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Two-dimensional Dirac fermions in the presence of long-range correlated disorder

Andrei A. Fedorenko, David Carpentier, and Edmond Orignac
CNRS UMR5672–Laboratoire de Physique de l’Ecole Normale Supérieure de Lyon, 46, Allée d’Italie, 69007 Lyon, France

(Received 13 December 2011; revised manuscript received 15 March 2012; published 28 March 2012)

We consider two dimensional Dirac fermions in the presence of three types of disorder: random scalar potential,
random gauge potential, and random mass with long-range correlations decaying as a power law. Using various
methods such as the self-consistent Born approximation (SCBA), renormalization group (RG), the matrix Green’s
function formalism, and bosonization, we calculate the density of states and study the full counting statistics
of fermionic transport at lower energy. The SCBA and RG show that the random correlated scalar potentials
generate an algebraically small energy scale below which the density of states saturates to a constant value.
For the correlated random gauge potential, RG and bosonization calculations provide consistent behavior of the
density of states, which diverges at zero energy in an integrable way. In the case of correlated random mass
disorder, the RG flow has a nontrivial infrared stable fixed point leading to a universal power-law behavior of
the density of states and also to universal transport properties. In contrast to the uncorrelated case, the correlated
scalar potential and random mass disorders give rise to deviation from the pseudodiffusive transport already to
lowest order in disorder strength.
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I. INTRODUCTION

In recent years, significant attention has been attracted by
materials exhibiting two dimensional fermionic excitations
with linear dispersion relation near the Fermi level. These
excitations share many properties with massless relativistic
particles, but with a velocity reduced with respect to the speed
of light. The seminal example of such materials is graphene,1

the low-energy properties of which are described by the two
dimensional (2D) gas of Dirac fermions.2,3 More recently, 2D
Dirac fermions have also emerged as the effective low-energy
degree of freedom in the surface states of three dimensional
(3D) topological insulators,4–6 such as the materials in the
Bi2Se3 family7 and strained HgTe.8 Dirac excitations have
been also found in an unconventional superconductor with
d-wave symmetry,9–12 in the quasi-2D organic conductor
α-(BEDT-TTF)2 I3 under pressure,13–18 and even in photonic
crystals.19

The peculiar features of Dirac fermions lead to unfamiliar
transport properties in all these materials. Of particular interest
are the vanishing of the density of states at the Dirac (or
neutrality) point, and the unusual scattering properties of
the Dirac particles, a striking example of which is provided
by the so-called Klein tunneling phenomenon: an excitation
incident normal to a potential barrier crosses this barrier
completely even for energies smaller than the barrier height.2

A consequence of that is the total absence of backscattering
for these Dirac fermions. The peculiarities of the spectrum
near the Dirac point also affect transport strongly. In undoped
graphene, due to the evanescent nature of the states at the
Dirac point, transport in a clean sample is similar to that
in a diffusive wire.20 Moreover, all the different cumulants
of current fluctuations in a graphene sample behave as in
a diffusive wire rather than in an ideal metallic system. In
particular, pseudodiffusive conductance scales with the length
of the system L as 1/L in contrast with the L0 scaling of ideal
conducting systems. The associated Fano factor defined as the
ratio between the shot noise power and the current has the same
universal value F = 1/3 as for diffusive metallic wires instead

of F = 0 for ideal conductors. Remarkably, the conductivity
minimum of graphene at the neutrality point due to evanescent
modes is of order e2/h, i.e., finite despite the vanishing of
the density of states. Although the conductivity minimum
remains almost constant in very broad temperature range, its
sample dependance indicates the importance of disorder for
the transport properties of graphene.21

Due to these specificities, numerous studies have focused
on the effect of a random scattering potential on the transport
of Dirac states.22–25 Indeed, various kinds of disorder are
naturally present in real materials and affect, in a dominant
way, the electronic transport properties. They can be of
different origin: lattice defects, impurities, ripples in graphene
sheet that distort locally the lattice, adatoms deposited on the
surface of a graphene sample,26 atomic steps on the surface of
topological insulators, etc. Theoretical research on disordered
2D Dirac fermions was also motivated initially by its relevance
to quantum Hall transitions.27 Building on this pioneering
work, recent studies have focused on the effect of the different
types of disorder on the transport properties of Dirac fermions
as in the limit of low energy, i.e., around the Dirac point, as
well as away from half-filling. In this paper, we do not consider
the highly doped weak localization regime28,29 corresponding
to kF l0 � 1, where l0 is the mean-free path, and concentrate
mostly on the transport near the Dirac point where kF → 0. It
has been shown that the conductivity at half-filling depends
not only on the type of disorder, but also on the infrared
cutoff, so that it potentially can depend on the geometry
of the physical setup.23 The role of infrared cutoff can be
played by either the mean-free path, the Fermi length, or the
size of the system. These different cases allow us to identify
several transport regimes.22 By fixing geometry, for example,
to wide-and-short rectangle with many propagating transverse
modes, one can compute the conductance and the Fano factor
for each regime.24 Most of the previous studies addressed the
case where the scattering potential is uncorrelated in space.
This is the case, for instance, if it is originated from localized
pointlike scatterers distributed independently from each other.
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However, several physically relevant types of disorder sources
exhibit long-range correlations.

For example, a graphene sheet is known to develop static
shape fluctuations due to the unavoidable thermodynamic
instability of 2D crystals with respect to both crumpling and
bending. These ripples survive at low temperatures and can be
viewed as a static random gauge potential playing the role of
a quenched disorder on the electronic time scale (see below).
The theory of 2D elastic membranes predicts the strength of
the local height fluctuations, which give rise to long-range
algebraic correlation of this random gauge potential.25,30–33

A second example, in the case of the surface states of
topological insulators, is surface roughness,34 which is one
of the dominant forms of disorder in these materials. A typical
roughness created by atomic steps can induce a scattering
potential with algebraically decaying correlations.35,36 As a
last example, the adsorption of magnetic adatoms on the
surface of topological insulators has been proposed as a way
to control the electronic properties of the surface states.37

If the characteristic spin-flip time of magnetic adatoms
exceeds the mean-free time of the electrons in the surface
states, these adatoms can be also viewed as a source of
quenched disorder of both random gauge and random mass
types. In the vicinity of the paramagnetic-ferromagnetic
transition, induced by the Ruderman-Kittel-Kasuya-Yosida
(RKKY) type surface interactions, critical magnetization
fluctuations will give rise to a quenched disorder on electronic
time scales with power-law correlations in space.

Motivated by these physical examples, in this paper we
consider the general properties of 2D Dirac fermions in
the presence of various weak random potentials possessing
algebraic spatial correlations. Using several analytical tech-
niques, we consider perturbatively these disorder potentials.
We focus on the effect of these long-range correlations on
the density of states and also transport properties discussing
the cases relevant for the three above-mentioned examples. In
particular, we will compute the unknown to our knowledge
density of states for correlated random potential and random
mass. We will show that the previous estimation38 of the
density of states for correlated random gauge potential is
wrong. We will find the correct density of states using two
different methods: renormalization group and bosonization.
We will develop a framework to study transport properties in
the presence of correlated disorder using the matrix Green’s
function formalism introduced by Nazarov.39,40 Our approach
goes beyond the previous work of Khveshchenko,25,38 who
also considered long-range (LR) correlated potentials but
focused on the multifractal spectrum of wave functions at the
Dirac points and the conductance within the self-consistent
Born approximation (SCBA).

The paper is organized as follows. Section II introduces
the model. In Sec. III, we consider the SCBA approximation.
In Sec. IV, using the matrix Green’s function formalism, we
study the full counting statistics for a wide-and-short rectangle
sample at the neutrality point. In Sec. V, we derive RG
equations to one-loop order and discuss the properties of the
systems with different types of disorder. In Sec. VI, we use the
bosonization technique for systems with LR correlated random
gauge potential. In Sec. VII, we summarize the obtained
results.

II. MODEL

A. Single-flavor Dirac model

Whenever they appear in a 2D or quasi-2D material, such
as graphene, lattice Dirac fermions are constrained by the
Nielsen-Ninomiya theorem41 to appear by a pair of species.
Practically, this implies the existence of an even number of
Dirac cones in the first Brillouin zone when considering the
low-energy dispersion relation. Indeed, in graphene, two Dirac
cones exist at the inequivalent points K and K ′ = −K at
the zone boundary. However, any potential varying on scales
much larger that the atomic scale π/K will leave the two
Dirac cones uncoupled. In this case, the effect of the potential
can be described by considering its effect on a single Dirac
cone, treating the presence of the other Dirac point as an
effective degeneracy. We thus lead to consider a single species
of noninteracting massless 2D Dirac fermions in the presence
of a random potential, described by the Hamiltonian

H = H0 + V (x,y), (1)

where H0 is the kinetic Hamiltonian of free Dirac fermions
with the Fermi velocity v0,

H0 = −iv0(σx∂x + σy∂y), (2)

and V (x,y) is a random disorder potential. Here and in the
following, σ0 = 1, σμ, μ = x,y,z are the respective Pauli
matrices, and we set h̄ = 1 for convenience. This type of
potential, without any Fourier component that couples the
different Dirac species, is often denoted as a long-range
potential. This notation, which refers to correlations at
the scale of the lattice space, should not be confused with the
long-range correlation in space on which we focus in this paper.
The latter characterizes the long-distance q � 0 behavior of
the random potential correlations. Note that in the case of
graphene, as well as in the quasi-2D α-(BEDT-TTF)2 I3, the
Pauli matrices entering the relativistic kinetic Hamiltonian
refer to a pseudospin describing the relative weight of the
electronic wave function on two sublattices. Thus, the coupling
of the random potential to these two sublattices will be reflected
in the parametrization introduced below for this potential in
terms of these Pauli matrices.

