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Development of a self-consistent free-form approach for studying the three-dimensional
morphology of a thin film
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A method capable of extracting the depth distribution of the dielectric constant of a thin film deposited on a
substrate and the three power spectral density (PSD) functions characterizing its roughness is presented. It is based
on the concurrent analysis of x-ray reflectivity and scattering measurements obtained at different glancing angle
values of the probe beam so that the effect of roughness is taken into account during reconstruction of the dielectric
constant profile. Likewise, the latter is taken into account when determining the PSD functions describing the
film roughness. This approach is using a numerical computation iterative procedure that demonstrated a rapid
convergence for the overall set of data leading to a precise description of the three-dimensional morphology
of a film. In the case of a tungsten thin film deposited by dc-magnetron sputtering onto a silicon substrate and
characterized under vacuum, the analysis of the x-ray data showed the tungsten density to vary with depth from
95% of the bulk density at the top of the film to about 80% near the substrate, where the presence of an interlayer,
estimated to be 0.7 nm thick, was evidenced. The latter may be due to diffusion and/or implantation of tungsten
atoms into the silicon substrate. In the reconstruction of the depth profile, the resolution (minimum feature size
correctly reconstructed) was estimated to be of the order of 0.4–0.5 nm. The depth distribution of the dielectric
constant was shown to affect the roughness conformity coefficient extracted from the measured x-ray scattering
distributions, while the deposition process increased the film roughness at high spatial frequency as compared
to the virgin substrate. On the contrary, the roughness showed a weak influence on the dielectric constant depth
profile extracted, as the sample used in our particular experiment was extremely smooth.
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I. INTRODUCTION

X-ray reflectivity and scattering methods are unique tools
for studying the morphology of thin films.1,2 They are able
to provide a quantitative analysis of the roughness evolution
of a film under various treatments and to infer the depth
distribution of the dielectric constant within the film in a
nondestructing way. However, up to now, these two topics
have been investigated independently of each other on the
base of simplified assumptions. In the analysis of the film
roughness, it is typically assumed that the film density is
constant over depth and the substrate roughness unaffected
by the film coating deposited above it, as done, e.g., in our
recent in situ and real-time studies of the growth and erosion of
tungsten films.3–5 Evidently a number of materials and process
conditions do not fulfill such ideal situation. Likewise, during
the reconstruction of the dielectric constant profile from x-ray
reflectivity measurements, the effect of interfacial roughness
is usually neglected or described in a simplified manner.
The introduction of a Nevot-Croce factor to account for the
contribution of each interface roughness to the amplitude
reflectance is a common example of such a practice.

As the depth profile of the dielectric constant, extracted
from reflectivity measurements, affects the wave field inside
the film and, hence, modifies the scattering pattern, questions
arise regarding the modification of the dielectric constant
profile when roughness is taken into consideration. Conversely,
it would be important to assess the influence of the depth
distribution profile of the dielectric constant on the film
roughness parameters. This paper is precisely devoted to the

development of a method for extracting information on the
film morphology simultaneously in depth (dielectric constant
profile) and in the lateral direction (roughness). Although this
approach seems to be the most sensible one, the practical
realization remains to be demonstrated. The tungsten film
represents an ideal case study because a large amount of
information on this system was acquired earlier through
several in situ experiments regarding growth and erosion. The
description obtained after analysis of the x-ray reflectivity
and scattering data collected using straightforward procedures
described in Refs. 3–5 will allow us to make a comprehensive
evaluation of the self-consistent method presented here.

II. RECONSTRUCTION OF THE DIELECTRIC CONSTANT
DEPTH DISTRIBUTION WITHIN THE FILM

The reconstruction on the base of angular reflectivity
measurements R(θ ) of the depth profile of the dielectric
constant ε(z) of a thin film coated on a substrate is a
well-known inverse problem. The standard approach consists
in modeling the ε(z)-distribution with a function of several
unknown parameters found by least-square fitting to the exper-
imental data. Evidently, this approach requires a sophisticated
understanding of the sample internal structure. When unable to
conceive an adequate model to describe an unknown structure,
a model-independent approach to solve the inverse problem is
highly desired.

At present, several free-form approaches to reconstruct
the dielectric constant profiles from x-ray or neutron

125439-11098-0121/2012/85(12)/125439(15) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.125439


IGOR V. KOZHEVNIKOV, LUCA PEVERINI, AND ERIC ZIEGLER PHYSICAL REVIEW B 85, 125439 (2012)

reflectivity data have been developed. Among very general
approaches one should mention the maximum entropy method,
the Bayesian spectral analysis,6 and the parameterization
of ε(z)-distribution using cubic B splines or sine/cosine
basis.7 However, these methods may result in ambiguous and
unphysical solutions due to insufficient information.6,7 Causes
include the limited incoming photon flux, the noise of the
detector that limits the range of grazing angles θ over which
useful data can be measured and the fact that present detectors
can only measure intensities R(θ ) = |r(θ )|2 [modulus of the
amplitude reflectance r(θ )]. Therefore, as indicated in Refs. 6
and 7, any additional knowledge about the sample is of the
highest importance. Even a good estimation of the overall
sample thickness or information on whether the polarizability
is higher on the top or on the bottom of a sample, can contribute
to a correct reconstruction of the dielectric constant profile.

Bengu et al.8 have developed an approach to find a set of
feasible, physically grounded solutions. The approach is based
on the genetic algorithm used together with the phase inversion
to impose a set of general constraints that will limit the number
of possible solutions. Similarly, the approach developed in
Ref. 9 and used in the present paper selects, among an infinite
number of possible solutions, those providing the desired
(modeled) amplitude reflectivity behavior at large q ≡ k sin θ

(where k =2π/λ), the wave vector component normal to the
surface.

The modeling of the amplitude reflectivity r(q) at large
q is possible in the frame of a general model of reflecting
media. A distribution ε(z) is declared as having a point of
discontinuity of the nth order if ε(z) and its n-1 derivatives
ε′(z), . . . ,ε(n−1)(z) are continuous functions at the point z,
while its nth derivative ε(n)(z) suffers a steplike variation at
this point, i.e., �(n)(z) ≡ ε(n)(z − 0) − ε(n)(z + 0) �= 0. Notice
that, in the case of a point of discontinuity of zeroth order,
the dielectric constant itself undergoes a steplike variation.
Following the approach developed in Ref. 9, we state that
the dielectric constant profile can be reconstructed uniquely,
or, at least, that there exists a finite number of possible
solutions to the inverse problem, if the number and the order
of the points of discontinuity of the dielectric function and the
distances between them are known. The dominating term of
the asymptotic series describing the amplitude reflectance at
the large grazing angle, i.e., at large q, writes as follows:

r(q) ∼= −k2

(
i

2q

)n+2 m∑
j=1

�(n)(zj ) exp(2iqzj ), (1)

where the summation is over all the points of discontinuity.
The z axis is supposed to point into the direction of the depth
of the substrate. Hence, the reflectivity at large q behaves as

R(q) = |r(q)|2 ∼= k4

(2q)2n+4

{∑
j

[�(n)(zj )]2

+ 2
∑
l>j

�(n)(zj )�(n)(zl) cos(2qhjl)

}
, (2)

where hjl = zl − zj is the distance between the lth and
j th points of discontinuity. The absorption and refraction of

radiation in matter are neglected when the total thickness of a
layered structure is small enough: L � λ sin θ/|1 − ε|.

As seen, the reflectivity behaves in average as R(q) ∼
1/q2n+4 at large q and oscillates around the average curve
if there is more than one point of discontinuity. Hence, by
analyzing the rapidity of decrease of the reflectivity and the
period of the oscillations, we can establish the order and the
number of points of discontinuity as well as the distances
between them.

