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Phase structure of monolayer graphene from effective U(1) gauge theory on honeycomb lattice
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Phase structure of monolayer graphene is studied on the basis of a U(1) gauge theory defined on the honeycomb
lattice. Motivated by the strong coupling expansion of U(1) lattice gauge theory, we consider on-site and
nearest-neighbor interactions between the fermions. When the on-site interaction is dominant, the sublattice
symmetry breaking (SLSB) of the honeycomb lattice takes place. On the other hand, when the interaction
between nearest-neighboring sites is relatively strong, there appears two different types of spontaneous Kekulé
distortion (KD1 and KD2), without breaking the sublattice symmetry. The phase diagram and phase boundaries
separating SLSB, KD1, and KD2 are obtained from the mean-field free energy of the effective fermion model. A
finite gap in the spectrum of the electrons can be induced in any of the three phases.
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I. INTRODUCTION

The discovery of graphene,1 a one-atom thick material
of carbon atoms, has made a great impact not only on
condensed matter physics but also on particle physics.2 It gives
a realization of massless quasiparticles in a material easy to
create and observe since the valence band and the conduction
band of the electrons touch at two independent “Dirac points”
in the Brillouin zone with the conical shape.3 Due to this “Dirac
cone” structure, there can be seen several unconventional
behaviors characteristic to monolayer graphene, such as the
high mobility of charge carriers and the half-integer quantum
Hall effect. Since these charged quasiparticles obey the Dirac
equation around half filling, they are described as massless
Dirac fermions in the (2 + 1)-dimensional plane, as an
effective field theory.4 Such an effective field description also
has some connections to the high energy physics side, such
as lattice fermion formulation,5 deformation-induced gauge
fields,6–8 and the existence of vortex zero modes.9,10

The effect of the Coulomb interaction between electrons
is one of the most important problems in graphene physics.11

Since the Coulomb interaction strength in graphene is effec-
tively enhanced by the inverse of the Fermi velocity v

F
∼

c/300 from the ordinary quantum electrodynamics (QED),
it is beyond the treatment of perturbative expansion unless
the interaction is screened by dielectric substrates such as
silicon oxides (SiO2). If the interaction is sufficiently strong,
the electron and hole may form an exciton condensate, which
may give a finite gap in the band structure of graphene.
This scenario is analogous to the dynamical mass generation
of fermions in strongly coupled gauge theories such as
quantum chromodynamics (QCD), where the spontaneous
breaking of the chiral symmetry leads to the dynamical
mass gap of the fermions.12 In the effective field theory of
graphene, the chiral symmetry of the fermions corresponds
to the inversion symmetry between two triangular sublattices
of the honeycomb lattice. Owing to such an analogy, there
have been several studies on the “chiral symmetry breaking”
in monolayer graphene with the techniques commonly used
in the studies on QCD. The Schwinger-Dyson equation,13–15

1/N expansion,16,17 and the exact renormalization group
approach18 have been applied to the effective field theory of
monolayer graphene. Monte Carlo simulations of the effective

square lattice model have been performed to obtain the critical
value of the coupling constant and the equation of state around
the critical point.19,20 The author has treated the system as
a strongly coupled U(1) lattice gauge theory by the strong
coupling expansion, which is one of the methods to investigate
the nonperturbative features of the strongly coupled gauge
theories like QCD,21–23 and has obtained the behavior of
the (pseudo-)Nambu-Goldstone mode related to the chiral
symmetry breaking in the low energy region.24

In graphene, however, there may be other ordering patterns
than the sublattice (chiral) symmetry breaking that may
open a finite spectral gap, due to the honeycomb lattice
structure.25,26 Kekulé distortion, which is described by the
alternating pattern of the bond strengths like in the benzene
molecule,27 is one of those ordering patterns without breaking
the sublattice symmetry. It can be induced externally by the
effect of some substrates28 or adatoms on the layer.29 In the
author’s previous work, it has been found that sufficiently
large external Kekulé distortion may restore the sublattice
symmetry which has been spontaneously broken in the strong
coupling limit of the Coulomb interaction.30 On the other
hand, there has been an argument that the Kekulé distortion
may appear spontaneously as a result of the electron-electron
interaction.9,31 It is currently a great challenge what order
may appear in the vacuum-suspended graphene due to the
effectively strong Coulomb interaction. In order to treat
the ordering patterns characteristic to the honeycomb lattice
exactly, the analysis of the effective field theory preserving the
honeycomb structure is required.32–34

In this paper we investigate the competition between two
phases, the sublattice symmetry broken (SLSB) phase and
the Kekulé distortion (KD) phase, by using an effective
fermion model of graphene keeping the original honeycomb
lattice structure. This model, motivated by the strong cou-
pling expansion of U(1) lattice gauge theory defined on the
honeycomb lattice, includes the on-site interaction and the
nearest-neighbor (NN) interaction. If the on-site interaction is
dominant, the SLSB of the honeycomb lattice takes place. On
the other hand, if the interaction between nearest-neighboring
sites is relatively strong, there appears two types of sponta-
neous Kekulé distortion (KD1 and KD2), without breaking the
sublattice symmetry. By analyzing the mean-field free energy
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of the the effective fermion model, we derive the phase diagram
and phase boundary separating the three phases, SLSB, KD1,
and KD2. A finite gap in the spectrum of the electrons can be
induced in any of the three phases.

This paper is organized as follows. In Sec. II we construct
U(1) lattice gauge theory on the honeycomb lattice starting
from the conventional tight binding Hamiltonian coupled with
the electromagnetic field as compact U(1) link variables. In
Sec. III we derive the interaction terms between fermions by
using the strong coupling expansion techniques of the U(1)
lattice gauge theory up to the next-to leading order.21,22 Two
characteristic interactions are induced; the on-site interaction
which favors SLSB, and the NN interaction which favors
KD. We take an effective fermion model including these two
interaction terms. In the next two sections we take the effective
fermion model as it is and investigate the phase structure by
varying the strength of the on-site and NN interactions, to
study the interplay between these different orders. In Sec. IV
we investigate the phase structure qualitatively by taking two
characteristic cases; on-site dominance and NN dominance.
Phase diagram with SLSB, KD1, and KD2 phases are also
drawn qualitatively. In Sec. V we confirm the the phase
diagram in the previous section numerically by minimizing
the mean-field free energy of the effective fermion model.
Section VI is devoted to summary and concluding remarks.

