atomic number of the R element (from Sc, Y,
La, to Yb). Obviously, the periodicity in the extreme PRs
of the RM intermetallics in Fig. 4 is somewhat similar to
that of the M-element electronic structure of atoms. As might
be expected, in each period of the Periodic Table, maximum
(minimum) Poisson’s ratio tends to rise (fall) with increasing
atomic number Z as electron shells and subshells gradually
become filled in successive atoms, e.g, in RM alloys with
M in the fifth period (M varying from Ru to In) of the
Periodic Table, the average minimum (maximum) PRs of
RRu and RRh is about 0.3 (0.65), while the average of
maximum PRs for RIn increases (decreases) to about 1.2
(−0.58). Nonetheless, the relationship between extreme PRs
and atomic number of R (rare-earth) elements is complex as a
result of their configuration of 4f electron, as indicated by the
different shapes for bars in Fig. 4. Regardless of the complexity
of PRs in the B2 intermetallics with different R elements,
the magnitudes of extreme PRs for RM intermetallics with
different M elements in the same column of the Periodic
Table are basically equal, and even the corresponding shapes
of extreme PRs pillars display a similar feature, e.g., among
the group 13 in Periodic Table, the maximum Poisson’s ratio
pillar for RIn and for RTl exhibit apparently the same profile,
which tends to decrease first and then increase with an increase
of rare-earth atomic number (from Sc, Y, La, to Yb). In Fig. 4,
we can see that the B2 intermetallics consisting of groups 2,
12-13 metal elements and rare-earth elements can be auxetic.
For instance, the B2 intermetallics containing Mg, In, and Tl

in groups 2 and 13 have large absolute value of negative PRs
with high anisotropy ratio (A > 4), which implies that they
are auxetic.

D. Charge density topology and geometry and its relationship
with extreme Poisson’s ratios in B2 intermetallics

At this point, we turn our attention to the electronic origins
of the extreme PRs, which can be described within the
framework of QTAIM. QTAIM posits that solid-state structure,
and hence properties, can be described in terms of the topology
and geometry of the electron charge density, ρ(�r).23,25,33,34 The
theory capitalizes on the fact that ρ(�r) is a three-dimensional
scalar field possessing a topology that is partially characterized
by its rank-3 critical points (CPs). These are the points
at which the field variable achieves extreme values in all
three principal directions, i.e., the gradient of ρ(�r) vanishes.
There are four kinds of rank-3 CP in a three-dimensional
space: a local minimum, a local maximum, and two kinds
of saddle points. These CPs are often denoted by an index
that is the number of positive curvatures minus the number of
negative curvatures. For example, a minimum CP has positive
curvature in three orthogonal directions; therefore, it is a
(3, +3) CP. The first number is simply the number of
dimensions of the space and the second is the net number
of positive curvatures. A maximum is denoted by (3, −3)
because all three curvatures are negative. A saddle point with
two of the three curvatures negative is denoted (3, −1), while
the other saddle point is a (3, +1) CP.

Elements of solid-state structure and bonding correlate with
the topological features of ρ(�r). In particular, a bond path is
the ridge of maximum charge density connecting two nuclei.
Its existence is guaranteed by the presence of a (3, −1) CP, or
bond CP, between two nuclei. Similarly, a (3, +1) CP, or ring
CP, is topologically required at the center of ring structures.
Cage structures must enclose a single (3, +3) CP, hence, these
CPs are called a cage CP. The locations of the atomic nuclei
always coincide with a maximum, a (3, −3), or nuclear CP.

When we locate the CPs of ρ(�r) in the RM B2 inter-
metallics, we find that the only maxima are the atoms sitting
at the vertices and the center of the unit cell, as shown for
ScZn in Fig. 5. In this figure, the Zn atom is colored black
and the Sc atoms are colored gray. These atoms are linked by
nearest-neighbor Sc-Zn bond paths, shown as gray cylinders.
The white circles in the figure represent cage points. These CPs
can be seen to lie along the line connecting second-neighbor
Zn atoms. When the material is deformed, charge will move
between the Sc-Zn bonds and cages. It is the nature of this
charge redistribution that mediates the maximum Poisson’s
ratios for a given material.

We have found that when a stretch applied in the 〈110〉
direction charge moves from the nearest-neighbor bond points
into the surrounding cages as shown in Fig. 6. In this figure,
the unfilled arrows represent the applied strain and the gray
arrows represent the charge flow from the bond points to the
cage point. This charge redistribution induces strains in the
material. To understand the role of the charge redistribution on
these strains, we can visualize the charge buildup in the cages
and the depletion from the bonds as separate events, each of
which accounts for a maximal strain in a different direction.
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FIG. 5. The topology of ScZn. The Zn atom is shaded black, the
Sc gray, and the cage points are shown with white circles. The gray
cylinders represent the Sc-Zn bond paths, while the dashed lines show
the edge of the unit cell.

First, we can consider the cage CPs. As the charge density in
the cage point increases, we find that the distance between the
second-neighbor atoms separated by the cage point decreases;
these are the black atoms in Fig. 6. This observation is easily
rationalized using the electrostatic theorem. At equilibrium,
the repulsion of the second-neighbor atoms is exactly canceled
by their attraction for the intervening density, i.e., that at the
cage CP. As this density increases, so too does the attraction
of the second-neighbor atoms to that density, resulting in a
decrease in internuclear separation. This process gives rise to
a positive vmax in the 〈001〉 direction. The magnitude of vmax

will depend on the amount of charge redistribution. Materials
that transfer a large amount of charge into the cage point
will show a large vmax, while those that do not will have a
small vmax.

