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Quantum dots are artificial atoms used for a multitude of purposes. Charge defects are commonly present and
can significantly perturb the designed energy spectrum and purpose of the dots. Voltage controlled exchange
energy in silicon double quantum dots (DQDs) represents a system that is very sensitive to charge position and is
of interest for quantum computing. We calculate the energy spectrum of the silicon double quantum dot system
using a full configuration interaction that uses tight-binding single-particle wave functions. This approach allows
us to analyze atomic scale charge perturbations of the DQD while accounting for the details of the complex
momentum space physics of silicon (i.e., valley and valley-orbit physics). We analyze how the energy levels and
exchange curves for a DQD are affected by nearby charge defects at various positions relative to the dot, which
are consistent with defects expected in the metal-oxide-semiconductor system.
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I. INTRODUCTION

Electrostatically defined quantum dots (QDs) in semicon-
ductors are one of the most promising systems for realizing
a scalable quantum computer.1 These systems provide the
opportunity to engineer and control quantum mechanical
properties through conventional electronics,2 and all elements
of a qubit have been demonstrated in a GaAs double quantum
dot (DQD).4 The presence of nuclear spins in GaAs, however,
limit its spin coherence times to order of nanoseconds3,4

without any quantum control. Silicon, on the other hand, can
have exceptionally long spin coherence times, often on the
order of milliseconds to seconds,5,6 and is therefore a very
promising host material for solid-state qubits.

After a decade of extensive research, experiments are
beginning to build and measure few electron silicon QDs
repeatedly.7–13 The recent demonstration of single-shot spin
readout in silicon also marks a significant milestone toward
building a functional silicon qubit.14 Several groups are now
achieving coherent control manipulation of silicon spins. How-
ever, charge defects represent a potential challenge to forming
predictable QD energetics and spin behavior. Inevitable charge
defects in metal-oxide-semiconductor (MOS), for example,
could strongly localize the electron even within a dot.15 In
this paper, we investigate the effect of fixed charges in the
dielectric on the voltage tuned exchange (J) curve of a silicon
MOS DQD. We investigate the impact of strong localizing
Coulomb centers on the J-curve tunability accounting for the
full silicon band structure.

We have developed an atomistic tight-binding (TB) based
full configuration interaction (FCI) method to compute the
multielectron states of a DQD.16 The single-particle wave
function is solved using the TB method for a DQD potential
superimposed on the crystal potential. The QD wave functions
from the TB solution form the single electron basis for the
FCI. We combine the atomic scale effects with an exact many-
electron method to capture excited electron configurations,
exchange, and correlation effects with accuracy. The method
enables simulation of realistic devices as millions of atoms
can be simulated in high-performance computing clusters,17

and, in general, the atomistic TB method captures realistic

details of the devices including miscuts, step roughness, alloy
disorder, valley splitting, confinement geometries, strain, and
applied fields.

This paper is organized as follows. In Sec. II, we compute
binding energies of bare defects in the Si-SiO2 system to
show that these defects can produce localized electron traps.
In Sec. III, we describe the method of computation. Section IV
discusses the energy spectrum and the exchange energies of
the DQD with and without defects, taking into account valley
effects. Section V concludes the paper.

II. CHARGE DEFECTS IN THE DIELECTRIC

Fixed positive charges in the oxide near the Si-SiO2

interface are common in MOS devices. The detailed chemical
basis for the formation of these charge defects has been
explored in Refs. 18 and 19. Typical densities of these defects
can range between 109/cm2 and 1012/cm2 (Ref. 20) and
positive charge is a common polarity of the fixed defects.
Each defect charge produces a Coulomb potential, the tail of
which penetrates into silicon and forms a shallow potential
well that can bind at least one electron below the conduction
band (CB).

Figure 1(a) shows the binding energy of an isolated defect
in SiO2 as a function of the defect depth D, schematically
shown in the top inset of Fig. 1(a), computed from the TB
method. A single defect can bind an electron in silicon with
energies of a few meV, comparable to the orbital energies of
a QD. The inset of Fig. 1(a) shows the distribution of defect
separation distances for various defect densities, as given by
a Poisson distribution, whereas Fig. 1(b) shows the binding
energies of two defects as a function of their lateral separation
R [inset of Fig. 1(b)] at a depth D into the oxide. This shows
that a cluster of defects can bind electrons even more strongly
and are detrimental to QDs. The binding energies compare
well with recent measurements of defect states using electron
spin resonance techniques.21 For these bare defect binding
energy calculations, we used a large simulation domain of
100 nm × 100 nm × 50 nm to avoid finite-size effects.
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FIG. 1. (Color online) Binding energies due to (a) a single charge defect as a function of depth D into the oxide, and (b) two charge defects
as a function of their separation R for two different depths D. The inset of (a) shows the probability of finding two defects a distance R apart
for various defect densities.