II. GAUGED HONEYCOMB LATTICE MODEL

In order to construct the model action of the system
preserving the original honeycomb lattice structure, we start
from the conventional tight-binding Hamiltonian,3

H = −h
∑
r∈A

∑
i=1,2,3

[a†(r)b(r + si) + H.c.], (1)

which describes the hopping of an electron between nearest-
neighboring sites with amplitude h = 2.7 eV. Here a(a†) and
b(b†) are the annihilation (creation) operators of electrons
on the lattice sites in A and B sublattices, respectively.
s1 = (0, − a), s2 = (

√
3a
2 , a

2 ), s3 = (−
√

3a
2 , a

2 ) are the hopping
directions, with the lattice spacing a = |si | = 1.42 Å. The
triangular sublattices A and B are spanned by two lattice
vectors R1 = s2 − s1 and R2 = s3 − s1. In the momentum
space, the Brillouin zone is spanned by reciprocal vectors K1,2,
where Ki · Rj = 2πδij . By diagonalizing this Hamiltonian in
the momentum space, the dispersion relation reveals the “Dirac
cone” structure

E(K± + k) = h|�(K± + k)| = v
F
|k| + O(k2) (2)

around two independent Dirac points K±, where �(k) ≡∑
i=1,2,3 eik·si (see Fig. 1). When the system is half-filled, the

valence band and the conduction band touches only at these
points. The Fermi velocity v

F
= (3/2)ah = 3.02 × 10−3 is

considerably smaller than the speed of light. This Hamiltonian
possesses an inversion symmetry between two sublattices
A and B, which can be extended to the continuous U(1)A

symmetry in the low-energy region. On-site energy difference
between two sublattices, m(a†a − b†b), breaks this sublattice
symmetry, which corresponds to the mass term mψ̄ψ of the
Dirac fermions.

FIG. 1. The schematic picture of the Brillouin zone � and the
Dirac points K±. When the Kekulé distortion pattern is induced,
the unit lattice in the real space is three times enlarged, so that the
Brillouin zone is split into three parts, �̃ and �̃±.

From the Hamiltonian in Eq. (1), the effective action for
fermions SF is derived with the imaginary time (τ ) formu-
lation. Here we perform the temporal scale transformation
τ → τ ′/v

F
, so that the Fermi velocity shall be rescaled to

unity. The temporal direction is discretized with the lattice
spacing aτ ′(=v

F
aτ ) equal to the spatial lattice spacing a. As a

consequence of this discretization, we have a pair of fermion
doublers in the temporal direction,35 which we consider here
as the spin (up/down) degrees of freedom.

In this lattice model the effect of the electromagnetic field
is implemented by U(1) link variables between spatially or
temporally neighboring sites:

SF = 1

2

∑
r∈A;τ ′

[a†(x)Uτ ′(x)a(x + aτ̂ ′) − H.c.]

+ 1

2

∑
r∈B;τ ′

[b†(x)Uτ ′(x)b(x + aτ̂ ′) − H.c.]

+ ah

v
F

∑
r∈A,τ ′

3∑
i=1

[a†(x)Ui(x)b(x + si) + H.c.], (3)

where the lattice site x ≡ (r,τ ′) and the link variables

Uτ ′(r,τ ′) ≡ exp

[
ie

∫ τ ′+a

τ ′
dτ ′Aτ ′

]
(temporal), (4)

Ui(r,τ ′) ≡ exp

[
ie

∫ r+si

r
dr′ · A

]
(in-plane), (5)

Uz(r,τ ′) ≡ exp

[
ie

∫ r+aẑ

r
dzAz

]
(out-of-plane). (6)

This lattice construction is similar to that employed in Ref. 34,
while they differ in the treatment of the U(1) gauge field and
the imaginary time discretization.

Using these U(1) link variables, the kinetic term of the
gauge field

SG = 1

4

∫
d4x

3∑
μ,ν=0

(∂μAν − ∂νAμ)2 (7)

can be rewritten on the honeycomb lattice as

SG = − 2

3
√

3g2v
F

∑
r∈A;τ ′

ReUhex −
√

3

g2v
F

∑
r∈A;τ ′

3∑
i=1

ReUiz

−
√

3v
F

g2

∑
r∈A;τ ′

3∑
i=1

ReUiτ ′ − 3
√

3v
F

4g2

∑
r∈A∪B;τ ′

ReUzτ ′ , (8)
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where the QED coupling constant g2 = e2/ε0 = 4παQED, and
the constant terms are neglected. The sum is taken over the
(3 + 1)-dimensional space. Here the plaquette on the (x,y)
plane, Uhex, is hexagonal shaped, while the other are square
shaped. The plaquettes are defined as

Uhex(x) ≡ U1(x)U ∗
3 (x + s1 − s3)U2(x + s1 − s3)

×U ∗
1 (x + s2 − s3)U2(x + s2 − s3)U ∗

2 (x), (9)

Uiz(x) ≡ Ui(x)Uz(x + si)U
∗
i (x + aẑ)U ∗

z (x), (10)

Uiτ ′(x) ≡ Ui(x)Uτ ′(x + si)U
∗
i (x + aτ̂ ′)U ∗

τ ′(x), (11)

Uzτ ′(x) ≡ Uz(x)Uτ ′(x + aẑ)U ∗
z (x + aτ̂ ′)U ∗

τ ′(x). (12)

As a consequence of the temporal scale transformation, the
spatial part of the gauge field [the first line in Eq. (8)] becomes
weakly coupled with the effective coupling strength g2v

F
,

while the temporal part (the second line) becomes strongly
coupled with the strength g2/v

F
. Since the coefficient of the

spatial part 1/g2v
F

is sufficiently large, we can apply a saddle
point approximation to these two terms, yielding a saddle
point solution Uhex = Uiz = 1. In other words, the retardation
effect (magnetic field) can be neglected due to the discrepancy
between the speed of light and the speed of fermions (v

F
),

which is referred to as “instantaneous approximation.” We
can safely set the spatial link variables Ui and Uz to unity
by the gauge transformation, leaving only the temporal link
variable Uτ ′ . The fluctuation of the spatial link variables around
the saddle point, which can be considered by weak coupling
expansion, is not taken into account in this work. As a result,
SG can be simplified as

SG = −
√

3β
∑

r∈A;τ ′

3∑
i=1

ReUτ ′(x + si)U
∗
τ ′(x)

− 3
√

3β
∑

r∈A∪B;τ ′
ReUτ ′(x + aẑ)U ∗

τ ′(x). (13)

The parameter β ≡ v
F
/g2 represents the inverse of the

coupling strength, which is 0.037 in the vacuum-suspended
graphene. Here we fix the Fermi velocity v

F
to the physical

value observed in the system with SiO2 substrate.