Considering now the case in which points of discontinuity
are only of the zeroth order, we can introduce the following
function:

F (x) = 16

k4(qmax − qmin)

∫ qmax

qmin

[q4R(q) − G] cos(2qx) dq

(3)

G = 1

qmax − qmin

∫ qmax

qmin

q4R(q) dq

where the integration is performed over the measurable range
of the parameter q = k sin θ . The function F (x) in Eq. (3)
is similar to the traditional autocorrelation function of the
dielectric constant profile derivative used in the analysis of the
x-rays reflectivity data, while differing by two specific features
discussed in Appendix A. The function F(x) oscillates near the
zero value and has many maxima or minima, the position of
the extrema depending, in general, on the values of qmax and
qmin. At the same time, there is a set of stable extrema placed
at the fixed points x = hji independently of qmax and qmin.
Assuming the angle θmin to be greater than the critical angle
of total external reflection, the value of F(x) at these points is
found to equal to

F (hji) = �(zj )�(zi) + (nonresonant terms), (4)

where the nonresonant terms are typically small and decrease
as 1/(qmax − qmin) with increasing qmax values. Hence, by
analyzing the function F(x) at various qmax and qmin, we
can find the distances between all the points of discontinuity
present in the ε(z)-distribution. In addition, all double products
�(zj )�(zi) can be found as well. Then, based on Eqs. (2) and
(3), we can find the following sum:

∑
j

[�(zj )]2 = 2

qmax − qmin

∫ qmax

qmin

[
8q4

k4
R(q)

−
∑
hji

F (hji) cos(2qhji)

]
dq. (5)

Considering Eqs. (4) and (5) as a system of equations
in unknowns, �(zj ), we can estimate the variation of the
dielectric constant at every interface. Note that the system has
typically four possible solutions, �(zj ), the correct one being
identified on the basis of additional physical considerations. A
more detailed discussion of the problem of uniqueness is given
in Appendix A. From the analysis of the measurable part of
the reflectivity curve, we can formulate a general model for
the ε(z)-distribution, describing the main features observed
in the reflectivity curve.

For direct reconstruction of the dielectric constant profile,
we apply a special numerical procedure detailed in Ref. 9.
In addition, the absorption of radiation in matter is neglected
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FIG. 1. (Color online) Reflectivity measured at a fixed x-ray
energy of 17.5 keV and variable grazing angle from two tungsten
films, 5.1 nm (1) and 3.6 nm (4) thick, deposited onto identical
superpolished silicon substrates (curve 4 is shifted vertically for
clarity). Curves 2 and 3 are the refined specular reflectivity of the
thicker film. The solid curve 5 is the result of calculation accounting
for the dielectric constant profile shown in Fig. 6 and the PSD
functions shown in Fig. 5.

when reconstructing the ε(z)-distribution. In practice, the level
of ambiguity is greater than expected, as we need to determine
two functions �[ε(z)] and �[ε(z)], a priori unknown. In
our case of a tungsten film measured at an x-ray energy
of 17.5 keV, absorption can be neglected outside the total
external reflection region when the film thickness does not
exceed 6 to 7 nm.9 For films composed of lighter materials,
this upper limit in thickness is greater. Neglecting absorption
means that when processing, we should exclude experimental
data where the effect of absorption on the reflectivity is large,
i.e., data close to the critical angle of total external reflection.
Evidently, some information about the sample studied will
be lost, including the dielectric constant of the substrate that
defines the critical angle. However, the loss of this information
is not crucial, because (a) the substrate also influences the rest
of the reflectivity curve so that its dielectric constant can still
be determined and (b) the dielectric constant of the substrate
is known a priori.

In Fig. 1, curves 1 and 4 present the reflectivity measured
as a function of the grazing angle for two tungsten films of
different thickness deposited by magnetron sputtering onto
superpolished Si substrates. After deposition and during x-ray
measurements, the samples were kept under vacuum. A de-
tailed description of the experimental setup used for deposition
and subsequent reflectivity and scattering measurements is
given elsewhere (Refs. 3–5).

First, we verify that the reflectivity at large θ values
decreases slightly faster than a 1/q4 law. Nevertheless, bearing
in mind that the presence of roughness results in a decrease
of the reflectivity, we can assume that the ε(z)-distribution
will contain, at least, one point of discontinuity of zeroth
order. Second, as there are well-pronounced oscillations in
the reflectivity curves, we can assume that there is more than
one point of discontinuity. The function F(x) calculated in
slightly different intervals of q values (grazing angles ranging
from θmin = 0.5−0.6◦ to θmax = 2.0−2.3◦) is presented in
Fig. 2(a) for the thicker film. As seen, the function F(x)
has only one extremum, indicated by an arrow, that has a

(a)

(b)

FIG. 2. Illustration of the film thickness determination with the
use of Eq. (3) for the thicker film studied. The analysis is based
on the measured reflectivity [graph (a)] and on the refined specular
reflectivity [graph (b)]. The film thickness proved to be equal to h =
5.07 ± 0.03 nm (a) or h = 5.06 ± 0.01 nm (b).

stable position independently of the values of qmax and qmin.
Hence, there are two points of discontinuity, the distance
between them being h = 5.07 ± 0.03 nm. For the thinner
tungsten film, the thickness is found to be h = 3.63 ±
0.03 nm. The negative value of the function F (x) at the
extremum point indicates that the steplike variations of
the dielectric constant at the discontinuity points are of
opposite signs. Clearly, these points find their origin in the
presence of vacuum-film and film-substrate interfaces. Notice
that the value F (x) at the extremum point is not constant
and changes slightly when varying the integration interval
[qmin, qmax]. We attribute this effect to roughness because the
reflectivity decrease is not entirely consistent with a 1/q4 law
as assumed when deriving Eq. (4). Following Eqs. (4) and (5),
in the case of the 5.1-nm-thick film, the values of the function
F (x) in its extremum and of the average reflectivity curve are
given by the product �(0)�(h) = −(1.5 ± 0.2).10−10 and by
the sum �2(0) + �2(h) = (4.1 ± 0.4).10−10, respectively.

The accurate reconstruction of the dielectric constant
profile ε(z) was done numerically using a computer procedure
described in details in Ref. 9. The routine uses a merit function
with a specific form to guarantee the asymptotic behavior
of the amplitude reflectance [Eq. (1)] outside the angular
interval, where experimental data is available, as well as the
best possible agreement, within experimental errors, between
measured and calculated reflectivity curves inside this interval.
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Besides the fact that ε(z) = 1 for z < z1 and ε(z) = ε+ =
const for z > zm+1, let us suppose that the function ε(z) has
m points of zero-order discontinuity z1 , . . . , zm. Let us now
divide each interval [zj ,zj+1](j = 1, . . . ,m) into l sublayers
of equal thickness dj = (zj+1 − zj )/l , where l is a parameter
of the procedure, and assume the dielectric permeability to
be constant inside each sublayer. Then the ε(z)-distribution
is a function of N = lm values of ε inside each sublayer,
the ε-value in the depth of the substrate and the number of
sublayers inside each interval.

Let us introduce the following merit function MFR (case of
points of zeroth-order discontinuity):

MFR(ε1, . . . ,εN+1,N ) =
M∑

j=1

[log R(θj ) − log Rexp(θj )]2

+Q
∑

i=1,...,N
i �=i1 ,i2 ,..,im

(εi+1 − εi)
2, (6)

where Rexp(θj ) and R(θj ) are the measured and calculated
reflectivity values at the grazing angle θj , M the number
of experimental data points, and Q a parameter of the
numerical procedure. The summation is over all boundaries
between the sublayers excluding the points of discontinuity
i1, i2, . . . , im, where the function ε(z) changes abruptly. The
role of the second term in the merit function is to ensure a
smooth ε(z)-distribution, and more importantly, the asymptotic
behavior of the reflectivity [Eq. (2)] (see Ref. 9 for a
detailed discussion and the generalization of the merit function
[Eq. (6)] for points of discontinuity of arbitrary orders). Then,
the numerical computation problem consists of finding the
sequence ε1,ε2, . . . ,εN+1 that minimizes the merit function
MFR. A high enough value of the parameter Q should be
used to provide the necessary asymptotic of the reflectivity at
large q, while the difference between calculated and measured
reflectivity curves should lie within the experimental errors.
Notice that a similar stabilizing function was used in Ref. 7 to
bias the solution toward the most physically reasonable one.