The case of surface states of topological insulators is
different.42,43 In these materials, a strong spin-orbit interaction
opens a gap for bulk states. The nontrivial topological order
characterizing the filled bands of this insulator implies the
existence of Dirac fermion surface states. Since they are not
constrained by the Nielsen-Ninomiya theorem, they occur
around an odd number of Dirac points in the first Brillouin
zone. In the simplest topological insulators, a single Dirac cone
exists at the surface of these insulators, the properties of which
control the surface transport properties of the material. In this
case, the relativistic kinetic Hamiltonian of the surface states
contains a real magnetic term reflecting the bulk spin-orbit
interaction. This term should be an odd function of the
electron spin, which we take for simplicity as the in-plane
component of the spin, obtaining effectively Eq. (1). In this
case, the parametrization of disorder depends on the coupling
of the corresponding potential to the spin of the electrons.
In topological insulators, the bulk topological order at the
origin of this odd number of Dirac species also prevents
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time-reversal-invariant disorder from localizing these states.
This robustness property is in fact the result of an odd number
of Dirac species as opposed to an even number, and will play
no role in the decoupled cones treatment of disorder that we
will perform.

As discussed above, we parametrize the disorder potential
using the following decomposition:

V (x,y) =
∑

μ=0,x,y,z

σμVμ(x,y). (3)

In the usual terminology of disordered graphene, the term
with μ = 0 is called random potential disorder, the terms with
μ = x,y random gauge disorder, and the term with μ = z

random mass disorder. We will keep this terminology, even
though for systems with real spin (instead of pseudospin)
such as topological insulators, they may have a different
physical interpretation. Fox instance, in topological insulators,
the terms with μ = x,y,z in Eq. (3) correspond to real random
magnetic impurities on the conducting surface.

In what follows, the disorder potentials Vμ(r) [r = {x,y}]
are taken to be random and Gaussian with 〈Vμ(r)〉 = 0 and
correlators

〈Vμ(r)Vν(r′)〉 = 2πv2
0δμνgμ(r − r′). (4)

For the sake of convenience, we fix the form of the correlator
in Fourier space

〈Vμ(k)Vν(k′)〉 = (2π )3v2
0δ(k + k′)δμν(αμ + βμ|k|a−2).

(5)

This form of the correlator corresponds in real space to

gμ(r) = αμδ(r) + βμAa|r|−a, Aa = 2a 	(a/2)

4π	(1 − a/2)
. (6)

The exponent a is determined by the nature of disorder
correlations or by internal or fractal dimension of the extended
defects. In the presence of extended defects of internal
dimension εd randomly orientated the corresponding exponent
a = 2 − εd . For instance, the presence of linear dislocations
or atomic steps with random orientations on the surface of
topological insulator (εd = 1) leads to LR correlated disorder
with a = 1.36 In the case of ripples of a graphene sheet,
an evaluation of the correlation of the generated gauge
potential provides an exponent25,30–33 a ≈ 1.6. In the case
of magnetic adatoms deposited at the surface of topological
insulators,37 the induced magnetic disorder correlations will
decay as a power law with a = η, where η = 1/4 is the critical
exponent describing the magnetization correlation function in
the 2D Ising system. Hence, these examples provide strong
motivation to consider the effect of these algebraic correlations
beyond the standard case with short-range correlation, such
as δ correlation formally corresponding to a > 2 in two
dimensional systems.

B. Effective replicated action

For noninteracting fermions, we can write the partition
function as44

Z =
∫

Dψ̄(r,τ )Dψ(r,τ )e−S[ψ,ψ̄] (7)

with the action given by

S[ψ,ψ̄] =
∫ β

0
dτ

∫
d2r ψ̄(r,τ ) (∂τ − μ + H ) ψ(r,τ ), (8)

where ψ and ψ̄ are anticommuting Grassmann variables
satisfying the antisymmetric boundary condition ψ(r,τ +
β) = −ψ(r,τ ) and ψ̄(r,τ + β) = −ψ̄(r,τ ), and μ is the
chemical potential. For a time-independent Hamiltonian, we
can introduce the Fourier series decomposition

ψ(r,τ ) = 1

β

∑
n

ψ(r,iνn)e−iνnτ , (9)

where νn = (2n + 1)π/β. This allows one to factorize the
partition function in such a way that all terms with different
values of νn are decoupled:

Z =
∏
n

Z(iνn), (10)

Z(iνn) =
∫

Dψ̄ Dψ e−S(iνn) = Det(iνn + μ − H ), (11)

S(iνn) = 1

β

∫
d2r ψ̄(r, − iνn) (H − iνn − μ) ψ(r,iνn).

(12)

Hence, for each value of νn we have a two dimensional time-
independent field theory in which the Matsubara frequency νn

plays the role of a mass term. By taking the zero-temperature
limit β → ∞, one converts the sums over n into integrals over
ν so that we end up with

Z =
∫

Dψ̄ Dψ exp

[
−

∫
dν

2π
S(iν)

]
. (13)

We are interested mostly in the properties of the undoped
system with the Fermi energy near the Dirac cone so that we
set μ = 0 in what follows. Using the replica trick,45 we derive
the replicated action for the fermions at a given energy ε = iν.
To that end, we introduce n replicas of the original system
and average their joint partition function over disorder, and we
obtain the effective action

S(ε) =
n∑

α=1

∫
d2r ψ̄α(ε + iv0σx∂x + iv0σy∂y)ψα

+πv2
0

n∑
α,β=1

3∑
μ=0

∫
d2r

∫
d2r′gμ(r − r′)

× [ψ̄α(r)σμψα(r)][ψ̄β(r′)σμψβ(r′)]. (14)

The properties of the original system with quenched disorder
are then obtained by taking the limit n → 0.

III. SELF-CONSISTENT BORN APPROXIMATION

Let us first consider the self-consistent Born approximation
(SCBA), which is applicable only in the limit of weak
scattering. The SCBA has been widely used to study the effect
of uncorrelated disorder23,46,47 as well as the effect of Coulomb
impurities25 on the Dirac fermions. The retarded and advanced
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FIG. 1. The averaged over disorder Green’s function in the SCBA.

Green’s functions can be expressed in terms of the self-energy
via the Dyson equation

G(ε) = G0(ε) + G0(ε)�(ε)G(ε), (15)

where G0(ε,k) = (ε − v0σk)−1 is the bare Green’s function
and the dressed Green’s function can be written in terms of the
self-energy as follows:

G(ε,k) = ε − �(ε,k) + v0σk

[ε − �(ε,k)]2 − v2
0k

2
. (16)

The Green’s function averaged over disorder within the SCBA
is shown schematically in Fig. 1. One takes into account only
the one-loop diagram contributing to the self-energy with
the bare Green’s function replaced by the dressed one. The
self-consistent equation for this self-energy is simplified by
its independence on the external momenta. It is easy to see
that one can treat different types of short-range (SR) and
LR correlated disorder on the same footing by introducing
the effective couplings α = α0 + αx + αy + αz and β = β0 +
βx + βy + βz. The one-loop self-energy diagram with the
dressed Green’s function is given by the integral

�(ε) =
∫

k
2πv2

0g(k)G0(ε,k) = X(ε)
∫ �/v0

0

v2
0g(k)k dk

X2(ε) − v2
0k

2
,

(17)

where we have introduced the UV momentum cutoff �/v0.
The function X(ε) = ε − �(ε) has to be determined self-
consistently. Once Eq. (17) is solved, the density of states
can be computed using the retarded Green’s function (16) as
follows:

ρ(ε) = − 1

π
ImTr

∫
k
GR(ε,k)

= 1

2π2v2
0

ImX(ε) ln

[
− �2

X2(ε)

]
. (18)

We now consider separately the cases of the SR and LR
correlated disorders.