III. METHOD

The single-electron TB Hamiltonian hi of a defect and a
DQD, corresponding to the ith electron, is expressed as

hi = H0 + min{a(x − L)2 + ε,a(x + L)2} + ay2 + eFzz

− e2(1 − Q)

4πεSi

√
(x − xd )2 + (y − yd )2 + (z + D)2

, (1)

where H0 is the TB Hamiltonian of the host silicon formulated
semiempirically with the ten-band sp3d5s∗ model.17 The
second and the third terms describe the 2D parabolic potential
energy of the QDs with curvature a and center-to-center
separation of 2L. The curvature a of the dot depends on
the effective mass m∗ of silicon conduction band and the
effective dielectric constant (εSi + εSiO2 )/2, which takes into
account the image charge of a dot electron.22 The left dot
is subjected to a detuning of ε relative to the right dot.
The fourth term is the potential energy due to a uniform
vertical electric field Fz that confines the electrons at the
interface. The fifth term is the Coulomb potential energy of
a defect located at (xd,yd, − D) (interface being at z = 0)
along with its image charge correction given by the factor
Q = εSi−εSiO2

εSi+εSiO2
.23 We have used εSi = 11.9ε0 and εSiO2 = 3.9ε0

as the dielectric constants of Si and SiO2, respectively, with
ε0 as the permittivity of free space. Equation (1) is defined in
the silicon region only with z � 0. The Si-SiO2 interface is
modeled as a hydrogen passivated surface,24 as used in earlier
works.25 The full Hamiltonian is solved with a parallel Block
Lanczos algorithm to extract the relevant eigenenergies and
wavefunctions near the CB minimum using the Nanoelectronic
Modeling Tool (NEMO 3D).17 The DQD system simulated in
this work comprises about 1 000 000 atoms, and was solved
typically on 40 processors in 10 h.

A harmonic potential represents a reasonably good estimate
of the confinement for electrostatically gated structures.26

The dot size was chosen so as to correspond to a large
enough dot in silicon, consistent with semiclassical TCAD

(Technology Computer Aided Design) simulations. While the
exact values of the exchange energy will change with dot size,
the qualitative trends shown here are more general, and valid
for all dot sizes.

Using a set of lowest-energy single-electron states ob-
tained from the TB Hamiltonian, all possible antisymmteric
two-electron configurations are constructed, and the two-
electron Hamiltonian shown below is diagonalized in this
basis,

H = h1 + h2 + e2

4π (εSi + εSiO2 )/2|r1 − r2| , (2)

where h1 and h2 are given by Eq. (1), and the third term is
the electron-electron repulsion term with electron coordinates
r1 and r2. The solution of Eq. (2) yields the two-electron
states of the DQD-defect system. On average, we found about
12 single-particle states corresponding to 66 two-electron
configurations that were needed for convergence. The effective
dielectric constant (εSi + εSiO2 )/2 for evaluating the two-
electron integrals takes into account the electronic image
charges, as used in earlier works22 for electronic charges
located near the interface of two media.

The FCI technique has been combined with TB27–32 and
pseudopotential33 methods previously, but in all those works,
the system sizes typically have been limited to less than a
1000 atoms. Our method is based on evaluating the Coulomb
and exchange integrals in momentum space, which adds to the
speed and efficiency, and enables scale up to multi-1 000 000-
atom systems.16 The simulation of such large systems is
essential to understand the electronic properties of realistic
quantum dots in experiments.

IV. RESULTS AND DISCUSSIONS

A. DQD energy spectrum without defects

In Fig. 2(a), we show the low-energy two-electron spectrum
[i.e., total energy of the two-electron Hamiltonian of Eq. (2)]
of the silicon DQD as a function of the detuning energy
ε (shown in the inset). At ε = 0, the DQD is in a (1,1)
charge configuration with each electron in a separate dot. As
ε is increased adiabatically, the DQD goes through a gradual
charge transition to the (0,2) state. Since the wave-function
symmetries and the spatial extent change during this bias
sweep, the exchange (J) energy varies as a function of ε. It has
been demonstrated experimentally in Ref. 4 for a GaAs DQD
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FIG. 2. (Color online) (a) Low-lying energy states (total energies) of a double quantum dot without any charge defects as a function of the
detuning energy ε indicate regions of ε where the DQD is more (1,1) or (0,2) in nature. The dot has a curvature a = 0.0001 eV/nm2 equivalent
to a one-dimensional (1D) harmonic well with energy E0 = 8 meV. The vertical field is Fz = 5 MV/m. The energies are with respect to the
CB minima of bulk silicon at Fz = 0. Inset: 1D schematic of the detuned DQD potential. (b) Ideal (no defect) exchange (J) curves (i.e., various
singlet-triplet splittings) of the DQD extracted from (a) as a function of ε.

that the voltage controlled exchange can be used to provide
a coherent rotation of the qubit encoded in the singlet-triplet
basis.