In the presence of two points of discontinuity (our example),
one can anticipate from Eqs. (1) and (2) that four different
asymptotic dependencies r(q) may lead to the same asymptotic
behavior of the reflectivity, R(q), i.e., the inverse problem has
four possible solutions. Unlike Eq. (1), Eq. (2) is invariant
when substituting �(0) and �(h) for one another, or when
substituting simultaneously �(0) by −�(0) and �(h) by
−�(h), meaning the asymptotic behavior permits neither
to differentiate whether a given steplike variation � of the
function ε(z) occurs at the points z = 0 or z = h, nor to
determine the sign of the dielectric constant variation at the
points of discontinuity.

However, additional information can help select the right
solution. First, because the dielectric constant of a material at
x-ray wavelength is less than unity, the two solutions out of
four resulting in a negative variation of the dielectric function
(�(0) < 0) at the vacuum-film interface can be discarded.
There are different ways of choosing the solution between
the two remainders. As the amplitude reflectance, contrary
to the reflectivity, depends on the values of �(0) and �(h)
separately, we can uniquely find the solution corresponding to
reality by measuring the phase of the reflected wave. A method

(a)

(b)

FIG. 3. (Color online) Reconstructed dielectric constant profiles
for two tungsten films deposited on silicon substrates. The film
thickness is equal to 5.1 nm (solid curve) or 3.6 nm (dotted curve).
Figures 3(a) and 3(b) correspond to two possible solutions to the
inverse problem of x-ray reflectometry providing a positive value of
�(0). The roughness effect was not taken into account. The z axis is
pointing toward the depth of the substrate.

for extracting this phase directly from in situ reflectivity
measurements of a growing film is discussed in recent works.10

A simpler, though more intuitive, approach for selecting the
adequate ε(z)-distribution among a limited number of possible
solutions consists of analyzing the dielectric constant profiles
of samples presenting slightly different parameters. In our case
it is sufficient to compare the dielectric constant profiles of
two films of different thickness. An example is presented in
Figs. 3(a) and 3(b), where two, out of four, possible depth
distributions of the dielectric constant, providing a negative
polarizability of tungsten (εf < 1), are shown. In all cases
the starting guess for minimizing the merit function was a
tungsten film of uniform density deposited on a Si substrate.
By varying the film density in the starting guess, we obtained
four (and only four) different solutions to the inverse problem.
The curves are very similar to each other in Fig. 3(a) and quite
different in Fig. 3(b). Moreover, the dielectric constant of the
thicker film in Fig. 3(b) exceeds unity at the depth z ∼ 6 nm,
which is unphysical at the working wavelength. Therefore, we
conclude that only Fig. 3(a) corresponds to reality. Notice,
in addition, that the product �(0)�(h) = −1.58.10−10 and
the sum �2(0) + �2(h) = 4.07 · 10−10 found for the ε(z)-
distribution correspond to the values obtained above from
the analysis of the function F (x). Figure 3(a) manifests two
characteristic features of the dielectric function distribution.
First, the tungsten density increases appreciably from about
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80% of the tungsten bulk density at the beginning of deposition
up to 95% near the top of the film. At present a decrease of
the tungsten density near the substrate surface is not totally
understandable. One possible explanation for this decrease
could be the lack of surface cleaning of the Si substrate prior
to W film deposition. It is, indeed, well-known that any surface
exposed to air is covered with an adhesion layer, typically 1 to
2 nm thick, consisting mainly of molecules of hydrocarbons,
water, and oxygen sticking to the surface. Therefore, we can
expect that, at the initial stage of W film growth, a chemical
interaction of the tungsten atoms with the molecules of such
an adhesion layer may result in the formation of tungsten
oxides and/or carbides, thus resulting in a decrease of the film
density near the substrate surface. To justify this hypothesis, a
comparative study of the growth of a tungsten film on cleaned
(e.g., by ion etching) and uncleaned Si surfaces would be
necessary. Second, a well-pronounced diffusion layer is seen
near the surface of the substrate, which we would attribute
to the implantation and/or diffusion of tungsten atoms into
silicon during deposition. The description of the fine structure
of the interlayer observed in these samples is obviously
limited by the depth resolution of the method, estimated to
0.5 nm. The details on this problem of crucial importance to
the reconstruction of the dielectric function are discussed in
Appendix B. So, we conclude that the x-ray reflectivity curves
measured from tungsten films deposited onto silicon substrates
are described adequately in the frame of a model assuming
the dielectric function to undergo a steplike variation at the
film-vacuum and film-substrate interfaces. Hence, the depth
distribution of the dielectric constant can be written in the
following form:

ε0(z) = 1 + [εf (z) − 1] H (z) + [εs(z) − εf (z)] H (z − h),

(7)

where h is the film thickness and H (z) is the steplike Heaviside
function so that H (z < 0) = 0 and H (z > 0) = 1, whereas
εf (z) and εs(z) are continuous functions of z. In the simplest
case of a uniform film, εf (z) and εs(z) are constants.

III. DETERMINATION OF THE PSD FUNCTIONS
CHARACTERIZING THIN-FILM ROUGHNESS

In the previous section we analyzed the x-ray reflectance
of a layered sample neglecting the effect of roughness,
i.e., assuming the dielectric constant [Eq. (7)] to be only a
function of the depth ε(
r) = ε 0(z). In this case the surface
corresponding to a cut through the sample along a plane z =
constant is a surface of constant dielectric function ε. However,
as no real sample can be perfectly smooth at the scale of short
wavelength x-ray radiation, we need to describe the spatial
distribution of the dielectric constant as ε(
r) = ε 0(z − ζ ( 
ρ,z)),
where the two-dimensional vector 
ρ lies in the XY-plane
and the stochastic function ζ describes inhomogeneities of
different types so that a surface of constant ε is described by
the equation z − ζ ( 
ρ,z) = const. Such a representation of the
dielectric constant implies that diffuse scattered x-ray radiation
is caused by surface or interface roughness and by volume
inhomogeneities. In the frame of the perturbation theory on the
function ζ , the dielectric constant perturbation responsible for
off-plane x-ray scattering and decrease in specular reflectance

is represented as two first terms of a Taylor series:

�ε(
r) ≡ ε(
r) − ε0(z) ≈ −ζ ( 
ρ,z)ε′
0(z) + ζ 2( 
ρ,z)

2
ε′′

0 (z).

This expression indicates that it is the region of the
sample in which the dielectric constant varies quickly that
mainly conditions the intensity of the scattered radiation.
Evidently, in our case (see Fig. 3), the vacuum-film and
film-substrate interfaces, the location of the abrupt changes,
constitute the main contributions to scattering. Therefore, we
will neglect below the contribution of the volume scattering
as compared to the one from interfacial roughness. Then the
spatial distribution of the dielectric constant can be written as
an evident generalization of Eq. (7)

ε(
r) = 1 + [εf (z) − 1]H (z − ζf ( 
ρ))

+ [εs(z) − εf (z)]H (z − h − ζs( 
ρ)), (8)

where the stochastic functions ζs( 
ρ) and ζf ( 
ρ) describe the
topographic relief of the substrate and of the film, respectively.

In general, the angular distribution of the scattered radiation
intensity (differential scattering cross-section) is a function
of two angles: the scattering angle θ between the direction
of observation (detector) and the sample surface and the
azimuthal scattering angle. In our experiments the horizontal
beam size is set to a large value (5 mm) to favor a high intensity
at the detector. Moreover, because the scattering pattern in the
azimuthal (horizontal) direction is very narrow, we integrate
the intensity in this direction. In the frame of the film model
depicted in Eq. (8) and in the first-order perturbation theory
approximation, the scattering cross-section integrated in the
azimuthal direction from a rough isotropic film reads

	(θ,θ0) = 1

Winc

dWscat

dθ

= k3

16π sin θ0
{|�(0) ψ0(0,θ0)ψ0(0,θ )|2PSDff(p)

+ |�(h) ψ0(h,θ0)ψ0(h,θ )|2 PSDss(p)
(9)

+ 2�[�(0)�∗(h) ψ0(0,θ0)ψ0(0,θ )ψ∗
0 (h,θ0)

×ψ∗
0 (h,θ )]PSDsf(p)};

p = 1

λ
|cos θ − cos θ0|

where �(0) = 1 − εf (0) and �(h) = εf (h) − εs(h) are the
variations of the dielectric constant at the vacuum-film and
film-substrate interfaces, respectively, and θ0 is the grazing
angle of the probe beam. The function ψ0(z,θ ) describes
a plane wave falling from the vacuum region onto a film
whose surface is perfectly smooth, and the dielectric constant
depth distribution is nonuniform. ψ0(z,θ ) has the following
asymptotic form:

ψ0(z,θ )

∼
{

exp(ikz sin θ ) + r(θ ) exp(−ikz sin θ ), at z → −∞
t(θ ) exp (iκ(θ )z), at z → +∞ ,

where κ(θ ) = k
√

ε+ − cos2 θ is the Z-projection of the wave
vector in the depth of the substrate with the dielectric constant
ε+ = ε0(z → +∞) .
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FIG. 4. (Color online) Normalized scattering intensity (symbols)
versus scattering angle of a 5.1-nm-thick tungsten film measured at
three grazing angles θ0 (0.2◦, 0.4◦, and 0.6◦) at an x-ray energy of
17.5 keV. The lines represent the scattering distributions calculated
using either the simple model of a film with constant density (dotted
curves) or taking into account the dielectric constant profile extracted
from reflectivity measurement (solid curves). For clarity the curves
corresponding to different θ0 are shifted vertically by a factor of
10. The sharp minimum at the angle θ = θ0 corresponding to the
specular reflected beam is due to the presence of a beam stop to avoid
the saturation of the detector. Inset: Detector scans in reciprocal
space for θ0 = 0.2◦ (1) and 0.6◦ (2). Straight line 3 indicates the
specular reflectivity scan and dotted curves show the boundaries of
inaccessible q space.

In the simplest case of a uniform film, the field amplitudes
ψ0 at the film interfaces can be expressed in an explicit
analytical form, while for an arbitrary depth-graded dielectric
function, they must be obtained numerically as a solution of a
one-dimensional wave equation. The polarization effects have
been neglected because the grazing incidence angle is small.
The one-dimensional power spectral density (PSD) functions11

are determined as

PSDij (p) = 2
∫

〈ζi( 
ρ)ζj (0)〉 cos (2πpρ) dρ , with

i,j = {s,f } , (10)

where the angular brackets denote an ensemble averaging
and p is the spatial frequency. The functions PSDss(p) and
PSDff(p) describe the roughness of the substrate and of the
external film surface, respectively, and PSDsf(p) determines
the statistical correlation (conformity) between film and
substrate roughness.

The general formulae, the applicability of the pertur-
bation theory in the x-ray region and its interrelation
with the distorted-wave Born approximation,12 are discussed
elsewhere.13,14

The experimental scattering distributions of the 5.1-nm-
thick tungsten film measured at three different grazing angles
of the probe beam θ0 are presented in Fig. 4 (symbols). The

insert in the figure shows the detector scan in the re-
ciprocal space qz = k(sin θ + sin θ0), qx = k(cos θ − cos θ0).
Note that the qx values spanning from (−2.2 · 10−3) to
(−0.22) nm−1 were used when processing the data. Then,
we use Eq. (9) to form a system of linear algebraic equations
dependent on the three PSD functions mentioned above. In
principle, for each value of the spatial frequency p, the
unknown PSD functions can be found without any modeling.
However, it is a well-known fact that the solution of a system
of algebraic equations is often an ill-conditioned problem,
meaning that a small experimental error in the measured
scattering distributions may result in a large error in the
PSD functions. In our case, the direct solving of the system
effectively resulted in strongly oscillating PSD functions and,
moreover, in nonphysical negative values of PSDss and PSDff

in some intervals of the spatial frequency, thus suggesting to
use the regularization procedure15 described below. The three
unknown functions PSDij (p) are found from minimization of
the following merit function

MFPSD =
∑

i

∫ pmax

pmin

[
	exp

(
p,θ

(i)
0

) − 	cal
(
p,θ

(i)
0

)
	exp

(
p,θ

(i)
0

) ]2

dp

+Q
∑

i,j=s,f

∫ pmax

pmin

[
d ln(PSDij (p))

d ln p

] 2

dp, (11)

where 	exp and 	cal denote the differential scattering cross-
sections measured and calculated at different grazing angles
θ

(i)
0 of the probe beam. The second term in Eq. (11) is

nothing but a stabilizing operator introduced to provide the
necessary smoothness of the solution PSDij (p) in which
the parameter Q should be large to obtain a smooth solu-
tion to the problem, while keeping the difference between
calculated and measured scattering cross-sections within the
experimental error. Usually, these two conflicting conditions
result in a unique choice of the Q value. The values of the PSD
functions at 100 different spatial frequency values lying in the
interval [3.5·10−4, 3.5·10−2 nm−1] were considered as fitting
parameters so that the PSD functions were derived directly
from the measured scattering cross-sections without using any
model. When minimizing MFPSD, the only constraint placed
for finding the solution was on the conformity coefficient char-
acterizing the vertical correlation between film and substrate
roughness that should not exceed unity:

K(p) = PSDsf(p)√
PSDss(p) · PSDff(p)

� 1. (12)

To guarantee this inequality, we introduced a new un-
known function f (p) within PSDsf(p) so that PSDsf (p) =√

PSDff(p) · PSDss(p) · exp[−f 2(p)]). The starting guess for
all PSD functions was the PSD0 function of the virgin substrate
measured before film deposition and shown in Fig. 5. Within
the measurable range of spatial frequency, PSD0 is well
described by an inverse power law 1/p1+2α with a Hurst
exponent α ≈ 0.14. At first, after Refs. 3–5, we made the
a priori assumption that PSDss was unaltered by the film
deposition. In addition, we used the simplest model possible,
i.e., a uniform film, with a constant density of 17 g/cm3. This
value provides the best fitting accuracy on the reflectivity curve

125439-6



DEVELOPMENT OF A SELF-CONSISTENT FREE-FORM . . . PHYSICAL REVIEW B 85, 125439 (2012)

(a)

(b)

(c)

(d)

FIG. 5. (Color online) Functions PSDff (a), PSDsf (b), and PSDss (c) of the 5.1-nm-thick tungsten film extracted directly from the measured
scattering distributions. PSD0 is the function corresponding to the virgin Si substrate averaged over statistical oscillations. The dotted green
curves show the PSD functions deduced using the simple model of a uniform film, i.e., of constant density, and assuming the substrate roughness
to be unchanged after film deposition. The dashed blue and solid red curves correspond to the results obtained at different steps of the iteration
procedure. (d) Roughness conformity coefficient [Eq. (12)] obtained at different steps of the iterative procedure.

measured as a function of the deposition time at fixed grazing
angle (θ0 = 0.4◦). The resulting PSD functions, PSDff and
PSDsf, are shown in Figs. 5(a) and 5(b) [dotted green (gray)
curves]. The fitting accuracy on the scattering distributions is
presented in Fig. 4 [dotted green (gray) curves]. The hump
observed on the PSDff function shown in Fig. 5(a) [dotted
green (gray) curve] as compared to the PSD0 curve, confirms
the development of intrinsic roughness in the high spatial
frequency domain. Nevertheless, the root-mean-square (rms)
roughness over the measurable range of spatial frequency
presented increases only slightly, from 0.11 nm for the initial
substrate to 0.13 nm after deposition of a 5.1-nm-thick tungsten
film. Previous in situ studies on tungsten (Refs. 3–5) also
evidenced a very slow increase of roughness during film
growth. At large spatial frequency the PSDff function of
the external film surface behaves like an inverse power law
1/p1+2α with a Hurst exponent α estimated to 0.22 ± 0.04.
This value correlates with the one (α = 0.18 ± 0.02)
obtained in Ref. 4. In addition, the rapid decrease of the
function PSDsf at a large spatial frequency substantiates the
exponential decrease [Fig. 5(d), dotted green (gray) curve] of
the roughness conformity coefficient with the spatial frequency
and demonstrates an absence of conformity of the small-scale
roughness, in agreement with Refs. 3–5.

Notice the poor fitting accuracy of the dotted curve in
Fig. 4 with a difference between the measured and calcu-
lated scattering cross-sections up to 40–50%. Decreasing the

parameter Q in the merit function MFPSD did not improve
significantly the situation, while promoting the appearance of
nonphysical oscillations in the PSD functions. A slightly better
fitting accuracy could be obtained when considering PSDss

(substrate) as an unknown in the minimization procedure.
However, that resulted in a function PSDss(p) with an intensity
three to four times lower than the function PSD0(p) of the
virgin substrate, meaning the smoothing of the roughness
over the whole range of measurable spatial frequency. Such a
smoothing effect is unrealistic from a physical point of view.