SR correlated disorder. In this case, the disorder correlator
reads from Eq. (6) as g(k) = α so that the SCBA equation (17)
reduces to

X(ε) = ε + α

2
X(ε) ln

[
− �2

X2(ε)

]
. (19)

The solution of Eq. (19) has two branches, which correspond
to the retarded and advanced Green’s functions. They can be
written explicitly in terms of the Lambert function48 W (x) as
follows47:

X(ε) = ε/{αW [±iε/(α	0)]}. (20)

Here and below, the upper sign corresponds to retarded and
the lower sign to advanced functions. The weak disorder
introduces a new exponentially small energy scale 	0 =
�e−1/α . For 	0 
 ε 
 � and α 
 1, one can derive an

approximate solution of Eq. (19) by iteration of the Eq. (19).
To lowest order, one obtains23

X(ε) = ε

(
1 + α ln

�

ε

)
± i

2
παε

[
1 + 2α ln

�

ε

]
. (21)

Reexpressing X ln(−�2/X2) in Eq. (18) using Eq. (19), we
get the density of states

ρSR
SCBA(ε) = ε

π2v2
0α

2
Im

1

W [ε/(iα	0)]
. (22)

For ε � 	0, this simplifies to

ρSR
SCBA(ε) = ε

2πv2
0

[
1 + 2α ln

�

ε

]
. (23)

For ε 
 	0, one can expand Eq. (20) in small ε, this yields
X(0) = ∓i	0 + ε/α. At the Dirac point, the self-energies
are pure imaginary �(0) = ∓i	0. This would imply a finite
density of states at the Dirac cone for all three types of disorder.
However, this contradicts the results obtained for random
gauge and random mass disorder using more reliable methods.
For instance, for uncorrelated random gauge disorder, one
expects ρ(ε) = ε2/z−1 with z = 1 + α in the weak-disorder
case27 (α < 2) and z = (8α)1/2 − 1 in the strong-disorder
case49 (α > 2). Only for random potential disorder does the
density of states saturate at a finite value in the vicinity of the
Dirac cone.23 It was argued in Ref. 50 that the failure of SCBA
in the vicinity of the Dirac cone for ε < 	0 is due to importance
of the diagrams with crossed disorder lines, neglected within
the SCBA, which takes into account only the noncrossed ones.
Another reason for the failure of the SCBA is the divergence of
the fermion wavelengths at the Dirac point rendering the SCBA
uncontrollable, i.e., without a small parameter. Nevertheless,
one can still rely on the SCBA for energies ε � 	0.

LR correlated disorder. The disorder correlator having the
form g(k) = βka−2 [see Eq. (6)] yields the SCBA equation of
the following form:

X(ε) = ε − β�av2−a
0

a X(ε)
2F1

(
1,

a

2
,1 + a

2
;

�2

X2(ε)

)
, (24)

where 2F1(a,b,c; z) is the Gauss hypergeometric function.48

In the limit a → 2, we recover Eq. (19) with α replaced by
β. Similarly to the previous case, Eq. (24) has two solutions
corresponding to the retarded and advanced Green’s functions.
At the Dirac point, the self-energies are pure imaginary:
�(0) = ∓i	2−a and disorder induces a generalized small
energy scale

	2−a = �

(
2 sin

(
πa
2

)
(2 − a + β̄)

(2 − a)πβ̄

)− 1
2−a

≈ �e−1/β̄

[
1+(2 − a)

(
1

2β̄2
+ π2

24

)
+O[(2 − a)2]

]
,

(25)

where we have introduced the dimensionless disorder strength
β̄ = β(�/v0)a−2, and in the second line we have performed
an expansion to the first order in 2 − a. For finite 2 − a,
the energy scale 	2−a is only algebraically small in disorder
at variance with the exponentially small energy scale 	0
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for uncorrelated disorder. Iterating Eq. (24), one obtains an
approximate solution, valid for 	2−a 
 ε 
 � and β 
 1.
To lowest order, that solution reads as

X(ε) = ε[1 + β̄U (ε)] ± i

2
πβ̄ε[1 + 2β̄U (ε)], (26)

U (ε) = −π

2

(
�

ε

)2−a

cot
πa

2
− 1

2 − a
. (27)

In the limit of a → 2, one obtains U (ε) � ln(�/ε). By
substituting the solution (26) in Eq. (18), we obtain the density
of states for 	2−a 
 ε:

ρLR
SCBA(ε) = ε

2πv2
0

[
1 + β̄

(
ln

�

ε
+ U (ε)

)]
, (28)

which reproduces the density of states (23) in the limit of SR
correlated disorder a → 2.

IV. FULL COUNTING STATISTICS

A. Matrix Green’s function formalism

We now consider the transport properties of 2D Dirac
fermions propagating in a rectangular sample of size L × W .
The schematic setup is shown in Fig. 2. We assume that the
perfect metallic leads are attached to the two sides of the
width W with the distance L 
 W between them. We model
the leads as heavily doped regions described by the same Dirac
Hamiltonian but with the chemical potential εF � ε shifted
far from the chemical potential ε � 0 in the bulk, which is
close to the Dirac point. The large number of propagating
modes in the leads is labeled by the momentum pn = 2πn/W

in the y direction with n = 0, ± 1, . . . ± εF W/(2πv0). In
the limit W � L in which many modes N � 1 contribute
to transport, one can neglect the boundary conditions at
y = ±W/2 and treat pn as a continuous variable p. It is
convenient to switch from the coordinate representation to the
mixed channel-coordinate representation ψ(x,y) → ψn(x),
where n enumerates the transverse modes. Using this basis,
one can describe the wave functions in the leads by two vectors
cin = [{a+

n },{b−
n }] and cout = [{a−

n },{b+
n }] where an and bn

refer to the amplitude of waves in the left and in the right
leads, respectively. The sign “ + ” refers to the waves moving
to the right and the sign “−” to the waves moving to the left.
These two vectors are related by the scattering matrix S as
cout = Scin. In the lead subspace, it has the standard structure51

S =
(

r̂ t̂ ′
t̂ r̂ ′

)
, (29)

FIG. 2. (Color online) The setup for two-terminal transport
measurements: a 2D disordered sample of size W × L with perfect
leads attached on opposite sides.

where we use the “hat” notation for matrices defined in the
channel space. The conservation of particles implies that S
is a unitary matrix and that the four Hermitian matrices t̂ t̂†,
t̂ ′† t̂ ′†, 1 − r̂ r̂†, 1 − r̂ ′†r̂ ′† have the same set of eigenvalues Tn,
each of them being a real number between 0 and 1. The
transport statistics is completely determined by the matrix of
transmission amplitudes tmn between channels m and n in the
leads since the transmission probabilities of the system are
given by the eigenvalues Tn of the matrix t̂† t̂ .51

The scattering matrix S relates incoming to outgoing states.
An alternative formulation is based on the the transfer matrix
T , which relates the states in the left lead to states in the
right lead: cright = T cleft. The waves in the left and the right
leads are given by the vectors cleft = [{a+

n },{a−
n }] and cright =

[{b+
n },{b−

n }], respectively. One can show that the eigenvalues
of T T † appear in pairs of the form e±2λn with λn � 0 related
to the transmission eigenvalues by Tn = 1/ cosh2 λn.

The transmission eigenvalues allow one to calculate a
variety of transport properties. In the limit of a large number of
channels, one can introduce the distribution function P (T ). By
definition,

∫
dT P (T ) gives the total number of open channels.

The first two moments of the distribution give the Landauer
conductance

G = e2

h
Tr t̂† t̂ = e2

h

∫ ∞

0
dT T P (T ), (30)

and the Fano factor

F = 1 − Tr (t̂† t̂)2

Tr t̂† t̂

= 1 −
(∫ ∞

0
dT T 2P (T )

)/ (∫ ∞

0
dT T P (T )

)
, (31)

which describes the power spectrum of the noise due to
discreetness of the charge carriers at zero frequency and
average current I : P0 = 2eFI . Note that for graphene one
has to multiply Eq. (30) by the factor of 4 accounting for the
spin and valley degeneracy. It is also convenient to introduce
the probability density P(λ) of the parameter λ defined by
T = 1/ cosh2(λ), which is naturally completely equivalent to
P (T ).

In general, one can write down an integral equation for the
transfer matrix with a kernel which depends on a particular
realization of disorder. By iterating the integral equation and
averaging over disorder, one can compute the transfer matrix
as an expansion in small disorder. However, in the case of LR
correlated disorder, the forthcoming problem of computing
the transmission eigenvalues seems to be a formidable task.
Fortunately, there is an alternative way which allows one to
relate P (T ) to the free energy of an auxiliary field theory. This
method is based on the matrix Green’s function formalism
introduced by Nazarov.39 Instead of P (T ), the statistics of
the transmission eigenvalues can be encoded in the generating
function

F(z) =
∞∑

n=1

zn−1Tr(t̂† t̂)n = Tr[t̂−1 t̂†−1 − z]−1. (32)

All moments of P (T ) can be computed using the series
expansion of F(z) at z = 0. The function F(z) is regular
in the vicinity of z = 0 and has a brunch cut along the real

125437-5



FEDORENKO, CARPENTIER, AND ORIGNAC PHYSICAL REVIEW B 85, 125437 (2012)

axis going from 1 to ∞. Both functions are related by the
Riemann-Hilbert equation

F(z) =
∫ 1

0

P (T )dT

T −1 − z
, (33)

and its solution is given by the jump of F(z) across the brunch
cut

P (T ) = 1

2πiT 2
[F(1/T + i0) − F(1/T − i0)]. (34)