III. STRONG COUPLING EXPANSION

Here we apply the techniques of the strong coupling
expansion to the effective action defined in the previous
section, and derive the effective interaction terms between
fermions by integrating out the gauge degrees of freedom, to
construct the effective model which may describe the interplay
between the sublattice symmetry breaking and the Kekulé
distortion. With the effective action S = SF + SG, the partition
function of the system is given by path integral

Z =
∫

[dχ †dχ ][dUτ ′] exp{−SF [χ †,χ ; Uτ ′] − SG[Uτ ′]},
(14)

where χ = a,b. Since the gauge term SG is proportional to the
small parameter β, we can expand this equation around β = 0

FIG. 2. (Color online) Schematic pictures of the link integration
in (a) the leading order (LO) and (b) the next-to LO (NLO) in the
strong coupling expansion (χ = a,b).

(strong coupling limit) and perform the path integral order by
order:

Z =
∞∑

n=0

Z(n), (15)

Z(n) =
∫

[dχ †dχ ][dUτ ′]e−SF
(−SG)n

n!
. (16)

Here we take the terms up to O(β1). Since the integrand can
be written as a polynomial of Uτ ′ and U ∗

τ ′ , integration by
the link variables can be performed analytically. As a result
of the link integration, two kinds of interaction terms are
derived: the on-site interaction in the leading order [O(β0)],
and the nearest-neighbor interaction in the next-to leading
order [O(β1)]. In order to convert these four Fermi terms
into fermion bilinear, we apply the Stratonovich-Hubbard
transformation by introducing two kinds of bosonic auxiliary
fields, corresponding to the amplitude of sublattice symmetry
breaking and the spontaneous Kekulé distortion, respectively.
By integrating out the fermionic degrees of freedom, we derive
the effective potential of the system as a function of these order
parameters.

A. Leading order: O(β0)

In the leading order (LO) the gauge term SG does not
contribute,

Z(0) =
∫

[dχ †dχ ][dUτ ′]e−SF , (17)

so that the link variables come only from the temporal hopping
terms of the fermions. On each lattice site x = (r,τ ′), the
contribution to the link integration is∫

dUτ ′ exp

[
− 1

2
(χ †Uτ ′χ ′ − χ ′†U ∗

τ ′χ )

]

=
∫

dUτ ′

[
1 − 1

2
χ †Uτ ′χ ′

][
1 + 1

2
χ ′†U ∗

τ ′χ

]
(18)

= 1 + 1

4
χ †χχ ′†χ ′ = exp

[
1

4
χ †χχ ′†χ ′

]
, (19)

where χ ′ = χ (x + aτ̂ ′). The schematic picture of the link
integration in the LO is shown in Fig. 2(a). By the link
integration, the on-site four-Fermi interaction term is gen-
erated, which corresponds to the on-site repulsion between
opposite spins (Hubbard term). In order to control the strength
of this interaction for later purpose, we introduce an overall
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coefficient z(>0). Thus the effective action can be written in
terms of fermionic fields a and b as

S
(0)
F = − z

4

[ ∑
r∈A;τ ′

na(x)na(x+aτ̂ ′) +
∑

r∈B;τ ′
nb(x)nb(x+aτ̂ ′)

]

+ 2

3

∑
r∈A;τ ′

3∑
i=1

[a†(x)b(x + si) + b†(x + si)a(x)], (20)

where nχ (x) ≡ χ †(x)χ (x) denotes the local charge density at
the site x = (r,τ ′).

Here we apply Stratonovich-Hubbard transformation by
introducing the bosonic auxiliary field σ , which corresponds
to the charge density difference between A and B sublattices
〈na − nb〉. By mean-field approximation over σ , the first line
in Eq. (20) is converted into fermion bilinears as

z

2

∑
r∈A∪B;τ ′

σ 2 − zσ

2

[ ∑
r∈A;τ ′

na(x) −
∑

r∈B;τ ′
nb(x)

]
. (21)

Thus, we can integrate out all the fermionic degrees of
freedom, to obtain the effective potential of this system at
LO per one pair of A and B sites:

F
(0)
eff (σ ) = − 1

Nτ ′V
ln Z(0)

= z

2
σ 2 − 1

V

∫
k∈�

d2k ln

[(zσ

2

)2
+

∣∣∣∣2

3
�(k)

∣∣∣∣
2
]

,

(22)

where V is the number of A (B) sites in the system.∫
k∈�

is the integration over the Brillouin zone �, with
normalization 1

V

∫
k∈�

d2k · 1 = 1. aNτ ′ is the temporal lattice
size, corresponding to the inverse temperature. In this work
we consider the zero-temperature and infinite volume limit,
so that Nτ ′ and V are set to infinity. The first term in
Eq. (22) represents the tree level of σ , while the second
logarithmic term comes from the one-loop effect of the
fermion.

B. Next-to leading order: O(β1)

Next, we consider the next-to LO (NLO) terms in the strong coupling expansion Z(1). At O(β1) one plaquette from SG

contributes to the link integration. SG (with instantaneous approximation) contains two kinds of plaquettes, Uiτ ′ and Uzτ ′ , but
Uzτ ′ does not contribute to the link integration, because the link in the z direction cannot be canceled by the fermion hopping
terms. On the other hand, Uiτ ′(x) ≡ Uτ ′(x + si)U ∗

τ ′(x) contributes to the link integration, combined with two fermion hopping
terms: ∫

dUτ ′(x)dUτ ′ (x + si)e
− 1

2 [a†(x)Uτ ′ (x)a(x+aτ̂ ′)+b†(x+si )Uτ ′ (x+si )b(x+si+aτ̂ ′)−H.c.]