Let us now consider as unknown the three PSD functions
describing a rough film deposited on a substrate, while taking
into account the depth distribution of the dielectric constant
derived above. We use the same minimization procedure of
the merit function [Eq. (11)] and the values of the three PSD
functions at 100 different spatial frequency values as fitting
parameters. Equation (9) for the scattering cross-section is
still valid, while the field amplitudes at the film interfaces
are found numerically using the ε(z)-distribution shown in
Fig. 6, iteration 1. The resulting PSD functions, shown in
Fig. 5, (iteration 1) are similar in shape to those found with
the model of uniform film, while their absolute values are
different. As a result, the roughness conformity coefficient
[Fig. 5(d)] manifests a substantial increase of conformity at
high spatial frequency compared to the uniform film model.
The PSD function of the substrate after film deposition (PSDss)
was found to be close to that of the virgin substrate (PSD0).
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FIG. 6. (Color online) Comparison of the dielectric constant
depth profiles found at different steps of the iteration procedure.

The difference between the functions PSDss and PSDsf found
with the models of uniform and depth-graded films can be
appreciated by examining Eq. (9) describing the scattering
cross-section. Indeed, the electrodynamics multiplier factors
in front of the PSD functions depend on the dielectric constant
variation at the film-substrate interface. As the variation of the
dielectric constant at the interface between the depth-graded
film and the substrate is lower than in the case of the uniform
film (by a factor of 1.5–2), the function PSDss and PSDsf

should be increased to be able to describe the mean value and
the amplitude of the oscillations observed in the scattering
patterns. The accuracy of the solution corresponding to the
depth-graded film is shown in Fig. 4 (red solid curves).
This time, the difference between the measured and the
calculated scattering cross-sections does not exceed 15%,
which is comparable with the measurement errors, while

the root-mean-squared deviation between the curves is less
than 5%, which is far better than for the uniform film
model.

IV. ITERATIVE PROCEDURE

In the previous sections we reconstructed the depth dis-
tribution of the dielectric constant, neglecting the effect of
roughness, and then deduced all three PSD functions of a
rough film, taking into account this ε(z)-distribution (iteration
1). Now we will continue the iteration procedure shown
schematically in Fig. 7. In the second iteration we envisaged,
first, to reconstruct the depth distribution of the dielectric
constant taking roughness into account, and then, to refine
once more the PSD functions. Thereafter, we compared the
results of two iterations [the found ε(z)-distributions and the
PSD functions]. If the difference between results is small
enough, the iterative procedure is finished; otherwise, the
dielectric constant profile and the PSD functions are refined
again until the desired convergence (difference in the results
of two subsequent iterations) is achieved.

The procedure of the dielectric constant profile refinement
is rather complex. First of all, we indicate the expression for
the specular reflectivity R of a rough depth-graded film derived
in the frame of the perturbation theory, while conserving
all terms in σ 2 and using the model Eq. (8) to describe
the three-dimensional (3D) distribution of the dielectric
function

R = R0 − 2�[r∗
0 (�r 1 + �r 2)] (13)

FIG. 7. Flowchart describing the itera-
tive procedure.
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�r 1 = − ik

2 sin θ0

[
σ 2

f �(0) ψ0(0,θ0)
dψ0

dz
(0,θ0) + σ 2

s �(h) ψ0(h,θ0)
dψ0

dz
(h,θ0)

]
(14)

�r 2 = ik4

8π sin θ0

{
�2(0) ψ2

0 (0,θ0)
∫

PSDff(p)
ψ0(0,θ ) ψ1(0,θ )

W (θ )
sin θ dθ + �2(h) ψ2

0 (h,θ0)
∫

PSDss(p)
ψ0(h,θ ) ψ1(h,θ )

W (θ )
sin θ dθ

+ 2�(0)�(h) ψ0(0,θ0)ψ0(h,θ0)
∫

PSDsf(p)
ψ0(h,θ ) ψ1(0,θ )

W (θ )
sin θ dθ

}
(15)

where R0 = |r0|2 is the reflectivity of a perfectly smooth depth-
graded film and σs and σf are the rms roughness of the substrate
and of the film. The function ψ1(z,θ ) describes a plane wave
arriving in the film from the substrate side and having the
following asymptotic form:

ψ1(z,θ )

∼
{

t̃(θ ) exp(−ikz sin θ ), at z → −∞
exp ( − iκ(θ )z)) + r̃(θ ) exp (iκ(θ )z), at z → +∞

W (θ ) = ψ ′
0ψ1 − ψ0ψ

′
1 = 2it(θ )κ(θ ) = 2it̃(θ )k sin θ is the

Wronskian. The other functions and parameters were de-
scribed previously.

The main problem is that the reflectivity calculation requires
the knowledge of the PSD functions over the entire spatial
frequency range, i.e., for p values from zero to infinity, while
they were only measured in a finite interval. Hence, we need
to extrapolate the PSD functions outside this interval using
arguments as physically reasonable as possible. In the high
spatial frequency region, we will consider that the functions
PSDss and PSDff follow a fractal-like law ∼1/p1+2α and the
function PSDsf an exponential law. At low spatial frequency, all
PSD functions practically coincide with each other and ensure
total conformity at large-scale roughness. For extrapolation
of the PSD functions in the low spatial frequency range, we
use the following simplest model for the PSD function of the
substrate used widely in optics16

PSDss(p) = 2√
π

�(α + 1/2)

�(α)

σ 2a

(1 + a2p2)α+1/2
, (16)

where σ is the rms roughness in the [0,∞[ spatial frequency
interval, a is the correlation length, α ≈ 0.14 the exponent
found, while the numerical coefficient containing gamma
functions is chosen to warrant the normalization condition∫ ∞

0 PSD(p) dp = σ 2. If the correlation length is large enough
a � 1/pmin, where pmin is the minimal spatial frequency
measured in the experiment, Eq. (16) tends to the asymptotical
form PSDss(p) ∼ σ 2/(a2αp1+2α), demonstrating that the ratio
σ/aα can only be found that way and that the values of σ and
a cannot be obtained separately. This situation corresponds to
the conditions of our experiment with pmin = 1 · 10−3 nm−1,
and Fig. 5 only attests that the correlation length is greater than
10 μm. Hence, the rms roughness cannot be found uniquely.
At the same time, the reflectivity [Eq. (13)] depends heavily
on the value of σ and, hence, on the extrapolation of the PSD
function in the low spatial frequency range. To overcome this
problem in our experiments, we measured the total reflectivity

coefficient instead of the specular reflectivity

R�(θ0) = R(θ0) + TIS(θ0);
(17)

TIS(θ0) =
∫

	(θ,θ0) dθ,

where TIS is the total integrated scattering. The total re-
flectivity characterizes the total intensity of radiation that is
redirected back to vacuum after interaction with the rough
film, i.e., the specularly reflected part and the part scattered
by roughness. In contrast to specular reflectivity, TIS is inde-
pendent of the PSD function extrapolation at low frequency.
This feature will greatly simplify the implementation of the
self-consistent method. Notice that, for a sufficiently large
value of the longitudinal correlation length of roughness,
the width of the scattering pattern is much smaller than the
typical angular width of a reflectivity variation and roughness
of different interfaces are totally conformal. In this case the
specular reflectance and the total integrated scattering are
described by the well-known Debye-Waller factor

R ∼= R0[1 − (2kσ sin θ0)2]; TIS ∼= R0 (2kσ sin θ0)2

so that the total reflectivity [Eq. (17)] is very close to the
reflectivity R0 of a perfectly smooth sample.