To calculate F(z), we now adopt the matrix Green’s functions
approach originally developed in Ref. 39 and applied to Dirac
fermions in graphene with uncorrelated disorder in Ref. 24.
The coefficients of the series expansion of the generating
function at z = 0 can be expressed in terms of the Green’s
functions of the system as

Tr(t̂† t̂)n = Tr[v̂ĜA(x,x ′)v̂ĜR(x ′,x)]nx=0,x ′=L. (35)

Here, v̂x = σx 1̂ is the velocity operator and the retarded
and advanced Green’s functions in the channel-coordinate
representation read as

(ε − Ĥ ± i0)ĜR,A(x,x ′) = δ(x − x ′)1̂. (36)

The generating function can be written as a trace of an
auxiliary two-component Green’s function defined in the
retarded-advanced (RA) space in the presence of fictitious
field z.39 The matrix Green’s function is given by

Ǩ(x)Ǧ(x,x ′) = δ(x − x ′)1̌, (37)

where we use the “check” notation for the objects defined in
RA space and the operator Ǩ reads as

Ǩ(x) =
(

ε − Ĥ + i0 −√
zv̂δ(x)

−√
zv̂δ(x − L) ε − Ĥ − i0

)
. (38)

Considering the field z as a small perturbation, we can rewrite
Eq. (37) in an integral form as follows:

Ǧ(x,x ′) = Ǧ0(x,x ′) + √
z

∫
dx1Ǧ0(x,x1)V̌x1Ǧ(x1,x

′)

(39)

with the kernel and the inhomogeneity given by

Ǧ0 =
(

ĜR 0

0 ĜA

)
, V̌x =

(
0 v̂δ(x)

v̂δ(L − x) 0

)
. (40)

One can then compute the generating function using

F(z) = 1

2
√

z

∫
dx Tr[V̌xǦ(x,x)], (41)

which can be checked by iterating Eq. (39) and substituting
in Eq. (41). One can relate F(z) to the object which plays the
role of the free energy in the corresponding field theory. Let us
rewrite the Green’s function (37) in coordinate representation
using a functional integral over Grassmann variables ψ̄ and
ψ :

Ǧ(r,r′) = 1

Z

∫
Dψ̄ Dψ ψ̄(r)ψ(r′) e−S (42)

with the bilinear in ψ̄ and ψ action

S =
∫

d2r[ψ̄(r)Ǩψ(r)]. (43)

The corresponding partition function and the free energy can
be written as

Z(z) = Det K =
∫

Dψ̄ Dψ e−S, �(z) = ln Z. (44)

It is convenient to rewrite the free energy in terms of the angle φ

defined by z = sin2(φ/2). Direct inspection of Eq. (39) shows
that

F(z) = ∂�(z)

∂z
= 2

sin φ

∂�(φ)

∂φ

∣∣∣∣
φ=2 arcsin

√
z

. (45)

The distribution of transmission eigenvalues P(λ) can be
calculated using the following relation:

P(λ) = 2

π
Re

∂�(φ)

∂φ

∣∣∣∣
φ=π+2iλ

, (46)

from which one can easily derive P (T ). Therefore, we have
four equivalent descriptions of the transport properties in
terms of one of the following functions: P (T ), P(λ), F(z),
or �(φ). Any of these functions can be used for computing the
conductance or the Fano factor. For instance, using the free
energy, one can derive the expressions

G = 2e2

h
�′′(0), F = 1

3
− 2

3

�(IV)(0)

�′′(0)
, (47)

where the derivatives are taken at φ = 0. Note that in the case
of graphene, the conductance (47) is given as expected per
Dirac species, i.e., per spin and per valley.

B. Expansion in disorder and diagrammatics

In what follows, we restrict our consideration to transport
around the Dirac cone ε = 0. The action (43) for the system
including the metallic leads can be calculated using the kernel
(38) with Hamiltonian (1) in which the free part is modified to

H0 = −μ(x) − iv0(σx∂x + σy∂y). (48)

Here, μ(x) = 0 for 0 < x < L and +∞ otherwise accounts for
the leads with very high chemical potential. Above, we have
treated the auxiliary field z as a perturbation. Here, we split the
kernel (38) into the free part including the auxiliary field and
the interaction part: Ǩ = Ǩ0 + ǨV , where Ǩ0 is computed
using Eq. (48) and ǨV is diagonal in RA space.

We are now in the position to average the free energy over
disorder. To that end, we use the replica trick and introduce n

copies of the original system. By performing averaging over
disorder, we obtain the replicated action in the following form:

S =
n∑

α=1

∫
d2r ψ̄α(r)Ǩ0ψα(r)

+πv2
0

n∑
α,β=1

3∑
μ=0

∫
d2r

∫
d2r′gμ(r − r′)

× [ψ̄α(r)�μψα(r)][ψ̄β(r)�μψβ(r)], (49)
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where Ǩ0 is given by Eq. (38) with Hamiltonian (48), and
we defined the matrix �μ = 1̌ ⊗ σμ. In what follows, we set
v0 = 1 unless it is written explicitly. The bare Green’s function
corresponding to Ǩ0 in Eq. (37) can be written in coordinate
representation as

G0(x,x ′; y)

= 1

4L cos(φ/2)

×

⎛
⎜⎜⎜⎜⎜⎜⎝

cos φ( 1
2 −x0

0 )

i sin πx0
0

cos φ( 1
2 −x1

0 )

i sin πx1
0

sin φ(1−x0
0 )

sin πx0
0

sin φx1
0

sin πx1
0

cos φ( 1
2 −x1

1 )

i sin πx1
1

cos φ( 1
2 −x0

1 )

i sin πx0
1

sin φx1
1

sin πx1
1

sin φ(1−x0
1 )

sin πx0
1

sin φx0
0

sin πx0
0

sin φx1
0

sin πx1
0

i cos φ( 1
2 −x0

0 )

sin πx0
0

cos φ( 1
2 +x1

0 )

i sin πx1
0

sin φx1
1

sin πx1
1

sin φx0
1

sin πx0
1

cos φ( 1
2 +x1

1 )

i sin πx1
1

i cos φ( 1
2 −x0

1 )

sin πx0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(50)

where we have introduced the shorthand notation xk
l = [x +

(−1)kx ′ + (−1)l iy]/2L.
We will first reproduce the known results for the free Dirac

fermions, i.e., for clean graphene. To that end, we rewrite the
free energy (41) in the coordinate representation as a function
of φ:

F(φ) = W

2 sin φ/2

∫
dx Tr[V̌xǦ0(x,x,0)]. (51)

By substituting the bare Green’s function (50), we obtain the
generating function and the corresponding free energy

F0(z) = W arcsin
√

z

πL
√

z − z2
, �0(φ) = Wφ2

4πL
. (52)

The corresponding distribution of transmission eigenvalues
then reads as

P0(T ) = W

2πL

1

T
√

1 − T
. (53)

The distribution P (T ) is expected to be integrable, and the
integral gives the total number of open channels. However,
the integral of Eq. (53) diverges logarithmically at T = 0:
we need to introduce a cutoff Tmin ∼ e−2εL/v0 . However, the
contribution of this cutoff to the higher moments is found
to be exponentially small. Equation (53) coincides with the
well-known result obtained by Dorokhov for the disordered
metallic wires.52 Thus, the transport of clean 2D Dirac
fermions resembles the diffusive transport of nonrelativistic
electrons in quasi-one-dimensional systems in the presence of
disorder. This nontrivial result can be explained by existence
of the evanescent modes.

C. Lowest-order correction to free energy

The perturbative corrections to the free energy of the system
due to disorder can be expressed as a sum of loop diagrams
without external legs. The lowest-order contributions to the
free energy are given by the one-loop diagrams schematically
shown in Fig. 3(a). The solid lines denote the propagator
(50) in the presence of the boundary auxiliary field φ, and the
dashed lines stand for disorder correlation functions. There are
six topologically equivalent diagrams with different disorder
correlators corresponding to SR and LR correlated disorder

FIG. 3. The one-loop diagrams contributing to (a) free energy,
(b) propagator, and (c)–(e) disorder renormalization.

of three types: random potential, random gauge (with two
components x and y), and random mass. The corresponding
integrals have the form

�SR,LR = π

∫
d2r d2r′gμ(r − r′)Tr[�̌μǦ(r,r′)�̌μǦ(r′,r)]

(54)

with gμ(r), μ = 0,x,y,z given by Eq. (6), where we retain
only the SR or LR part. These integrals diverge for r → r′,
however, the divergent terms turn out to be φ independent and
thus do not contribute to the physical quantities (47). Hence, it
is convenient to consider the first derivative of the free energy
with respect to φ, which is finite and determines the physical
observables. The φ-dependent parts of the diagrams with
dashed lines corresponding to the three types of SR correlated
disorder were computed in Ref. 24. The result giving the linear
in αμ correction to the free energy of the clean sample (52)
reads as

�′
SR(φ) = Wφ

2πL
(α0 − αz) . (55)

Note that the SR correlated random gauge potential does
not contribute to the transport properties to one-loop order and
this holds also to two-loop order. This is in agreement with the
arguments of Ref. 24 that at zero energy the gauge potential
can be eliminated by a pseudogauge transformation of the
wave function. As a result, the transport properties are not
influenced by random gauge potential despite the fact that it
gives rise to a multifractal wave function �(r) with a disorder-
strength-dependent spectrum of multifractal exponents.27,53–56

The three diagrams with dashed lines associated with cor-
relation functions of the LR correlated disorder are computed
in the Appendix. The corresponding corrections to the free
energy read as

�′
LR(φ) = W

2πLa−1
[f0(φ)β0 − fz(φ)βz] .