√
3β

2
Uτ ′(x + si)U

∗
τ ′(x)

=
√

3β

2

∫
dUτ ′(x)

[
U ∗

τ ′(x) − 1

2
a†a′ + 1

2
a′†U ∗

τ ′
2(x)a − 1

4
a†a′a′†U ∗

τ ′(x)a

]

×
∫

dUτ ′(x + si)

[
Uτ ′(x + aτ ′) − 1

2
b†Uτ ′(x + aτ ′)2b′ + 1

2
b′†b − 1

4
b†Uτ ′(x + aτ̂ ′)b′b′†b

]
(23)

= −
√

3β

8
a†(x)a(x + aτ̂ ′)b†(x + si + aτ̂ ′)b(x + si), (24)

as shown in Fig. 2(b). [In Eq. (23) we denote a ≡ a(x), a′ ≡
a(x + aτ̂ ′), b ≡ b(x + si), and b′ ≡ b(x + si + aτ̂ ′).] Thus,
the effective action in the NLO can be written in terms of
fermions as

S
(1)
F = −ξ

∑
r∈A;τ ′

3∑
i=1

× [a†(x)b(x + si)b
†(x + si + aτ̂ ′)a(x + aτ̂ ′) + H.c.].

(25)

Hereafter we use the rescaled parameter ξ ≡ √
3β/8 instead

of β as the strength of such a nearest-neighbor interaction.
In order to convert this interaction term into fermion

bilinears, we apply the “extended” Stratonovich-Hubbard
transformation,∫

eαAB = const. ×
∫

dλdλ∗e−α[|λ|2−λA−λ∗B], (26)

with the positive constant α and the complex auxiliary field λ.
With the auxiliary field λi(r,τ ′) corresponding to the fermion
bilinear 〈a†(x)b(x + si)〉, we obtain the NLO effective action

S
(1)
F = 2ξ

∑
r∈A;τ ′

3∑
i=1

{|λi(x)|2 − [λi(x)a†(x)b(x + si) + H.c.]}.

(27)

Thus S
(1)
F modifies the hopping of the fermions in the spatial

direction through the auxiliary field λi .
Here we take the ansatz that λi should be split into the

spatially uniform part and the spatially varying part with the
Kekulé distortion pattern:

λj (r,τ ′) ≡ λσ + λ�e2πi/3[ei(K+·sj +G·r) + ei(K−·sj −G·r)], (28)

where G ≡ K+ − K−, and λσ and λ� are real values. The
first term renormalizes the Fermi velocity v

F
uniformly, with
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FIG. 3. (Color online) Schematic picture of the Kekulé distortion
pattern. Thick lines and thin lines represent the strong hopping and
the weak hopping, respectively. (a) Distortion pattern for λ� > 0.
(b) Distortion pattern for λ� < 0.

the factor Zv ≡ 1 − ξλσ /3. We show later that 〈λσ 〉 < 0, so
that the Fermi velocity becomes faster at finite β (or ξ ) than
that in the strong coupling limit (β = 0). The second term
corresponds to the spontaneous Kekulé distortion, with the
amplitude � = 3ξλ�. The Kekulé distortion is characterized
by the pattern of alternating bond strengths, as shown in Fig. 3,
and induces a spectral gap without breaking the sublattice
(chiral) symmetry,9 with the modified dispersion relation
E(K± + k) =

√
|k|2 + |�|2 + O(k4). Since its unit lattice is

three times as large as that of the ordinary honeycomb lattice in
the real space, the Brillouin zone � is split into three hexagonal
parts: �̃ and �̃±, surrounding � point and the Dirac points K±,
respectively, as shown in Fig. 1. As a result, the effective action
up to the NLO can be written with the order parameters σ , λσ ,
and λ� as

S
(0)
F + S

(1)
F =

∑
r∈A;τ ′

[
z

2
σ 2 + 6ξ

(
λ2

σ + 2λ2
�

)]

+
∑

k∈�̃,τ ′

�̃†(k,τ ′)
(−(z/2)σI3 (2/3)�̃†(k)

(2/3)�̃(k) (z/2)σI3

)
�̃(k,τ ′), (29)

where the 3 × 3 matrix �̃(k) ≡ �̃0(k) − 3ξ�̃1(k), with

�̃0(k) ≡

⎛
⎜⎝

�(k) 0 0

0 �(K+ + k) 0

0 0 �(K− + k)

⎞
⎟⎠ ,

�̃1(k) ≡

⎛
⎜⎝

λσ�(k) λ′
��(K− + k) λ′

��(K+ + k)

λ′
��(K− + k) λσ�(K+ + k) λ′

��(k)

λ′
��(K+ + k) λ′

��(k) λσ�(K− + k)

⎞
⎟⎠ ,

(30)

and I3 is a 3 × 3 unit matrix. Here we denote
λ′

� ≡ λ�e−2πi/3 for simplicity. The fermionic field �̃

is defined by �̃(k,τ ′) ≡ [a(k,τ ′),a(K+ + k,τ ′),a(K− +
k,τ ′),b(k,τ ′),b(K+ + k,τ ′),b(K− + k,τ ′)]T . By integrating
out the fermion field �̃, we obtain the effective potential

F
(0+1)
eff (σ,λσ ,λ�) = z

2
σ 2 + 6ξ

(
λ2

σ + 2λ2
�

)
− 1

V

∫
k∈�̃

d2k ln det

[(zσ

2

)2
I3 +

(
2

3

)2

�̃†(k)�̃(k)

]
.

(31)

The third term (fermion loop effect) is modified from that in
Eq. (22) by the spontaneous Kekulé distortion λ�.

IV. QUALITATIVE PROPERTIES

So far we have reconstructed the effective fermion model
with two interaction terms, the on-site interaction and the
NN interaction, obtained by the strong coupling expansion
of the U(1) lattice model, and derived the effective poten-
tial of the system: F

(0+1)
eff (σ,λσ ,λ�). Hereafter we vary the

strengths of these interaction terms (z and ξ , respectively)
to arbitrary values, to observe the interplay between the
sublattice symmetry broken (SLSB) phase and the Kekulé
distortion (KD) phase. First we investigate the qualitative
properties of possible phases in the system by taking the
characteristic limits of z and ξ : the SLSB phase in the limit
ξ ∼ 0, and the spontaneous KD phase in the limit z = 0. Then
we consider the competition between these two phases by
approximating the effective potential in the region where both
z and ξ are considerably small, and estimate the phase structure
of the system qualitatively. As a result, we find that the
appearance of the SLSB phase or the KD phase is related to the
dominance of the on-site term or the NN term, respectively,
and that the KD phase is split into two phases (KD1 and KD2),
flipping the sign of λ�.