In fact, if we extrapolate all three PSD functions describing
the sample in the range of the low spatial frequency values,
via Eq. (16), over which an exponent α ≈ 0.14 was found
above, and if we calculate the total reflectivity R� [Eq. (17)]
via Eqs. (9) and (13)–(15) for various correlation lengths a

ranging from 10 μm to 1 mm, the R� values differ only by
the third significant digit, while the value of σ 2 increases by
a factor of 3.6. So, in accordance with Eqs. (13) and (17)
and independently of the type of PSD function extrapolation
used in the low spatial frequency range, we can determine
the specular reflectivity R0 of the depth-graded sample (which
would be equivalent to the case of perfectly smooth interfaces)

R0
∼= R� + 2�[r∗

0 (�r 1 + �r 2)] − TIS, (18)

where R� is the quantity measured in our experiment, and TIS,
�r1,2, and r0 in the right side of Eq. (18) are values calculated
from the PSD functions and the ε(z)-distribution obtained
previously. The refined specular reflectivity [Eq. (18)] for the
5.1-nm-thick tungsten film is shown in Fig. 1 (curve 3). The
difference between the measured total reflectivity (curve 1)
and the specular reflectivity expected from a perfectly smooth
film is only noticeable at large grazing angles, demonstrating
once more that the total reflectivity is close to the reflectivity
of a perfectly smooth sample. The difference between curves 1
and 2 in Fig. 1 is only conditioned by the effect of small-scale
roughness, whose rms height is very small.
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Now, based on the reflectivity curve corrected for the
roughness effect, we can refine the depth distribution of the
dielectric constant using the procedure described in Sec. III.
First of all, we find that the reflectivity curve 2 in Fig. 1,
in contrast to the measured one, is well consistent with a
1/q4 law at large grazing angles. Therefore, the extremum
of the function F (x) is much more stable [see Fig. 2(b)]
regarding both its position in the x direction and its value
F (h). The refined distance between points of discontinuities
is practically the same as found above h = 5.06 ± 0.01 nm
and the error on the determination of h is decreased by a
factor of three. The dielectric constant variations at the film
interfaces can be obtained via Eqs. (4) and (5) within an
accuracy of about 6%: �(0) = (1.93 ± 0.12).10−5 and �(h) =
−(1.06 ± 0.06) · 10−5. The refined depth distribution of the
dielectric function presented in Fig. 6, iteration 2 is very close
to that found during the first iteration, i.e., when roughness
was not taken into account. However, it is more uniform near
the top of the film and the diffusion layer inside the substrate is
less pronounced. It is also consistent with the results obtained
in Ref. 10 for thicker tungsten films (up to 25 nm), where
the thickness of the diffusion layer inside the Si substrate
and of the near substrate layer having a decreased tungsten
density was estimated to be of about 1 nm and 2.5–3 nm,
respectively. The dielectric constant variations at the interfaces
deduced from Fig. 6, iteration 2, �(0) = 1.93 · 10−5 and
�(h) = −1.03 · 10−5, coincide with those obtained during the
preliminary analysis of the function F (x). Then, we refined the
PSD functions. However, no significant changes are observed
on Fig. 5, iteration 2 when compared to iteration 1. The fitting
accuracy of the scattering cross-sections and of the conformity
coefficient [Fig. 5(d)] are also nearly the same. It is interesting
to observe in Fig. 5(a) that the PSDff-function for iteration 2
resembles the one obtained with the model of uniform film
and with the assumption of the substrate roughness to remain
unchanged during deposition. This fact justifies the validity
of our earlier results (Refs. 3–5). On the contrary, the rough-
ness conformity coefficient depends significantly on the film
model, stressing the importance of taking properly the di-
electric constant profile into account when performing a
quantitative analysis of the vertical correlation of roughness.

The third iteration performed as detailed above shows very
little differences with the PSD functions deduced after the first
and second iterations, thus leading to marginal corrections on
the reflectivity. As a result, the refined reflectivity curves 2
and 3 in Fig. 1 are almost indistinguishable, and the dielectric
constant depth distribution essentially unchanged (see Fig. 6,
iteration 3). The PSD functions are equivalent to those found at
the second iteration and are not plotted in Fig. 5. This example
demonstrates the rapid convergence of the iterative procedure,
at least in the case of smooth samples. Two iterations were
sufficient to derive the three PSD functions describing a rough
film and to reconstruct the depth distribution of its dielectric
constant. For the scattering cross-sections, the accuracy of
the description is illustrated in Fig. 4 by the comparison
of the experimental (symbols) and the solid curves. For
the reflectivity, it is illustrated by the comparison in Fig. 1
of the measured total reflectivity R� (curve 1), with the
solid curve 5 calculated using the PSD functions presented
in Fig. 5 and the reconstructed ε(z)-distribution shown in

Fig. 6. In summary, the iterative procedure presented could
certainly be improved, which could be valuable for studying
samples presenting a larger rms roughness. The method of
reconstruction of the dielectric constant described above is
based on the specular reflectivity. Although its quantity can
be estimated by subtracting the embedded diffuse scattering
component, this procedure is not well defined because it
requires extrapolation of the measured part of the scattering
pattern into the range of the scattering angles close to the angle
of specular reflection. The problem has been demonstrated
above with extrapolation of the PSD functions into the range
of low spatial frequencies. Therefore, the specular reflectivity
is deduced from the measurement of the total reflectivity
corrected for the roughness effect. A more logical iterative
procedure could be developed by introducing in Eq. (6) the
total reflectivity instead of the specular one, the former being
calculated using the PSD functions and Eqs. (9) and (13)–(15).
However, the computing time necessary to minimize the merit
function Eq. (6) is expected to be much longer.

V. CONCLUSION

In the study of the 3D morphology of a film deposited
on a substrate, a method has been developed to determine
simultaneously the depth distribution of its dielectric constant
and the three PSD functions characterizing its roughness.
The approach is based on the simultaneous analysis of the
reflectivity curve and of a set of scattering cross-sections
measured at different grazing angles of the x-ray probe
beam. A numerical computation iterative procedure has been
developed to take into account the roughness effect during
the reconstruction of the dielectric constant profile and vice
versa, the depth distribution of the dielectric constant during
the determination of the PSD functions of the film roughness.
The iterative procedure was demonstrated to converge quickly
to describe precisely the whole set of experimental data.

The main results of the study are now summarized. We
demonstrated that the depth distribution of the dielectric
constant affects significantly the roughness conformity coef-
ficient extracted from the measured scattering cross-sections.
Conversely, the roughness influences the profile of the dielec-
tric constant extracted from the measured reflectivity curve,
although in our case of very smooth samples, this effect is
rather weak. The density of a tungsten film deposited by
magnetron sputtering onto a silicon substrate is not constant
and varies with depth from about 80% of the bulk density
near the substrate up to 95% at the top of the film. During
deposition an interlayer, about 0.7 nm thick, appears at the top
of the substrate. It may be due to diffusion and/or implantation
of tungsten atoms into the silicon substrate. The deposition of
a tungsten film results in an increase of high spatial frequency
roughness.

We note that the study of the three-dimensional morphology
of a layered structure will increase in complexity with the
number of layers in the sample for two major reasons. First,
above a certain thickness, absorption cannot be neglected
anymore and, hence, two a priori unknown functions �[ε(z)]
and �[ε(z)] should be reconstructed from the measured
reflectivity curve. In this case the problem of ambiguity gets
more pronounced. This issue is not analyzed in the present
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paper. Second, the number of a priori unknown PSD functions
of the roughness of a layered structure increases dramatically
as n(n + 1)/2 with the increasing number of interfaces n. (We
have in this case n autocorrelation functions of the roughness
of different interfaces and n(n− 1)/2 cross-correlation ones.)
Evidently, it is impossible to deduce all these functions from
the experimental scattering distributions directly, i.e., without
using a model to describe the roughness variation with depth.
This is the real limitation of applicability of our free-form
approach in the study of multilayer structures. At the same
time, we believe that the only physically justified way to
develop an adequate model of roughness development and
interlayer formation during multilayer structure growth is to
study, at first, simpler structures with a small number of layers
(2 to 3 or, may be, 4), where our free-form approach seems to
be quite practicable.
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APPENDIX A

Our approach for the reconstruction of the dielectric
constant profile is based essentially on the preliminary Fourier-
analysis of the reflectivity curve via Eq. (3). The function
F (x) introduced there differs by two special features from the
traditional autocorrelation function of the dielectric constant
profile derivative used in the analysis of the x-ray reflectivity
data (see, e.g., Ref. 6). First, we normalize F (x) in such a
way that the resonance summand in Eq. (4) is independent of
the integration interval. Such normalization results in stable
extrema and (a) distinguishes clearly the peaks determined by
the distances between discontinuity points from a variety of
collateral ones and (b) determines the pair products �i�j of
the dielectric constant variations at the discontinuity points. In
our opinion, this last feature, not discussed in the literature,
may be of extreme importance for identifying the correct
model to describe the sample under study. Second, we
introduced the summand G in the integrand in Eq. (3) to
increase the sensitivity of the approach and allow stable peaks
of very low magnitude to be displayed. The importance of this
summand will be illustrated in the following example.