(56)

We found that the LR correlated random gauge potential
does not contribute to the transport properties to lowest order
in disorder strength. The functions fμ(φ) are given by the
following double integrals:

f0,z(φ) =
∫ ∞

0
dy

∫ π

0
dc

4πa−2Aay sinh(yφ/π )

(c2 + y2)a/2

×
{
± 1

sinh y

[
arctan

(
1 − cos c cosh y

sin c sinh y

)
− π

2

]

+ π − c

cosh y − cos c

}
, (57)
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FIG. 4. (Color online) The one-loop LR disorder corrections to
the generating function of transmissions (62) for a = 1: h0(z) (solid
black line) and hz(z) (dashed green line). Inset: The one-loop LR
disorder corrections to the free energy (56) for a = 1: f0(φ) (solid
black line) and fz(φ) (dashed green line).

where the upper sign corresponds to f0(φ) and the lower sign
to fz(φ). The functions fμ(φ) computed numerically for a
particular value of a = 1 are shown in inset of Fig. 4.

It is known that even in the case of uncorrelated disorder,
the lowest-order corrections to the density of states and the
transport properties of 2D Dirac fermions are insufficient.
The leading corrections can be summed up with the help of
the renormalization group methods that will be done in the
next section.

V. WEAK-DISORDER RENORMALIZATION GROUP

Straightforward dimensional analysis shows that the SR
correlated disorder is dimensionless and hence marginally
relevant in d = 2. The LR correlated disorder is relevant
in d = 2 for a < 2. In what follows, it is convenient to
introduce the rescaled disorder strengths: α(L) = α̃(L) and
β(L) = β̃(L)La−2. The lowest-order corrections to the disor-
der strength and energy are given by the one-loop diagrams
(b)–(e) shown in Fig. 3. The corresponding RG flow equations
read as

∂α̃0

∂ ln L
= 2α̃0(α̃0 + β̃0 + α̃⊥ + β̃⊥ + α̃z + β̃z)

+ 2(α̃⊥ + β̃⊥)(α̃z + β̃z), (58a)

∂β̃0

∂ ln L
= (2 − a)β̃0 + 2β̃0(α̃0 + β̃0 + α̃⊥ + β̃⊥ + α̃z + β̃z),

(58b)
∂α̃⊥
∂ ln L

= 4(α̃0 + β̃0)(α̃z + β̃z), (58c)

∂β̃⊥
∂ ln L

= (2 − a)β̃⊥, (58d)

∂α̃z

∂ ln L
= −2α̃2

z − 2α̃zβ̃z + 2(α̃z + α̃0 + β̃0)(α̃⊥ + β̃⊥)

− 2α̃z(α̃0 + β̃0), (58e)

∂β̃z

∂ ln L
= (2 − a)β̃z − 2β̃2

z − 2α̃zβ̃z

+ 2β̃z(α̃⊥ + β̃⊥ − α̃0 − β̃0), (58f)
∂ ln ε̃

∂ ln L
= 1 + α̃0 + β̃0 + α̃⊥ + β̃⊥ + α̃z + β̃z, (58g)

where we used the notation α̃⊥ = α̃x + α̃y and β̃⊥ = β̃x + β̃y .
Note that in deriving the flow equations (58), we assume that
2 − a is small and perform 2 − a expansion similar to d − 2
expansion in higher dimensions. In general, in the presence of
LR correlated disorder, one has to rely on the double expansion
in 2 − a and d − 2 similar to that for the φ4 model with
correlated random bond disorder where one uses a double
expansion in 4 − a and 4 − d at the upper critical dimension.57

The bare values of the disorder strengths and energy
corresponding to the microscopic scale provide the initial
condition for the RG equations (58). The renormalized
disorder strengths α̃(L), β̃(L), and the energy ε̃(L) acquire
scale dependence on the ultraviolet cutoff length L. One has to
stop the renormalization when either L reaches the system size
or the energy ε̃ reaches the value of the cutoff � or the disorder
strengths become of order one.22 Once the renormalization has
been done, one can compute the observables by substituting
the renormalized quantities into the results of the perturbation
theory.

To renormalize the corrections to the free energy (55) and
(56), we have to replace the bare coupling constants by the
renormalized ones. As a result, we obtain

�′
SR(φ) = Wφ

2πL
[α̃0(L) − α̃z(L)] , (59)

�̃′
LR(φ) = W

2πL
[f0(φ)β̃0(L) − fz(φ)β̃z(L)]. (60)

Thus, the SR correlated disorder does not modify the pseudod-
iffusive behavior to lowest order (� ∼ φ2) and the distributions
of transmission eigenvalues is still given by the Dorokhov
distribution (53). The deviation from the pseudodiffusive
regime can be found only to second order in disorder, and
the corresponding two-loop corrections have the form24

�
two-loop
SR = Wφ2

4πL
[(α̃0 + α̃z)

2ω1(φ)

+ (α̃0 + 3α̃z)(α̃0 − α̃z)]ω2(φ), (61)

where ω1(φ) = const − ψ(φ/π ) − ψ(−φ/π ) and ω2(φ) =
const + π2(φ cot φ − 1)/φ2. Here, ψ(x) is the digamma
function.48

On the contrary, the LR correlated disorder leads to
deviation from pseudodiffusive transport already to lowest
order in disorder. Indeed, the renormalized corrections to
the generating function and the distribution of transmission
eigenvalues read as

FLR(z) = W

2πL
[h0(z)β̃0 − hz(z)β̃z], (62)

PLR(λ) = W

2πL
[p0(λ)β̃0 − pz(λ)β̃z]. (63)

Here, hμ(z) = 2fμ(2 arcsin
√

z)/ sin φ and pμ(λ) =
2 Refμ(π + 2iλ)/π . The functions hμ(z) and pμ(λ) for
particular values of a are shown in Figs. 4 and 6. Note that
the distribution (63) can be used for direct calculation of
transmissions moments for 1 < a < 2. This is different from
the two-loop correction (61) due to SR correlated disorder
found in Ref. 24: the corresponding contributions to P(λ)
diverge at λ = 0 in a nonintegrable way. This divergence
has been attributed to the breakdown of perturbative
expansion in small disorder close to λ = 0, i.e., for T ≈ 1.
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FIG. 5. (Color online) The one-loop LR disorder corrections to
the conductance (64) as functions of a: f ′

0(0) (solid black line) and
f ′

z (0) (dashed green line).

Nevertheless, even for a � 1, one can compute the transport
characteristics directly from the free energy. The correction to
the conductance is given by

GLR = e2W

πhL
[f ′

0(0)β̃0 − f ′
z(0)β̃z], (64)

and the Fano factor can be written as

F = 1

3
− 2

3

f ′′′
0 β̃0 − f ′′′

z β̃z

1 + α0 − αz + f ′
0β̃0 − f ′

z β̃z

∣∣∣∣
φ=0

. (65)

f ′
μ(0) and f ′′′

μ (0) as functions of a are shown in Figs. 5 and 6,
respectively. In this paper, we restrict our analysis to three cases
when the system has only one type of disorder: random scalar
potential, random gauge potential, or random mass disorder.
The general case will be briefly discussed at the end of the
section.

A. Random scalar disorder

Let us start the discussion of the different types of disorder
with random scalar potential. In the presence of both SR
and LR correlated scalar potentials, the solution of the flow

FIG. 6. (Color online) The LR correlated disorder corrections to
the transmission eigenvalue distribution P (λ) given by Eq. (63) for
a = 1.5: p0(λ) (solid black line) and pz(λ) (dashed green line) as a
function of λ. Inset: The LR correlated disorder corrections to the
Fano factor given by Eq. (65): f ′′′

0 (0) (solid black line) and f ′′′
z (0)

(dashed green line), as functions of a.

equations

∂α̃0

∂ ln L
= 2α̃0(α̃0 + β̃0), (66)

∂β̃0

∂ ln L
= (2 − a)β̃0 + 2β̃0(α̃0 + β̃0), (67)

∂ ln ε̃

∂ ln L
= 1 + α̃0 + β̃0 (68)

can be computed only numerically. However, we have found
that LR correlated disorder dominates over SR correlated
disorder at large L for all bare disorder strengths such that
α̃ � β̃. Since LR correlated disorder does not generate SR
disorder itself, we restrict ourselves to the case of pure LR
disorder. Here and in the following, we will measure the length
in units of the bare ultraviolet cutoff given by v0/�. The
solution of the flow equation (67) with the initial conditions
β̃0(1) = β̄0 = β(�/v0)a−2 reads as