A. Sublattice symmetry broken phase: ξ ∼ 0

First we consider the limit ξ = 0, where only the on-site
interaction is concerned. In this limit, the effective potential
in Eq. (31) reduces to the simpler one in Eq. (22). The first
term (tree level of σ ) becomes dominant as |σ | → ∞, while
the second term (fermion one-loop effect) dominates when
|σ | → 0. Due to the logarithmic singularity of ∂2F

(0)
eff /∂σ 2

around σ = 0 from the one-loop term, F (0)
eff (σ ) has a minimum

at finite σ for any value of z > 0. The potential minimum gives
the expectation value of the charge density imbalance between
two sublattices, 〈σ 〉 = 〈na − nb〉, which serves as the order
parameter of the spontaneous sublattice (chiral) symmetry
breaking. In the four-component Dirac fermion representation,
it corresponds to the chiral condensate 〈ψ̄ψ〉. Therefore, the
sublattice symmetry of the system is spontaneously broken in
the limit ξ = 0.

The behavior of the effective potential in Eq. (22) at
z = 1 is shown in Fig. 4 as the curve with the label
“Honeycomb.” In Fig. 4, F

(0)
eff (σ ) obtained from two other

formulations are displayed: “Linear” is the effective potential
calculated with the Dirac cone approximation �(K± + k) =
3
2e−2πi/3a(±kx + iky), and “Square” is the one obtained from
the square lattice formulation,24

F
(0)
eff (σ ) = σ 2

2
− 1

(2π )2

×
∫

k∈[−π,π]2
dk2 ln

⎡
⎣(σ

2

)2
+

∑
j=x,y

sin2 kj

⎤
⎦ . (32)

All of them qualitatively have the same structure because
they have the Dirac cone structure in common around the
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FIG. 4. (Color online) The behavior of the effective potential of
the system in the strong coupling limit F

(0)
eff as a function of exciton

(chiral) condensate σ at z = 1. Honeycomb: F
(0)
eff (σ ) in Eq. (22)

with the exact dispersion relation �(k) = ∑
i e

ik·si . Linear: F
(0)
eff (σ )

in Eq. (22) with the approximate dispersion relation �(K± + k) =
3
2 e−2πi/3a(±kx + iky). Square: The effective potential obtained from
the square lattice formulation [Eq. (32)].

Dirac points, but quantitative behaviors are different due to the
deviation from the Dirac cone structure at large momentum.

As seen from Eq. (21), finite σ induces an on-site energy
difference between two sublattice in the sense of mean
field, yielding a finite spectral gap E(K±) = v

F
zσ/2a, which

corresponds to the dynamically generated mass of the fermion.
When z takes the physical value z = 1, the expectation value
is σ = 0.343, which gives the dynamical gap 0.72 eV. By
taking the momentum integration around k = 0, we have an
approximate relation

∂F
(0)
eff

∂σ
∼ z + 4πσ

( z

2

)2
ln

(zσ

2

)2
(33)

for sufficiently small z and σ . Thus, z dependence of 〈σ 〉
around z can be approximated as

〈σ 〉 ∼ (2/z) exp(−2/z), (34)

so that 〈σ 〉 reaches toward 0 as z → 0.
Next, we observe the behavior of the effective potential in

the vicinity of ξ = 0. In order to take the effective potential
up to O(ξ 1), we have to expand the fermion determinant by ξ .
By using the formula

ln det[A + ξB] = ln det A + Tr[ξA−1B] + O(ξ 2), (35)

the third term in Eq. (31) is approximated up to O(ξ 1) as

ln det

[(
zσ

2

)2

+
(

2

3

)2

(�̃†
0 − 3ξ�̃

†
1)(�̃0 − 3ξ�̃1)

]

 ln det

[(
zσ

2

)2

+
(

2

3

)2

�̃
†
0�̃0

]
− 3ξTr

[(
zσ

2

)2

+
(

2

3

)2

�̃
†
0�̃0

]−1(2

3

)2[
�̃

†
1�̃0 + �̃

†
0�̃1

]
. (36)

Since the matrices [(zσ/2)2 + (2/3)2�̃
†
0�̃0]−1 and �̃0 are

diagonal, only the diagonal part of �̃1, which can be written as
λσ �̃0, contributes to the trace in the second term in Eq. (36).
Thus we have the ξ expansion of the effective potential as

F
(0+1)
eff (σ,λσ ,λ�) = F

(0)
eff (σ ) + F

(1)
eff (σ,λσ ,λ�) + O(ξ 2), where

F
(1)
eff (σ,λσ ,λ�) = 6ξ

(
λ2

σ + 2λ2
�

)
+6ξλσ

V

∫
k∈�

d2k
(2/3)2|�(k)|2

(zσ/2)2 + (2/3)2|�(k)|2 . (37)

Taking the potential minimum by the NN-auxiliary fields
λσ and λ�, we obtain their expectation values up to the LO,

λ� = 0 + O(ξ 1),
(38)

λσ = − 1

2V

∫
k∈�

d2k
(2/3)2|�(k)|2

(zσ/2)2 + (2/3)2|�(k)|2 + O(ξ 1).

Since λ� does not contribute to the fermion one-loop term
up to O(ξ 1), the Kekulé distortion does not appear around
the limit ξ = 0. On the other hand, λσ acquires a negative
expectation value, so that the renormalization factor of the
Fermi velocity Zv = 1 − 3ξλσ becomes larger than unity. By
substituting these relation to F

(1)
eff (σ,λσ ,λ�), the NLO effective

potential can be rewritten as a function only of σ :

F
(1)
eff (σ ) = −3

2
ξ

[
1

V

∫
k∈�

d2k
(2/3)2|�(k)|2

(zσ/2)2 + (2/3)2|�(k)|2
]2

.