Let us analyze the x-ray reflectivity (E = 17.5 keV) of a
2-nm-thick Si film deposited onto the bulk Si substrate, the
density of the film being only 5% less than the bulk density.
Assuming the reflectivity to be measured up to a maximum
grazing angle θmax = 2.5◦ [Fig. 8(a)] and calculating the
function F (x) in the traditional form found in the literature
with G = 0 at slightly different qmax and qminvalues, we
obtain curves that present a well-pronounced maximum at
x = 0 [Fig. 8(b)] with a value equal to F (0) = ∑

j [�(zj )]2.
However, the large amplitude collateral oscillations of this
peak at x > 0 hide an expected stable extremum at x = 2 nm,
and thus, we cannot distinguish the presence of the film. At
the same time, if we use the function F (x) in the form Eq. (3)
containing the summand G �= 0, the large peak disappears,
and the stable maximum at x = 2 nm is now clearly observed
[Fig. 8(c)]. Therefore, the function F in the form Eq. (3) is
able to detect even a small variation of the dielectric constant
at the interfaces (the points of discontinuity).

The problem of uniqueness in the dielectric constant profile
reconstruction is of extreme importance. First of all, we note
that the number of possible solutions (four) is independent
of the number of discontinuity points when all distances
between points hij and all pair products �i�j are different. Let
us consider three subsequent discontinuity points zj−1 , zj =
zj−1 + hj−1,j , zj+1 = zj + hj,j+1 and the corresponding se-
quence of dielectric constant variations in these points:
�j−1 , �j , �j+1. One of the extrema of the function F (x)
matches the distance hj−1,j+1 = hj−1,j + hj,j+1 between the
(j − 1)th and (j + 1)th points. As we supposed that all
hij are different, the only possibility to change the sequence
of discontinuity points, while keeping the same value of
hj−1,j+1 (position of extremum), consists of reversing the
order of intervals between the neighboring points, i.e., to
change the initial sequence of the three discontinuity points in
the following way: zj−1 , zj = zj−1 + hj,j+1, zj+1 = zj +
hj−1,j . Simultaneously, we should reverse the sequence of the
dielectric constant variations �j+1 , �j , �j−1 to maintain
the values of the extrema �j−1�j and �j�j+1 corresponding
to the distances between neighboring points hj−1,j and hj,j+1.
As this consideration should be valid for any j, we conclude
that among the variety of different permutations, only one,
namely, the mirror representation of the initial sequence of
discontinuity points and of the dielectric constant variations

(a) (b) (c)

FIG. 8. (Color online) (a) Reflectivity versus grazing angle (at E = 17.5 keV) of a 2-nm-thick Si film on the bulk Si substrate, the film
density being 0.95 of the bulk one. (b) and (c) Determination of the film thickness with the use of a conventional autocorrelation function of
the dielectric constant profile derivative (b) and via Eq. (3) (c).
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A

B

FIG. 9. (Color online) Two model examples (rows A and B) of three-layer samples with identical thickness for each layer (h = 4 nm). The
dielectric constant profiles are shown in the left column, the reflectivity (at E = 17.5 keV) in the middle column, and the functions F (x) in the
right column.

results in the same extrema of the function F (x). Hence,
there are only two different sequences of discontinuity points
ensuring the same asymptotic behavior of the reflectivity at
large grazing angles:

{�1(z = 0), �2(z = h12), . . . , �n−1(z = h12 + · · ·
+hn−2,n−1), �n(z = h12 + · · · + hn−1,n)}

{�n(z = 0), �n−1(z = hn−1,n), . . . , �2(z = hn−1,n + · · ·
+h23), �1(z = hn−1,n + · · · + h12)}. (A1)

Two additional solutions of the inverse problem follow
immediately from Eq. (A1) by replacement of �j by −�j .

As already pointed out in Ref. 6, the case of several layers
(distances between points of discontinuity) of equal thickness
is more difficult to analyze. To help clarify this point, let us
consider below a three-layer model with films of constant
density while neglecting absorption. While the function F (x)
for films of different thicknesses would have six extrema, the
case of films of identical thickness h leads to a function F (x)
with three extrema placed in the points x = h, x = 2h, and
x = 3h. The value of the function in these points is equal to

F (h) = �1�2 + �2�3 + �3�4, F (2h) = �1�3 + �2�4,

F (3h) = �1�4. (A2)

In absence of a priori information about the sample, such a
function F (x) would suggest a simple two-layer sample model
with film thicknesses h and 2h. Is it possible to determine

the correct number of layers composing the sample based on
the sole reflectivity curve and without performing additional
experiments? Surprisingly, it is indeed possible because, in
parallel to the distances between the points of discontinuity,
we have additional information about the sample, namely, the
pair products �i�j of the dielectric constant variation in these
points determined by the peak values of the function F (x). As
an illustration of our approach, let us consider two examples.

The first example of a three-layer sample with equal
film thickness is presented in Fig. 9, row A. If we assume
the simplest two-layer model, i.e., only three points of
discontinuity, and denote the dielectric constant variation in
these points as �̃1, �̃2, and �̃3, we obtain three equations:
�̃1�̃2 ≈ −24, �̃1�̃3 ≈ 8, and �̃2�̃3 ≈ 8. By multiplying
them, we obtain an unphysical result (�̃1�̃2�̃3)2 < 0, thus
clearly demonstrating the incorrectness of a two-layer model.
Similarly, in the general case of n discontinuity points (n− 1
layers) and different distances hij between them, we can
calculate the product of all peak values P = ∏

F (hij ). One can
check that each �j occurs in this product n− 1 times so that
P = (�1�2 · · ·�n)n−1. Therefore, the sign of the product P,

always positive in the case of an odd number of discontinuity
points, can be used as a signature for the correctness of the
model.

A second example of three-layer sample is shown in
Fig. 9, row B. Here, for illustrative purpose, we used a
conventional function F (x) by setting G = 0. The peak
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(a) (b)

(c) (d)

FIG. 10. (Color online) (a) Dielectric constant profiles of three-layer (1) and one-layer (2) samples presenting the same reflectivity at large
grazing angles. Curve 3 is the refined profile of the one-layer sample model found as a solution of the inverse problem and provides the same
reflectivity as a three-layer sample at any grazing angle. (b) Reflectivity versus grazing angle (at E = 17.5 keV) of three-layer (1) and one-layer
(2) samples. (c) Function F(x) of the three-layer sample. (d) Same as in Fig. 10(c) assuming the density of the uppermost and the lowermost
film to be changed by + 5% and − 5%, respectively.

at x = 0 influences slightly the neighboring peak in this
example. As seen, all products �̃i�̃j are positive, i.e.
(�̃1�̃2�̃3)2 > 0, and the dielectric constant variations in the
three discontinuity points (assuming the two-layer model) can
be easily found: �̃2

1 ≈ 1.5, �̃2
2 ≈ 6.0, �̃2

3 ≈ 0.7. Then, we
obtain �̃2

1 + �̃2
2 + �̃2

3 ≈ 8.2, a value twice the peak value
observed at x = 0, which stresses again the inadequacy of
a two-layer model to describe the “experimental” data.

In the general case of n points of discontinuity with different
thicknesses hij , we can evaluate n(n − 1)/2 products �i�j

and the value of �2
1 + · · · + �2

n, i.e., we have n(n − 1)/2 + 1
equations for n unknowns �i . For n > 2, the number of
equations exceeds the number of unknowns, and the equations
agree with each other only in the frame of a model with
the correct number of films except in very specific cases,
which, probably, never occur in practice, although of possible
fundamental interest.