The bias dependence of the 2e spectrum is well established
for a GaAs DQD.3,4 In Fig. 2, we have extended this calculation
to a silicon DQD, where the multiple conduction-band valleys
add an additional degree of freedom to the electronic states.
The TB calculations take into account all six CB valleys
by representing the full band structure of silicon. Due to
the applied vertical E field of 5 MV/m in the simulations,
the two kz valleys are split from the other four CB valleys.
Interface- and E-field-induced intervalley coupling causes a
further valley splitting of about 0.1 meV between the two
lowest kz valleys for the passivated interface used in this paper.

The salient feature of the two-electron energies, shown in
Fig. 2(a), is the presence of a multiplet of levels which vary
with the bias in a similar manner, whereas a single level
would be expected in a GaAs DQD. These multiplets are
a result of the two kz valleys, as there exist multiple states
with the same orbital envelope and spin wave functions, but
with different rapidly oscillating Bloch wave components, i.e.,
valley configurations. In the case of Fig. 2(a), each multiplet
consists of three distinct lines offset by a roughly constant
valley splitting. The exchange and Coulomb integrals used
to evaluate the FCI Hamiltonian are strongly dependent on
the valley configuration of the states,34 and methods that
use a single-valley approximation for silicon DQDs ignore
potentially important details of the spin and valley physics.
Since Fig. 2(a) is for B = 0 T, the polarized triplets (T+ and
T−) and the unpolarized triplet T0 are degenerate, and only the
T0 triplets are shown.

The exchange energy (J ), defined as the splitting between
the lowest singlet and triplet states, can assume multiple
definitions here due to the valley degrees of freedom. In
Fig. 2(a), we have labeled the energy difference of the lowest
four triplets relative to a ground-state singlet, as J0, J1,
J2, and J3 in order of increasing magnitude. Figure 2(a)
shows that there is a low-lying triplet almost degenerate with
the first excited singlet. These are states with predominantly
orthogonal valley character34,35 and hence small exchange

splitting J0. The magnitude of J0 primarily depends on the
valley splitting caused by the interface and the vertical E field.
The J1 splitting is due to the lowest triplet with a similar valley
configuration as the ground-state singlet, and is analogous to
the J curve of a GaAs DQD. The magnitude of J1 mostly
depends on the curvature of the dots, the magnitude of the
tunnel barrier, and their separation distances. For large valley
splitting, the J0 curve can be higher in energy than the J1
curve. Recent experiments have shown that the relaxation
between triplets of different valley configurations can be
strongly suppressed,36 and hence our primary focus in this
paper will be the J1 splitting, although we will also show how
a defect perturbs the J0 splitting.

The four J curves are plotted as a function of ε in Fig. 2(b).
The J0 curve remains insensitive to detuning as the valley
splitting is not affected by the lateral E field. In the (1,1)
charge configuration realized at small ε, the high tunnel barrier
between the dots reduces the overlap between the electronic
wave functions. Hence the exchange energy J1 is small. As
ε is increased, the (1,1) and the (0,2) singlets anticross, and
the latter evolves into the ground state. The triplet, however,
remains in the (1,1) configuration as the (0,2) triplet is at
higher energy. In this regime, J1 increases steeply with ε as
the singlet-triplet splitting increases [shown in Fig. 2(a) by
the red/gray arrow]. At large enough ε the (1,1) and (0,2)
triplets eventually anticross each other, and the lowest singlets
and triplets are all in the (0,2) configuration. Since the (0,2)
configuration is a high overlap system with the 2e confined in a
single dot, the exchange energy is high. Any further detuning of
the dots has only a negligible effect on the (0,2) configuration,
and J1 becomes insensitive to ε. J2 and J3 behave in a similar
manner to J1.