(39)

Since this term monotonically increases as a function of σ ,
it reduces the expectation value of σ (i.e., the position of
the potential minimum). At the physical value z = 1, the
expectation value of σ is given up to NLO as

σ (ξ ) = 0.342 − 1.73ξ + O(ξ 2), (40)

and λσ = −0.471 + O(ξ ). Therefore, the system reveals the
SLSB phase in the vicinity of ξ = 0, and the amplitude of
SLSB (charge density imbalance between two sublattices) σ

decreases as a function of ξ .

B. Kekulé distortion phase: z = 0

In order to investigate the qualitative properties of the
Kekulé distortion (KD) phase, we take the limit z = 0, where
the system does not contain the on-site interaction so that it
may not reveal the SLSB phase. Here the effective potential
reads

F
(0+1)
eff (λσ ,λ�)

= 6ξ
(
λ2

σ + 2λ2
�

) − 2

V

∫
k∈�̃

d2k ln det

∣∣∣∣2

3
�̃(k)

∣∣∣∣ (41)

= 6ξ
(
λ2

σ + 2λ2
�

) − 2

V

∫
k∈�̃

d2k

× ln

∣∣∣∣
[(

2

3
Zv

)3

− 2(2ξλ�)3

]
�(k)�(K+ + k)�(K− + k)

−2

3
Zv(2ξλ�)2e2πi/3[�3(k)+�3(K++k)+�3(K−+k)]

∣∣∣∣.
(42)

First we analyze whether λ� takes a finite expectation value or
not. Since one can easily see ∂F

(0+1)
eff /∂λ�|λ�=0 = 0, λ� = 0 is

either a local maximum or minimum of the effective potential.
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In order to consider the behavior around λ�, we have to check
the sign of the second derivative

∂2F
(0+1)
eff

∂λ2
�

∣∣∣∣
λ�=0

= 24ξ + 2

V

∫
k∈�̃

d2k

×
16
3 Zvξ

2[�3(k) + �3(K+ + k) + �3(K− + k)](
2
3Zv

)3
e−2πi/3�(k)�(K+ + k)�(K− + k)

. (43)

Since the denominator of the integrand becomes zero only at
k = 0, the region around this point is dominant in the loop
integration. Taking the leading order in |k| in the numerator
and the denominator, the loop integral becomes

− 2

V

∫
k∈�̃

d2k
144Zvξ

2 + O(|k|2)

2Zv|k|2 + O(|k|3)
, (44)

which has a negative logarithmic divergence. Due to this
logarithmic divergence in the momentum integration, the sign
of the second derivative becomes negative at λ� = 0, so
that λ� = 0 is a local maximum of the effective potential.
Therefore, for any value of ξ (> 0) (or β), λ� takes a finite
expectation value.

Next, we consider the behavior of the potential minimum
(λσ ,λ�). Due to the logarithmic divergence of the momentum
integration when the order parameters satisfy the relation 2

3 −
2ξλσ − 2 3

√
2ξλ� = 0 [see Eq. (42)], the effective potential has

a nonanalyticity on this curve, separating the (λσ ,λ�) plane
into two regions. In each region there is a local minimum
of Feff , and it depends on the value of ξ which minimum
is taken. When ξ crosses over a certain value ξK , one local
potential minimum may dominate over the other one, causing
a sudden jump of 〈λ�〉. Therefore, the KD phase is split into
two regions at the line ξ = ξK , where the system reveals the
first-order phase transition. Here we refer to these two phases
as KD1 for ξ < ξK and KD2 for ξ > ξK , respectively.

Finally, we consider the behavior of 〈λ�〉 in the limits ξ ∼ 0
and ξ → ∞. In the limit ξ ∼ 0, we neglect the λσ dependence
because it depends on the loop integration only via Zv =
1 − 3ξλσ , which becomes unity at ξ = 0. By performing the
momentum integration around k = 0, we have the approximate
relation

F
(0+1)
eff (λ�) ∼ 12ξλ2

� + A(2ξλ�)2 ln(2ξλ�)2, (45)

where A is a positive constant related to the area of the
momentum integration. By taking the potential minimum, we
can estimate the order of 〈λ�〉 to be

〈λ�〉 ∼ ξ−1 exp(−ξ−1). (46)

Therefore, 〈λ�〉 reaches toward zero as ξ → 0. On the other
hand, in the limit ξ → ∞, all the terms in | · · · | in Eq. (42)
becomes proportional to ξ 3. Thus the ξ dependence in the
logarithm can be factored out, so that only the first term (tree
level of λσ and λ�) becomes dominant in this limit. Therefore,
both the expectation values of λ� and λσ reach toward zero in
the limit ξ → ∞.

C. Competition between SLSB and KD phases

Let us now investigate the competition between two phases,
SLSB and KD, and observe what kind of phase transition

may occur between these two phases. In order to treat the
logarithmic singularity of the loop integral, we take into
account the momentum space only around the Dirac points.
Here we consider the region where the interaction strengths z

and ξ are sufficiently small, to simplify the discussion. Since
ξλ� reaches toward zero as ξ → 0, we assume that the terms
of O(ξλ�|k|) and the smaller ones are negligible, which gives
a simplified form as follows:

(zσ

2

)2
I3 +

(
2

3

)2

�̃†(k)�̃(k)

 diag
{(zσ

2

)2
+ 4Z2

v,
(zσ

2

)2
+ |Zvk|2 + 36(ξλ�)2,(zσ

2

)2
+ |Zvk|2 + 36(ξλ�)2

}
. (47)

This simplification is valid as long as the logarithmic singu-
larity is dominant, that is, σ and ξλ� are in vicinity of 0.
Since the first element of this matrix does not contribute to the
logarithmic singularity, we can further simplify this model by
neglecting the first element (contribution from the Brillouin
zone �̃, which does not cover the Dirac points K±). Thus we
obtain the effective potential

F
(0+1)
eff (σ,λσ ,λ�)  z

2
σ 2 + 6ξ

(
λ2

σ + 2λ2
�

)
− 2

V

∫
k∈�̃

d2k ln

[(zσ

2

)2
+ 36ξ 2λ2

� + |Zvk|2
]

. (48)

The properties of the effective potential in Eq. (48) can be
observed rather easily than the exact one. If we define a new
field φ by φ2 ≡ σ 2 + (144ξ 2/z2)λ2