A specific case similar to the one discussed in Ref. 6 is
presented in Fig. 10(a), profile 1. In this three-layer model with
films of equal thickness, the dielectric constant variations in the
discontinuity points �i are chosen to provide simultaneously

�1�2 + �2�3 + �3�4 = 0 and �1�3 + �2�4 = 0.
(A3)

Then, in accordance with Eq. (A2), we observe the only peak
of the function F (x), while a small stable feature at x ≈ 3.7 nm

still persists [Fig. 10(c)]. We can conclude that the situation
is similar to that of the reflection from a single film, i.e.,
with the case of two points of discontinuities, the distance
between them being 12 nm. Denoting the dielectric constant
variations in these points as �̃1 and �̃2 and solving the system
of equations �̃1�̃2 = �1�4 and �̃2

1 + �̃2
2 = �2

1 + · · · + �2
4,

we can design a single-layer structure [Fig. 10(a), profile
2], whose reflectivity at large grazing angles coincides with
that of the three-layer structure, apart from small differences
observable at θ ∼ 0.2◦ − 0.45◦ [Fig. 10(b)]. As n = 2, the
number of equations is exactly equal to the number of
unknowns �̃1,2 and the equations always have a solution.
Therefore, in very specific cases, when the dielectric constants
of the films exactly match Eq. (A3), we are truly incapable of
determining the number of discontinuity points.

Finally, curve 3 in Fig. 10(a) is the dielectric constant profile
reconstructed from the reflectivity curve 1 in Fig. 10(b) with the
use of our approach assuming only two points of discontinuity.
A small variation in the profile as compared with the profile
2 appears to fit adequately the reflectivity curve over θ ∼
0.2◦ − 0.45◦. In other words, profiles 1 and 3 in Fig. 10(a)
result in the same reflectivity curves over the whole range of
the grazing angles, while the number of discontinuity points
is different.

Notice however, that a change in the dielectric constant
of the uppermost and lowermost films by only + 5% and
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(a)

(b)

(c)

(d)

FIG. 11. (Color online) (a)–(c) Models of depth distribution of the dielectric function (dashed red curves). The reconstructed profiles are
shown for θmax = 2.5◦ and E = 17.5 keV, i.e., λeff ≈ 1.6 nm. The solid blue curve is obtained in absence of experimental error, while the dotted
green one considers an error on the reflectivity measurements that increases from ± 2% at small grazing angles up to ± 30% at large grazing
angles. The inserts (enlarged scale) demonstrate the accuracy of the reconstruction. (d) Reflectivity of a sample, whose dielectric constant depth
profile is shown in Fig. 11(a), without (solid curve) and with (circles) an error introduced in the reflectivity data.

− 5%, respectively, will result immediately in the appearance
of two additional stable peaks at x = 4 nm and x = 8 nm
[Fig. 10(d)], i.e., the situation becomes similar to reflectivity of
a two-layer sample and can be analyzed as above. Therefore, an
adequate model for the sample may be verified by performing
anomalous reflectivity measurements, i.e., by measuring the
reflectivity curves at two different x-rays energies lying below
and above the absorption edge of one of the elements contained
in the structure, where its polarizability changes essentially. It
is unlikely that Eq. (A3) will be valid at both energies, and
hence, we will observe three peaks of the function F(x) at one
of these energies, at least.

APPENDIX B

One of the key issues in the reconstruction of the dielectric
function profile concerns the depth resolution, i.e., the smallest
feature size of the ε(z)-distribution that can be reconstructed
from reflectivity measurements performed over a limited
interval of grazing angles. The depth resolution �zmin =
Cλeff where λeff = λ/ sin θmax is determined by the minimal
effective wavelength characterizing the periodicity along the z

axis of a wave field incident onto a sample under the maximal
grazing angle θmax obtainable in an experiment. The coefficient
C proves to be often significantly lower than unity, expressing
that the reconstructed feature size may be several times smaller

than the effective radiation wavelength λeff . This statement is
not surprising if we recall that a reflectivity curve measured
as a function of the incidence angle is a recording of the
interference pattern generated by the x-ray wave reflected
from the different features of the dielectric constant profile.
Interference techniques are known to reach spatial resolutions
beyond the radiation wavelength used.

To illustrate this effect, let us consider an x-ray wave
reflected from a substance of constant density except in a small
region with a size of about 0.8 nm and placed at a certain depth
in the sample [see Fig. 11(a), dashed red (dark gray) curve]. Let
us consider angular reflectivity measurements performed up to
a maximal value θmax = 2.5◦ at an x-ray energy of 17.5 keV.
Then, the effective wavelength equals to λeff ≈ 1.6 nm. The
reflectivity corresponding to this model [Fig. 11(d), solid
curve] demonstrates the presence of noticeable oscillations
caused by the interference of waves reflected from the feature
and from the top of the sample. As a result, the feature seen
in the ε(z)-distribution is reconstructed with a high accuracy
[Fig. 11(a), solid blue curve], although its size is two times less
than the effective wavelength. As demonstrated with the red
(dark gray) and blue curves in Fig. 11(b), where the feature
size in the dielectric constant profile is about 0.55 nm, the
accuracy of reconstruction is still reasonable for a feature
with a size of the order of λeff/3. Figure 11(c), red (dark
gray) curve, presents a model of ε(z)-distribution similar to
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the dielectric constant profile obtained in our experiment with
a thickness of the diffusion layer of only 0.4 nm, i.e., equal to
λeff/4. Nevertheless, this layer is reconstructed quite precisely
[Fig. 11(c), solid blue curve]. Therefore, the minimal size
�zmin of a reconstructed feature located in the depth of a
sample is of the order of (0.25 ÷ 0.35)λeff . Let us recall once
more that no additional assumptions about the ε(z)-distribution
were made for reconstructing the dielectric function, except
on the number of points of zero-order discontinuity (one or
two) and on the distance between them [in the case of the
profile shown in Fig. 11(c)]. The coefficient C characterizing
the depth resolution depends on a number of factors, e.g., on
the absolute depth position of a feature within a sample and
on its shape. From an accuracy point of view, the worse
situation corresponds to a feature placed at the top of the
sample (then C ≈ 0.5) and can even aggravate if the derivative
|dε/dz| is large at z = 0 (then C ≈ 1). Hence, the minimal
size of a reconstructed feature placed on the top of a sample is
�zmin = (0.5 ÷ 1.0)λeff .

Evidently, another factor influencing the accuracy of re-
construction of the dielectric function is the error present
in the reflectivity measurements. Examples are given in
Figs. 11(a)–11(c). The dotted green (gray) curves show the

ε(z)-distributions reconstructed assuming a stochastic error
on the reflectivity that is evenly distributed in an interval
increasing from ± 2% at small grazing angle up to ± 30%
at large angle. Although the exactitude of the reconstruction
decreased, it is still practicable. An example of reflectivity
curve (the sample corresponding to the dielectric constant
depth profile shown in Fig. 11(a) in which an error was
introduced is presented in Fig. 11(d) (circles).

A crucial factor decreasing the accuracy on the dielectric
function reconstruction is the effect of the surface and inter-
facial roughness leading to a deformation of the reflectivity
curve. As demonstrated in Ref. 9, the presence of roughness
results in a smoothing of the reconstructed dielectric constant
profile so that it becomes impossible to distinguish a real
structure at an interface from an effect caused by roughness
(if the study is only based on reflectivity measurements).
This justifies the need to account for roughness during
the reconstruction of the dielectric constant profile, as it
is described in the present paper. In the conditions of our
experiments, the minimum feature size correctly reconstructed
is of the order of 0.4 to 0.5 nm for a feature located in
the depth of the sample (diffusion layer near the top of the
substrate).
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d’Activité d’Aix les Milles, 13593, Aix en Provence Cedex 3, France.

†ziegler@esrf.fr
1U. Pietsch, V. Holy, and T. Baumbach, High Resolution X-Ray
Scattering: From Thin Films to Lateral Nanostructures (Springer
Verlag, New York, 2004).

2M. Tolan, in X-Ray Scattering from Soft-Matter Thin Films.
Materials Science and Basic Research, edited by G. Höhler,
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