β̃0(L) = (a − 2){2 + La−2[a − 2(1 + β̄0)]/β̄0)}−1. (69)

The running disorder strength grows with the scale. At the
Dirac cone, the renormalization has to be stopped either at the
scale of the system size or at the scale at which the disorder
strength becomes of order unity. This scale computed from
Eq. (69) reads as

l0 =
(

2 − a + 2β̄0

(4 − a)β̄0

)1/(2−a)

. (70)

l0 is nothing but the zero-energy mean-free path. For the system
size L < l0, one can rewrite the running disorder strength in
terms of l0 as follows:

β̃0(L) = (2 − a)

(4 − a)(l0/L)2−a − 2
. (71)

For finite energy, the renormalization is limited by the scale at
which the energy becomes of order of �. Substitution of the
solution (69) to the flow equation for the energy (68) yields

ε̃(L) = εL[1 − 2β̄0(La−2 − 1)/(a − 2)]−1/2. (72)

The renormalization stops when the running energy ε̃(L)
reaches the cutoff value � at the scale

L�(ε) = �

ε
{1 − 2β̄0[(�/|ε|)a−2 − 1]/(a − 2)}1/2. (73)

The competition between L� and l0 introduces a new expo-
nentially small (in the limit a → 2) in disorder energy scale
	2−a given by equation L�(	2−a) = l0:

	2−a = � l−1
0

√
a − 2 − 2β̄2

0

a − 2 − 2β̄0

≈ �e
− 1

2β̄0
+ 1

2 β̄
1/2
0

[
1 + (2 − a)

(
3

8β̄2
0

− 1

4β̄0
− 1

8

)

+O[(2 − a)2]

]
. (74)

For ε � 	2−a , the density of states can be found using the
following scaling arguments. The running density of states
approaches ρ̃ = �/(2πv2

0) at L = L�. Taking into account
that the density of states scales as ρ̃ε̃ = ρεL2, one can write
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FIG. 7. (Color online) The conductance as a function of a in the
presence of random potential for L/l0 = 0.5 (solid black line) and in
the presence of random mass (dashed green line).

the bare density of states as

ρ(ε) = |ε|
2πv2

0

{1 − 2β̄0[(�/|ε|)a−2 − 1]/(a − 2)}−1. (75)

For ε < 	2−a , the density of states saturates at a finite value.
This picture is in qualitative agreement with the prediction of
SCBA computed in Sec. III. The results for the SR correlated
disorder case obtained in Ref. 23 can be reproduced by taking
the limit of a → 2. For instance, in this limit, we have 	0 ≈
� β̄

1/2
0 e−1/2β̄0 .

The conductance and the Fano factor in the ballistic regime
L < l0 at the Dirac cone are given by

G = e2

πh

W

L
[1 + f ′

0(0) β̃0 (L)], (76)

F = 1

3
− 2

3

f ′′′
0 (0)β̃0(L)

1 + f ′
0(0)β̃0(L)

, (77)

where β̃0(L) is given by Eq. (71). The conductance and the
Fano factor computed for L/l0 = 0.5 are shown in Figs. 7 and
8 as functions of a. The correction to the conductance due to
LR correlated disorder in the ballistic regime is positive and
increases with a, while the correction to the Fano factor is
small and negative.

FIG. 8. (Color online) The Fano factor as a function of a in the
presence of random potential for L/l0 = 0.5 (solid black line) (also
Inset) and random mass (dashed green line).

B. Random gauge potential

We now turn to the case of random gauge potential. Inspired
mostly by its relation to the quantum Hall transitions,27 this
problem has previously motivated numerous studies of the
multifractal spectrum for critical wave functions.53–56 Here,
we are mostly interested in the density of states and also
transport properties of such Dirac fermions with correlated
random gauge potential. In this case, the flow equations reduce
to

∂α̃⊥
∂ ln L

= 0,
∂β̃⊥
∂ ln L

= (2 − a)β̃⊥, (78)

∂ ln ε̃

∂ ln L
= 1 + α̃⊥ + β̃⊥. (79)

The renormalized coupling constants have the trivial flow
α̃⊥(L) = ᾱ⊥ and β̃⊥(L) = β̄⊥L2−a where the bare disorder
strengths are ᾱ = α and β̄⊥ = β⊥(�/v0)a−2. The LR disorder
strength reaches unity at the scale l0 = β̄

−1/(2−a)
⊥ . By substitut-

ing the running couplings to the flow equation for the energy
(79), we obtain

ε̃(L) = εL1+ᾱ⊥ exp[β̃⊥(L2−a − 1)/(2 − a)]. (80)

One has to stop renormalization at the scale L� such
that ε̃(L�) = �. In the case of the system with only SR
correlated random gauge disorder, this scale is given by LSR

� =
(ε/�)−1/z. Here, we have introduced the dynamic critical
exponent z = 1 + ᾱ⊥, which should not be confused with the
auxiliary field z used in Sec. IV. Note that this exponent is
nonuniversal and depends on the strength of disorder. In the
presence of LR correlated disorder, the cutoff scale computed
up to subleading logarithmic corrections is

LLR
� =

(
2 − a

β̄⊥
ln

�

ε

)1/(2−a)

. (81)

However, one has to stop renormalization at l0 for l0 < LLR
�

that introduces a new energy scale 	2−a = �e−1/(2−a), which
is exponentially small for a → 2. The bare density of states
is then given by ρ = ρ̃ε̃/(εL2

�) with ρ̃ = �/(2πv2
0). By

substituting the renormalized cutoff scale, we obtain for the
SR correlated disorder a nonuniversal power-law behavior

ρSR(ε) = �

2πv2
0

(
ε

�

)(2−z)/z

, z = 1 + ᾱ⊥ (82)

which was first derived in Ref. 27. In the case of LR random
gauge disorder, we have

ρLR(ε) = �2

2πv2
0

1

ε

(
2 − a

β̄⊥
ln

�

ε

)−2/(2−a)

= 1

2πε

(
2 − a

β⊥
ln

�

ε

)−2/(2−a)

, (83)

where in the last line we used the definition of the dimension-
less disorder strength so that the dependence on the ultraviolet
cutoff drops out from the density of states. Presumably,
Eq. (83) is valid only for ε > 	2−a . In Sec. VI, we apply
the bosonization technique to compute the density of states
down to zero energy and show that the scaling behavior (83)
actually holds up down to zero energy.
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We have found above that the LR correlated random gauge
disorder does not contribute to transport at the Dirac cone.
There are some general arguments that any random gauge
potential can not modify the transport properties. Let us first
briefly recall the argument of Ref. 22. To start, we consider the
Hamiltonians (1) and (2) with only a gauge field �A:

−iv0 �σ · ( �∇ + e �A)� = E�. (84)

It is known from vector analysis that any vector can be
decomposed into the sum of a gradient and a rotational. Using
that property, we can express the 2D vector �A as

�A = �∇χ + (ẑ × �∇)φ. (85)

Using this decomposition, we can rewrite �σ · �A in the form

�σ · �A = �σ · �∇χ + �σ · (ẑ × �∇)φ. (86)

The mixed product �σ · (ẑ × �∇φ) = (�σ × ẑ) · �∇φ, and i �σσz =
(�σ × ẑ) so the Dirac equation (84) can be rewritten as

−v0 �σ · ( �∇ + e �∇χ + ieσz
�∇φ)� = E�. (87)

Then, a pseudogauge transformation to a new wave function
�̃ according to

� = ee(iχ−σzφ)�̃ (88)

turns the Dirac equation (87) into the free Dirac equation
without vector potential

−iv�σ · �∇�̃ = E�̃, (89)

and thus the transport properties of the initial model (84) turn
out to be the same as in the absence of the gauge potential.

However, there are some subtleties in applying this argu-
ment to correlated in space gauge potential. The difficulty
stems from the fact that the transformation (88) is not unitary.
Indeed, if we denote the original and the transformed wave
functions by

�(x,y) =
(

u(x,y)
v(x,y)

)
, �̃(x,y) =

(
ũ(x,y)
ṽ(x,y)

)
. (90)

Then, the normalization condition

1 =
∫

dx dy[|u(x,y)|2 + |v(x,y)|2] (91)

transforms under pseudogauge transformation to

1 =
∫

dx dy[e−2eφ(x,y)|ũ(x,y)|2 + e2eφ(x,y)|ṽ(x,y)|2]. (92)

Therefore, the normalization condition (92) is equivalent to
the normalization condition (91) only for extended states, and
only when φ(x,y) is vanishing outside of a finite area. Indeed,
in that case, the normalization integral is dominated by the
asymptotic behavior of the extended wave functions outside
the finite area and is thus unchanged by the transformation.

Thus, if φ(x,y) is vanishing outside of a finite region, this
would also imply a vanishing gradient and thus vanishing
correlations of the vector potential outside of this region.
As a result, the correlations of the vector potential become
necessarily finite ranged, in contradiction with the hypothesis
of an infinite-ranged power-law decay. This is in contrast with
the case of a δ-correlated gauge potential, which is compatible
with a potential existing only in a finite region of space.

Nevertheless, we have not found any corrections to transport
to one-loop order.