�, the effective potential is
rewritten as

Feff(φ,λσ ,λ�) = z

2
φ2 + 12ξ

(
1 − 6ξ

z

)
λ2

� + 6ξλ2
σ

− 2

V

∫
k∈�̃

d2k ln

[(
zφ

2

)2

+ |Zvk|2
]

. (49)

If 1 − 6ξ/z = 0 (z = 6ξ ), the effective potential is given as a
function of φ and λσ , and does not depend on λ� explicitly.
Therefore, σ and λ� can take arbitrary expectation values
satisfying

〈σ 〉2 + 144ξ 2

z2
〈λ�〉2 = 〈φ〉2. (50)

If 1 − 6ξ/z > 0 (z > 6ξ ), the second term in Eq. (49) behaves
as a symmetry breaking term between σ and λ�. Since the
fermion loop integral does not explicitly depend on λ�, the
effective potential monotonically increases as a function of
λ�, yielding 〈λ�〉 = 0. On the other hand, φ contributes to the
loop integral, so that 〈φ〉 �= 0. Therefore, we have 〈σ 〉 �= 0,
that is, the sublattice symmetry is spontaneously broken.

If 1 − 6ξ/z < 0 (z < 6ξ ), the coefficient of the second term
in Eq. (49) becomes negative, leading to the unphysical result
〈λ�〉 = ∞. Here we rewrite the effective potential as a function
of φ, σ , and φσ , so that all the coefficients of these variables
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FIG. 5. (Color online) A hypothetical phase diagram of the effec-
tive model of monolayer graphene, from the qualitative investigation
of the effective potential F

(0+1)
eff . When the on-site interaction (z)

is dominant over the nearest-neighbor interaction (ξ ), the system
spontaneously shows the sublattice symmetry broken (SLSB) phase;
otherwise the system shows the Kekulé distortion (KD) phase.
The KD phase is separated by the line ξ = ξK into two regions,
which correspond to the two local minima of the effective potential,
respectively. All the critical line show the first-order transition
behavior. The dashed lines (a), (b), and (c) correspond to the results
from the numerical calculation: (a) corresponds to z = 1 in Fig. 7,
(b) to z = 40 in Fig. 8, and (c) to z = 50 in Fig. 9.

would be positive:

Feff(φ,σ,λσ ) = z2

12ξ
φ2 + z

2

(
1 − z

6ξ

)
σ 2 + 6ξλ2

σ

− 2

V

∫
k∈�̃

d2k ln

[(
zφ

2

)2

+ |Zvk|2
]

. (51)

In this form, the effective potential monotonically rises as a
function of σ , so that we have 〈σ 〉 = 0, 〈φ〉 �= 0, and 〈λ�〉 �=
0. In other words, there appears a Kekulé distortion pattern
spontaneously.

Therefore, when crossing the line z = 6ξ , there is a first-
order phase transition between the sublattice (chiral) symmetry
broken (SLSB) phase and the spontaneous Kekulé distortion
(KD) phase. Moreover, as shown in the previous subsection,
the expectation value of λ� reveals the nonanalyticity at a
certain value ξK in the KD phase. Since the effective potential
does not depend on z in the KD phase, the value of ξK

is independent of z as long as the point (z,ξK ) is in the
KD phase. Since the KD1 and the KD2 phases correspond
to different potential minima, respectively, the critical line
between SLSB and KD1 and that between SLSB and KD2 are
discontinuous. From the qualitative discussions above, we can
map a schematic phase diagram of the system, as shown in
Fig. 5.

V. NUMERICAL RESULTS

Now we confirm the qualitative results above by minimizing
the exact effective potential in Eq. (31) numerically. In the
limit z = 0, the effective potential becomes independent of
σ , so that we only derive the expectation value of λ� as
a function of ξ , as shown in Fig. 6. It can be clearly

FIG. 6. (Color online) The behavior of the spontaneous Kekulé
distortion (KD) λ� as a function of the nearest-neighbor interaction
strength ξ , in the absence of the on-site interaction (z = 0). The
inset shows the behavior of λ� in vicinity of ξ = 0. λ� shows a
nonanalyticity at ξK = 10.67, where the KD phase is separated into
two regions, KD1 (λ� > 0) and KD2 (λ� < 0).

seen that λ�(ξ ) shows a nonanalyticity at ξK = 9.97, which
separates the KD phase into two regions. In the KD1 region
(ξ < ξK ), λ� obtains a positive expectation value, which
corresponds to the lattice distortion pattern shown in Fig. 3(a).
As qualitatively estimated, 〈λ�〉 starts from zero at ξ = 0 and
monotonically increases for small ξ . It has a peak at ξ ∼ 0.7
and eventually decreases until ξ = ξK . On the other hand, in
the KD2 region (ξ > ξK ), λ� takes a negative expectation
value, corresponding to the pattern in Fig. 3(b). It then reaches
toward zero as a function of ξ , which agrees with the analytical
result that 〈λ�〉 → 0 as ξ → ∞.

Next, we fix the on-site interaction strength z to finite
values. At the value z = 1, which corresponds to the strong
coupling expansion of the gauged model, the expectation
values of the sublattice symmetry breaking amplitude σ and
the spontaneous Kekulé distortion λ� vary as function of ξ , as
shown in Fig. 7. The order parameters reveal nonanalyticity
at two points, ξ = 0.20 and ξ = ξK . In the region ξ < 0.20,
σ is finite and monotonically decreases, while λ� is zero. As

FIG. 7. (Color online) Expectation values of the spontaneous
sublattice (chiral) symmetry breaking σ and the Kekulé distortion
amplitude λ�, calculated at the physical value z = 1. The inset
shows the behavior of σ and λ� in vicinity of ξ = 0. There is a
first-order phase transition from the SLSB phase into the KD1 phase
at ξ = 0.20, and that from KD1 into KD2 at ξK = 10.67. Such a
behavior corresponds to line (a) in the phase diagram in Fig. 5.
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FIG. 8. (Color online) Expectation values of the spontaneous
sublattice (chiral) symmetry breaking σ and the Kekulé distortion
amplitude λ�, calculated at z = 40. There is a first-order phase
transition from the SLSB phase into the KD2 phase at ξK = 10.67,
and the KD1 phase does not appear. Such a behavior corresponds to
line (b) in the phase diagram in Fig. 5.

can be clearly seen from the analytic observation, this region
corresponds to the sublattice symmetry broken (SLSB) phase
in the hypothetical phase diagram in Fig. 5. In the region
0.20 < ξ < ξK , the expectation value of σ vanishes, while λ�

acquires a positive expectation value, which corresponds to the
KD1 phase. For large value of ξ , λ� shows a nonanalyticity
at ξ = ξK , obtains a negative expectation value, and reaches
toward zero just as seen in the z = 0 limit. This region
corresponds to the KD2 phase. Therefore, we can conclude
that the axis z = 1 corresponds to line (a) in Fig. 5, that is, the
system turns from SLSB into KD1 at a certain critical value of
ξ (here ξ = 0.20) and turns from KD1 into KD2 at ξ = ξK .