B. DQD energy spectrum with defects

Having established the voltage dependence of the J curve
in an ideal silicon DQD, we now analyze how the J curve is
perturbed in the presence of nearby oxide charges. In Figs. 3(b)
and 3(c), we show the effect of a defect in the tunnel barrier
between the dots [schematic of Fig. 3(a)(i)] on J1 and J0,
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FIG. 3. (Color online) (a) Schematic of a DQD labeled L and R with oxide charges (i) at the tunnel barrier, (ii) at the center of one dot, and
(iii) at various locations relative to the center of one dot. The corresponding exchange curves (b) J1 and (c) J0 of the DQD for a charge defect
in the oxide at the tunnel barrier between the dots [case (a)(i)]. (d) J1 and (e) J0 curves for an oxide defect at the center of the left dot [case
(a)(ii)]. (f) J1 and (g) J0 curves for different defect locations relative to the center of the dot [case (a)(iii)].

respectively. A positive charge defect in the oxide lowers the
potential barrier between the dots, and increases the overlap
between the electronic wave functions in the (1,1) charge
configuration. As a result, J1 increases at low detuning energy
relative to the ideal J1-curve shown by the red dotted line. A
lower barrier also makes the charge transition from (1,1) to

(0,2) smoother, and the J1 curve flattens out in the transition
region. As shown in Fig. 3(b), increasing the charge magnitude
or decreasing the defect depth impacts the potential barrier
more, as the corresponding J1 curves shift up and flatten out.
Figure 3(c) shows that the J0 curve typically shifts up if the
influence of the defect increases. This is because a stronger

125423-4



VOLTAGE CONTROLLED EXCHANGE ENERGIES OF A . . . PHYSICAL REVIEW B 85, 125423 (2012)

defect potential enhances the vertical E field, which increases
the valley splitting in both dots.

As the positive defect charge is increased, the DQD is
essentially transformed into a single quantum dot (SQD)
insensitive to ε. This means that if there are sufficient numbers
of defects in close proximity to the tunnel barrier, the tunability
of the J1 curve is hampered. In such a case, attempts to form
a DQD could be futile as the electrons will always reside
in a SQD charge configuration. Another consequence of a
defect in the tunnel barrier is that it could result in an always
“on” exchange gate, as the exchange interaction in the (1,1)
occupation of a DQD is increased.

In Figs. 3(d) and 3(e), we show the J curves for a defect
located at the center of the left dot in the xy plane with various
depths into the oxide [schematic of Fig. 3(a)(ii)]. In this case,
the defect lowers the potential of the left dot relative to the
right even at ε = 0, producing a natural detuning bias for
the dots. The magnitude of this detuning increases as the
defect is located closer to the dot (i.e., depth D decreases).
Figure 3(d) shows that the J1 curves are translated more in ε

as D decreases, as more detuning bias needs to be applied to
compensate for the defect-induced detuning and to restore the
electrons to the (1,1) charge configuration. Since the defect
has only a small effect on the tunnel barrier, the slope of
the J curves remain the same, unlike the cases considered in
Fig. 3(b). The presence of a defect in one dot relative to the
other also causes an asymmetry in the J curve between the
(0,2) and the (2,0) configurations as the defect may produce
a stronger confinement for the electrons and may result in a
stronger exchange splitting. The J0 curves of Fig. 3(e) exhibit
a slope with ε due to the fact that the defect produces a larger
valley splitting in the left dot compared to the right. Hence the
J0 curve decreases in magnitude as the electrons go from a
(2,0) to a (0,2) transition.

In Figs. 3(f) and 3(g), we show the effect of a defect at
various locations relative to the dot [schematic of Fig. 3(a)(iii)].
The defect depth D is fixed at 2 nm, and the dot centers are
20 nm apart along the x axis. Assuming the center of the left
dot L to be at x = 0, the label x = +5 nm indicates a defect in
between the left dot and the tunnel barrier, displaced 5 nm from

the left dot L in the x direction. Similarly, the label x = −5 nm
indicates a defect located 5 nm to the left of dot L i.e. 15 nm
away from the tunnel barrier. The J curves corresponding
to these two cases can be understood as a combination of
Figs. 3(b)–3(e). The defect essentially detunes the left dot and
thus translates the curve, but to a lesser extent than it does
in Fig. 3(c) where the defect is at the dot center. A defect in
between the dot and the tunnel barrier, in addition, lowers the
tunnel barrier, which manifests as a flatter J1 curve. The label
y = +5 indicates a defect displaced 5 nm from the dot center
perpendicular to the DQD axis. The J1 curve in this case is
also translated, and lies between the two previous curves, as
expected. Similarly, the J0 curves also exhibit an increased
magnitude and a slope as expected.

V. CONCLUSION

We have done a full configuration interaction calculation
of a Si DQD using TB wave functions that account for valleys
and atomistic details. Our results show that charge defects in
the oxide near a silicon DQD can determine the characteristics
of the multivalley exchange curve. Defects in the tunnel barrier
affect the J curve most as they can hamper the tunability of
a SQD to a DQD. Defects at other locations mainly manifest
as a translation in the J curve to a different detuning bias.
The combined TB and CI method developed to perform these
calculations represents an advancement in the computational
simulation methods for nanostructures, as it integrates the
atomic scale details with an exact many-electron theory, and
can easily scale up to 1 000 000-atom systems.
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