In the case of graphene, the corrugation of sheets may
be accompanied by the presence of topological defects, e.g.,
defective rings such as pentagons and heptagons. The latter
leads to a space-dependent Fermi velocity of Dirac fermions
induced by the curvature that can contribute to transport.58,59

C. Random mass disorder

Let us now consider the system with only random mass
disorder. The corresponding flow equations are

∂α̃z

∂ ln L
= −2α̃2

z − 2α̃zβ̃z, (93)

∂β̃z

∂ ln L
= (2 − a)β̃z − 2β̃2

z − 2α̃zβ̃z, (94)

∂ ln ε̃

∂ ln L
= 1 + α̃z + β̃z. (95)

In the case of SR correlated disorder, the running disorder
strength approaches the Gaussian fixed point (α̃∗

z = 0) so that
the SR disorder is marginally irrelevant. This results in the
logarithmic corrections to the scaling of the density of states

ρSR(ε) = αz ε

πv2
0

ln
�

ε
. (96)

In the most general case, the flow equations possess, aside from
the unstable Gaussian fixed point (α̃∗

z = β̃∗
z = 0), a nontrivial

infrared stable fixed point [α̃∗
z = 0, β̃∗

z = (2 − a)/2] with
eigenvalues λ1,2 = −2 + a negative for a < 2. The dynamic
exponent describing the energy scaling is then given by

z = 1 + α̃∗
z + β̃∗

z = 1 + (2 − a)/2. (97)

The density of states has then the universal scaling behavior

ρLR(ε) ∼ ε(2−z)/z. (98)

The system of 2D Dirac fermions (or more precisely the
pair of Majorana fermions) with random mass disorder is
formally equivalent to two decoupled classical 2D Ising
models with random bond disorder at criticality.60 It is known
that uncorrelated random bond disorder is irrelevant in RG
sense resulting only in logarithmical corrections to the scaling
of the pure Ising model. However, the LR correlated disorder
is a relevant perturbation that changes the critical behavior.61

This latter result is in accordance with our findings.
The conductance and the Fano factor at the Dirac cone are

given by

G = e2

πh

W

L
[1 − f ′

z(0)(2 − a)/2 ], (99)

F = 1

3
+ 2

3

f ′′′
z (0)(2 − a)/2

1 − f ′
z(0)(2 − a)/2

. (100)

The conductance and the Fano factor turn out to be also
universal. They are shown in Figs. 7 and 8 as functions
of a. Since upon renormalization the disorder couplings
approach a fixed point of order 2 − a, the system does
not develop the mean-free-path scale. Thus, one can expect
that the expressions for conductance (99) and the Fano
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factor (100) hold up to very large scale. Remarkably, in
contrast to uncorrelated disorder which suppresses the Fano
factor, the correlated disorder can enhance it. In the case of
adatoms on the surface of topological insulator undergoing
the paramagnetic-ferromagnetic Ising-type phase transition
with η = a = 1/4, one would expect on the basis of our
one-loop treatment that the density of surface states behaves
as ρ(ε) ∼ ε1/15. Unfortunately, for a 
 2, the lowest-order
correction in disorder becomes too large so that one can not
rely anymore on the one-loop approximation.

D. General case

We now briefly discuss the general case when more than
one type of disorder is present in the system. The precise
determination of the RG flow in the general case seems to
require numerical solution of the flow equations (58). This
solution is expected to be sensitive to the initial condition
given by the bare values of the disorder strengths. However,
there are some general properties of the RG flow, which do
not depend on the details. First of all, the three types of SR
correlated disorder form a closed subset which do not generate
the LR correlated disorder. The RG flow in this case was
studied in Ref. 22. It was found that if the bare coupling
constants α̃0, α̃⊥, and α̃z are small and of the same order
of magnitude, after renormalization the physics is dominated
by α̃0 at least for sufficiently low energy. In particular, the
zero-energy mean-free path l0 is determined by α̃0(l0) ≈ 1.

In the case when all six coupling constants are present
in the system, the picture is more involved. We have solved
numerically the flow equations (58) in this case for different
initial conditions. We have found that the flow is dominated
either by α̃0 or by β̃0 depending on the initial conditions for all
couplings. For instance, the zero-energy mean-free path l0 is
given by max[α̃0(l0),β̃0(l0)] ≈ 1. As we have mentioned above
in the case of pure random scalar disorder, the LR correlated
disorder dominates over the SR correlated one for all bare
disorder strengths such that α̃ � β̃. The presence of other
types of disorder may lead to dominance of α̃0 even if this
inequality is satisfied.

VI. RANDOM GAUGE POTENTIAL: BOSONIZATION

In this section, we reanalyze the problem of 2D Dirac
fermions in the presence of LR correlated random gauge
potential with the bosonization technique. We will first give
a detailed derivation of the bosonized action in the case of
a general interaction, then discuss first the SR correlated
disorder case27,50,62 before turning to the LR correlated case
and comparing our results with those of Sec. V. We start from
the replicated action (14) with only terms with μ = x,y. In the
partition function path integral, we introduce in the action the
Matsubara time variable τ = y/v0 and we make the change of
(independent) Grassmann variables according to

ψ̄a = ψ̃†
a

iσy√
v0

, ψa = ψ̃a√
v0

. (101)

The transformed action S = S0 + V , which we split for
convenience into a free and interacting part, reads as

S0 =
∫

dx dτ
∑

a

ψ†
a [−∂τ + iv0σz∂x − νnσy]ψa,

(102)

V = 1

2
πv2

0

∫
dx dx ′ dτ dτ ′g(x − x ′,τ − τ ′)

×
[(∑

a

(ψ†
aσzψa)(x,τ )

) (∑
b

(ψ†
bσzψb)(x ′,τ ′)

)

−
(∑

a

(ψ†
aψa)(x,τ )

) (∑
b

(ψ†
bψb)(x ′,τ ′)

)]
, (103)

where we have dropped the tildes for clarity. The function
g(x,τ ) for SR correlated disorder is given by g(x,τ ) =
α⊥δ(x)δ(v0τ ) and for LR correlated disorder by g(x,τ ) =
β⊥Aa(x2 + v2

0τ
2)−a/2. This action has the form of the action

of a model of interacting fermions with an interaction that is
nonlocal in Matsubara time.44 The density of states can be
calculated as

ρ(ε) = − 1

π
Im TrG(iνn → ε + i0+) (104)

with the trace of the Matsubara Green’s function given by

TrG(iνn) = Tr[(iνn + μ − H )−1]

= ∂

∂(iνn)
[ln Z(iνn)] = i

v0
〈ψ†σyψ〉, (105)

where H is the corresponding Hamiltonian and Z the partition
function. In Eq. (105), the average is taken with respect to the
actions (102) and (103). It is convenient for the bosonization
procedure to introduce the components

ψa(r) =
(

ψR,a

ψL,a

)
, ψ†

a (r) =
(

ψ
†
R,a

ψ
†
L,a

)
(106)

and define

JL =
∑

a

ψ
†
L,aψL,a, JR =

∑
a

ψ
†
R,aψR,a (107)

to rewrite the interacting part of the action in the form

V = −πv2
0

∫
dx dx ′ dτ dτ ′ g(x − x ′,τ − τ ′)

×[JR(x,τ )JL(x ′,τ ′) + JL(x,τ )JR(x ′,τ ′)]. (108)

We can now apply the bosonization technique to the actions
(102) and (103). First, the Hamiltonian of the noninteracting
part is rewritten in terms of the components (106) as

H0 =
∑

a

H0,a, (109)

H0,a =
∫

dx[−iv0(ψ†
R,a∂xψR,a − ψ

†
L,a∂xψL,a)

+ iνn(ψ†
R,aψL,a − ψ

†
L,aψR,a)]. (110)
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In bosonization, the fermion fields are expressed in terms of
bosonic fields63,64 θa and φa as

ψR,a = 1√
2π�

ei(θa−φa )ηR,a, (111)

ψL,a = 1√
2π�

ei(θa+φa )ηL,a, (112)

with � a short-distance cutoff, ∂xθa = π�a , and the fields
φa and �a satisfy the canonical commutation relations
[φa(x),�b(x ′)] = iδabδ(x − x ′). The operators ηR/L,a are Ma-
jorana fermion operators that ensure anticommutation of the
fermion fields. The disorder-free part of the Hamiltonian has
the bosonized form64

H0,a =
∫

dx

2π
[(π�a)2 + (∂xφa)2] − νn

2π�

∫
dx cos 2φa,

(113)

where we have chosen the same eigenvalue −i for all the
products ηR,aηL,a . The disorder-free part of the action is then

S0 = i
∑

a

∫
dx dτ �a∂τφa −

∫
dτ H0. (114)

After integrating out the fields �a in the path integral with
action (114), the action of the sine-Gordon model is obtained.65

In the presence of disorder, we introduce the symmetric
combinations of the bosonic fields

φC = 1√
n

(∑
a

φa

)
, �C = 1√

n

(∑
a

�a

)
, (115)

and the new fields φλ,�λ with 1 � λ � n − 1 such that

φa = φc√
n

+
n−1∑
λ=1

eλ
aφλ, (116)

�a = �c√
n

+
n−1∑
λ=1

eλ
a�λ (117)

with

1

n
+

n−1∑
λ=1

eλ
ae

λ
b = δab,

n∑
a=1

eλ
a = 0,

n∑
a=1

eλ
ae

μ
a = δλμ.