When z = 40, there appears only one phase boundary, as
shown in Fig. 8. The phase transition occurs at ξ = ξK , from
the SLSB phase (σ �= 0) into KD2 phase (λ� < 0), and the
KD1 phase does not appear. This behavior corresponds to the
line (b) in Fig. 5.

At the value z = 50, there appears only two phases as
observed at z = 40, but here the critical value of ξ is

FIG. 9. (Color online) Expectation values of the spontaneous
sublattice (chiral) symmetry breaking σ and the Kekulé distortion
amplitude λ�, calculated at z = 50. There is a first-order phase
transition from the SLSB phase into the KD2 phase at ξ = 11.45
( �=ξK ), and the KD1 phase does not appear. Such a behavior
corresponds to line (c) in the phase diagram in Fig. 5.

FIG. 10. (Color online) The phase boundary between the sub-
lattice symmetry broken (SLSB) phase and the Kekulé distortion
(KD) phase, as a result of the numerical calculation. As can be
seen from Fig. 6, the KD phase is split into two phases by the
line ξ = 10.67(≡ ξK ): KD1 (λ� > 0) and KD2 (λ� < 0). This phase
diagram agrees with the qualitative estimation obtained in Fig. 5.

shifted from ξK = 10.67, as shown in Fig. 9. This behavior
corresponds to the axis (c) in Fig. 5.

Finally, we show in Fig. 10 the phase boundary between the
SLSB and the KD phases, which agrees with the qualitative
phase diagram obtained in Fig. 5. In general, the system turns
into the KD phase when the nearest-neighbor interaction (ξ )
becomes dominant over the on-site interaction (z), that is,
the Coulomb interaction strength becomes smaller. Since the
effective potential becomes independent of z in the KD region,
there is a first-order phase transition between KD1 and KD2
at the line ξ = ξK , as seen in the z = 0 limit.

VI. CONCLUSIONS AND OUTLOOK

In this work we have investigated the possible phase
structure of monolayer graphene with the on-site and the
nearest-neighbor (NN) interactions between fermions. First,
the effective action of the system is constructed including the
electromagnetic field as U(1) link variables, and the interaction
terms between fermions are derived by applying the techniques
of the strong coupling expansion of the lattice gauge theory.
Thus we have obtained two kinds of effective interaction terms:
the on-site interaction which may contribute to the sublattice
symmetry breaking (SLSB), and the NN interaction which may
lead to the Kekulé distortion (KD). Using these two interaction
terms, we have reconstructed an effective model of graphene
with arbitrary interaction strengths z and ξ , respectively, to
investigate the interplay between the SLSB and the KD. We
have observed the behavior of the order parameters with this
effective model, by the mean-field approximation over the
effective potential.

Focusing on the logarithmic singularity of the effective
potential, we have qualitatively obtained the phase diagram
shown in Fig. 5. When the on-site interaction is dominant, the
sublattice (chiral) symmetry of the system is spontaneously
broken, leading to the dynamical mass term of the fermions.
On the other hand, when the nearest-neighbor interaction is
sufficiently large, the hopping parameters in the lattice get
renormalized with the Kekulé distortion pattern. In this case
the fermions still obtain a dynamical spectral gap, without
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breaking the sublattice (chiral) symmetry. Moreover, this KD
phase is split into two regions KD1 (λ� > 0) and KD2 (λ� <

0), corresponding to two different minima of the effective
potential. Such a splitting line ξ = ξK is numerically seen
by taking the limit where the on-site interaction is omitted
(z = 0). For instance, when the on-site interaction strength
z = 1, which corresponds to the strong coupling expansion of
the Coulomb interaction, the system reveals the SLSB phase
in the strong coupling limit. The system turns into the KD1
phase at ξ = 0.20 (β = 0.92), and into the KD2 phase at ξ =
ξK = 10.67. Since z = 1 and β = 0.037 (ξ = 0.008) in the
vacuum-suspended monolayer graphene, we expect a gapped
phase with SLSB, while the system may reveal the KD phases
if the Coulomb interaction is suppressed (β is increased) by
the screening effect by substrates or the renormalization of
the Fermi velocity v

F
.36 The KD1 phase does not appear at

sufficiently large z, as seen at z = 40 and 50 in this work. It
has been verified both qualitatively and numerically that all the
phase transitions in the phase diagram obtained in this work
are first-order phase transitions, that is, the order parameters
reveal nonanalyticity when crossing the phase boundaries.

There are still several open questions to be solved within
the framework of this study. Since the spin degrees of freedom
are absorbed in the fermion doubling, which is the artifact of
the lattice discretization, spin-related ordering, such as the spin
density wave (SDW) phase37,38 and the “spin-Kekulé” phase,31

cannot be identified out of the SLSB and KD phases in this
work. Some other lattice discretization scheme that exactly
treats the spin degrees of freedom is needed. The effect beyond
the NLO is also an interesting issue. The next-to NLO [O(β2)]
term, which includes the four-Fermi interaction between
second nearest-neighboring sites, can spontaneously generate
an effective magnetic flux in the honeycomb plaquette, leading
to the so-called “anomalous quantum Hall (AQH)” state.26

For example, Ref. 33 treats several types of instabilities by
the exact renormalization group method on the honeycomb
lattice, and shows that only four instabilities, SLSB, KD,
SDW, and AQH, may occur by the effect of the Coulomb
interaction, but the competition among these orders is left for
further investigation. Extension of the lattice strong coupling
expansion method to the bilayer graphene system is also
required since a gapped phase has recently been observed
in bilayer graphene experimentally.39,40 Quite a rich phase
diagram is expected both in monolayer and bilayer graphene
systems.
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