In the second case, we must consider the effect of depleting
electron density at the first-neighbor bond points. When the
density between first-neighbor atoms is reduced, so too is the
screening of their nuclear charges, which will tend to push
first-neighbor atoms apart. This process leads to a small vmin

FIG. 6. The movement of charge from the bond points to the cage
point in response to a strain applied in the 〈110〉 direction is shown
by the gray arrows. The unfilled arrows represent the applied strain.

in the 〈11̄0〉 direction. If a sufficiently large amount of charge
is removed from the bond points, vmin will become negative.

An interesting consequence of this picture is that it suggests
there is a symmetry between vmin and vmax because both are
due to the amount of charge that flows from the first-neighbor
bond points to the cage points. Systems that redistribute a large
amount of charge will have a large vmax and a negative vmin.
Systems that do not transfer charge easily between the bond
and cage points will have a smaller vmax and a positive vmin.
This symmetry is, in fact, seen in Figs. 3 and 4.

The magnitude of the charge flow can be estimated using
the directionality of the bond points, allowing the extreme
Poisson’s ratios to be predicted. Directionality has been
quantified using the quadratic surface constructed from the
Hessian of the charge density at the bond points.23,33,34 This
surface is the elliptic cone that surrounds the bond CP. Its
extreme angles with respect to the plane normal to its axis are
given by

tanθ = ρ0

√
ρ⊥⊥
ρ‖‖

, (9)

tanφ = ρ0

√
ρ⊥′⊥′

ρ‖‖
, (10)

where ρ0 is charge density at the bond CP, ρ⊥⊥ and ρ⊥′⊥′

are the principal curvatures at the bond point in the directions
perpendicular to the bond path, and ρ‖‖ is the curvature along
the bond path. In the B2 structure, the two perpendicular
curvatures are degenerate, allowing directionality to be defined
solely in terms of tanθ .

This definition of directionality is an approximate measure
of the “distance” to bond breaking, i.e., the vanishing of the
elliptic cone around the bond point, which will occur when
the principal curvatures perpendicular to the bond path vanish.
By definition, bond CPs with a small value of tanθ are closer
to a topological instability than systems with a large value
of directionality, and the closer a bond CP is to a topological
instability, the larger the magnitude of the charge flow from that
bond CP for a given perturbation.33,67,68 Thus, we expect that
materials with directional bonds will have positive Poisson’s
ratios, while those with low values of directionality will have
a negative Poisson’s ratio in the 〈11̄0〉 direction.

To test this assertion, we plotted θ against vmin for the
RM intermetallics investigated in this study (see Fig. 7).
In this figure, crosses (circles) represent materials with a
negative (positive) vmin and a vertical dashed line indicates
where vmin vanishes. Inspection of the figure reveals that, as
expected, vmin increases with directionality, i.e., materials with
directional bonds have positive Poisson’s ratios, while those
with nondirectional bonds have a negative Poisson’s ratio in
the 〈11̄0〉 direction.

By viewing the extreme Poisson’s ratios as arising from
bond directionality, we can can begin to consider what types
of orbitals give rise to auxetic behavior, an understanding of
which would aid our ability to design new materials. The
directionality of a compound’s bond paths is determined by
the type of filled orbitals that participate in bond formation.
Only those orbitals that can increase density along the bond
path will increase directionality. In the Oh point group, these
would be the d orbitals transforming as T2g , along with the
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FIG. 7. (Color online) Plot of θ against vmin for the RMs
investigated in this study. Crosses (circles) indicate compounds with
a negative (positive) vmin. A vertical dashed line is used to show where
vmin is zero. The solid straight line serves as a guide for the eye.

p and f orbitals transforming as T1u, at the band � point.
All other orbitals will serve to decrease the directionality. This
picture explains why pure bcc metals that bond using primarily
s density (e.g., Li, Na, K, Rb) are auxetic.56 It also predicts that
the RMg intermetallics studied here should have a negative
vmin, a fact that is easily verified by examining Fig. 4. If,
however, we consider Rh, which has partially filled d orbitals,
we find that the RRhs have positive Poisson’s ratios (Fig. 4).
This approach provides a new means of understanding the

electronic origins of auxetic behavior in B2 intermetallics and
may provide insight to aid in the design of such materials.

IV. CONCLUSIONS

In summary, we have systematically investigated the elastic
properties of a series of B2 intermetallic compounds using
first-principles calculations, and have derived the extreme
Poisson’s ratios of 142 B2 intermetallics, including 14 non-
rare-earth- and 128 rare-earth-metal B2 intermetallics. We
used these data to predict that 70% of the B2 alloys presented
here are auxetic, and more than one third of them have strong
auxetic behavior. We also found that the extreme Poisson’s
ratios (both positive and negative) are strongly correlated with
elastic anisotropy. Finally, we analyzed the electron charge
density of these intermetallics and found that materials whose
bonding has a strong angular dependence are not auxetic,
whereas materials whose bonds lack an angular dependence
are auxetic.
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