(118)

The conditions (118) ensure that the new fields defined in
Eq. (116) satisfy the canonical commutation relations. We
can then express the disorder contribution (108) to the action
entirely in terms of �C and φC thanks to the relations

JR/L = −
√

n

2π
∂xφC ±

√
n

2
�C. (119)

We will now discuss separately the two cases of SR and LR
correlated disorder.

SR correlated disorder. In the case of g(x,τ ) =
α⊥δ(x)δ(v0τ ), the disordered part of the action (108) can be
rewritten as

V = −2πnα⊥v0

∫
dx dτ

[
(∂xφC)2

4π2
− �2

C

4

]
. (120)

The fields �C and �λ are then integrated out, leaving an action
expressed purely in terms of φC,φλ. The quadratic part of the

action of the fields φλ is unchanged compared with the case
without disorder, but the action of the field φC becomes∫

dx dτ

2π

[
(∂τφC)2

v0(1 − nα⊥)
+ v0(1 + nα⊥)(∂xφC)2

]
. (121)

The common scaling dimension of the fields cos 2φa then
becomes

dim.(cos 2φa) = 1 + KC − 1

n
, (122)

where

KC =
√

1 − nα⊥
1 + nα⊥

, (123)

and for n → 0,

dim.(cos 2φa) → 1 − α⊥, (124)

leading to the following renormalization group equation

dνn

d�
= (1 + α⊥) νn (125)

for νn. A strong-coupling scale is reached for e�∗ ∼
|νn�/v0|−1/(1+α⊥). Using Eq. (105) and the scaling dimension
(124), the density of states is obtained as27,50,62

ρSR(ε) = 1

2π�v0

(
ε�

v0

) 1−α⊥
1+α⊥

, (126)

i.e., a power-law enhancement with nonuniversal exponent is
obtained. By comparing Eq. (126) with the RG calculation
result of Eq. (82), we note that the two results are in perfect
agreement provided the short-distance cutoff is taken as � =
v0/�.

LR correlated disorder. In this case, introducing the
Fourier transform ĝ(q,ω) = β⊥

v0
(q2 + ω2/v2

0)(a−2)/2 of g(x,τ ),
we rewrite the action as

S =
∫

dq dω

2π2

|φC(q,ω)|2
2πv0

[
ω2

1 − nv0ĝ(q,ω)

+ (v0q)2[1 + nv0ĝ(q,ω)]

]
+

∑
λ

∫
dx dτ

2π

[
(∂τφλ)2

v0

+ v0(∂xφλ)2

]
− νn

2π�

∑
n

∫
dx dτ cos 2φn. (127)

In general, a model with an action such as (127) is not
integrable. To estimate the free energy associated with
Eq. (127), we use the Gaussian variational method66 with
(replica symmetric) variational action

Svar =
∫

dq dω

2π2

|φC(q,ω)|2
2πv0

[
ω2

1 − nv0ĝ(q,ω)

+ (v0q)2[1 + nv0ĝ(q,ω)]

]

+
∑

λ

∫
dx dτ

2π

[
(∂τφλ)2

v0
+ v0(∂xφλ)2

]

+ ω2
0

2πv0

∑
a

φ2
a, (128)
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and minimize the variational free energy

Fvar = F0 + 〈S − Svar〉Svar , (129)

F0 = − ln

[∫ ∏
a

Dφae
−Svar

]
. (130)

After some calculation, we find that

ω2
0 = |νn|v0

�
e−2〈φ2

a 〉,

lim
n→0

〈
φ2

a

〉 = 1

2
ln

(
v0

�ω0

)

−πv0

∫
dω d(v0q)

4π2

ω2 + (v0q)2[
ω2 + (v0q)2 + ω2

0

]2 ĝ(q,ω).

(131)

By solving the self-consistent equation (131), we obtain

β⊥
ζ (a)

(
ω0

v0

)a−2

= W

[
β⊥
ζ (a)

( |νn|
v0

)a−2]
,

where W (x) is the already appeared in Sec. III Lambert
function48 and we have introduced the function

ζ (a) = 8

πa(2 − a)
sin

(
πa

2

)
. (132)

We find a density of states ρ(νn) = ω2
0(νn)

2πv2
0 |νn| that behaves for

low energy as

ρLR(ε) = 1

2πε

(
ζ (a)

β⊥
ln

�

ε

)−2/(2−a)

, (133)

hence, the density of states has a divergence for ε → 0
which is, however, integrable. Note that the result (133) is
independent from the cutoff �. The density of states (133)
is expected to be valid down to zero energy and agrees with
the prediction of RG (83), which is supposed to be valid at
energies larger than the exponentially small in the limit a → 2
energy scale. This proves that there exists only a single regime
with the asymptotic behavior (133).

Note that the result (133) differs from the density of
states ρ(ε) ∼ 1/(ε ln |ε|(6−a)/(2−a)) obtained in Ref. 38 using
a supersymmetric approach and a variational approximation.
We found that Eq. (20) of Ref. 38 is not a correct solution of
Eq. (19) of that paper. Upon finding the correct solution, the
subsequent calculations reproduce our result (133).

Recently, we received a private communication from
Khveshchenko who pointed out that the correct solution of the
aforementioned equation can be found in the early preprint67

of his published paper.38

VII. CONCLUSIONS

We have studied 2D Dirac fermions in the presence of
LR correlated disorder with correlations decaying as a power
law. In particular, we have considered three types of disorder:
random scalar potential, random gauge potential, and random
mass. Using the SCBA, weak-disorder RG, and bosonization
technique, we have computed the density of states modified by
disorder in vicinity of the Dirac point of free fermions. Using
a diagrammatic technique with matrix Green’s functions, we

have derived the full counting statistics of fermionic transport
at low energy. Remarkably, in contrast with SR correlated dis-
order, the LR correlated disorder provides deviation from the
pseudodiffusive transport already to lowest order in disorder.

In the case of LR correlated random potential, the picture
resembles that for the SR correlated random potential. Using
the SCBA and RG give a qualitatively consistent picture:
disorder generates an algebraically small energy scale below
which the density of states saturates to a constant value, while
above this scale it is given by a corrected bare density of
states. The correction to the conductance due to LR correlated
disorder at the Dirac cone is positive and increases with a,
while the correction to the Fano factor is small and negative.

For the LR correlated random gauge potential, we have
found that the density of states diverges at zero energy in
an integrable way. This small energy behavior derived using
bosonization is completely consistent with the prediction of
RG, which is valid for larger energies. In particular, the density
of states is accessible in graphene using STM measurements
that would allow one to measure the real exponent a describing
the correlation of the random gauge potential induced by
ripples. We have found that the LR correlated random gauge
potential does not contribute to the transport properties to
one-loop order.

In the case of the LR correlated random mass disorder,
we have found a nontrivial infrared stable fixed point which
controls the large scale properties of the disordered Dirac
fermions. This results in a universal power-law behavior of
the density of states and universal transport properties. Since
the disorder couplings flow to the fixed point, the system does
not exhibit the mean-free-path scale. Thus, the conductivity
and the Fano factor at the Dirac point are expected to have
universal forms up to very large scales. Remarkably, in contrast
to uncorrelated disorder which suppresses the Fano factor, the
correlated random mass disorder enhances it.
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APPENDIX: ONE-LOOP DIAGRAMS CONTRIBUTING
TO THE FREE ENERGY

In this Appendix, we compute the diagrams shown in
Fig. 3(a) with the dashed line corresponding to three different
disorder correlators. To that end, we substitute the bare Green’s
function (50) in Eq. (54) and evaluate the trace explicitly. Since
the diagrams contain φ-independent divergent terms, we will
compute the derivatives of the diagrams with respect to φ. The
diagrams with LR correlated scalar and random mass disorder
then yield

f0,z(φ) =
∫ ∞

0
dy

∫ 1

0
dx1

∫ 1

0
dx2

2π2Aay sinh(yφ)

[y2 + (x1 − x2)2]a/2

×
(

1

cosh(πy) − cos[π (x1 − x2)]

∓ 1

cosh(πy) − cos[π (x1 + x2)]

)
, (A1)
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where the upper sign corresponds to f0 and the lower sign to fz. The diagram with the LR correlated random gauge
disorder gives an expression which does not depend on φ and thus it does not contribute to transport. We now change variables
from x1 and x2 such that cos[π (x1 + x2)] = b and x2 − x1 = c that formally can be written as∫ 1

0
dx1

∫ 1

0
dx2f {cos[π (x1 + x2)],|x2 − x1|} =

∫ 1

0
dc

∫ cos πc

−1

2db√
1 − b2

f (b,c). (A2)

By applying transformation (A2) to Eq. (A1) and evaluating the integration over b, we obtain Eq. (57).
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