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One-channel conductor coupled to a quantum of resistance: Exact ac conductance and
finite-frequency noise
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We consider a one-channel coherent conductor with a good transmission embedded into an Ohmic environment,
the impedance of which is equal to the quantum of resistance Rq = h/e2 below the RC frequency. This choice
is motivated by the mapping of this problem to a Tomonaga-Luttinger liquid with one impurity, the interaction
parameter of which corresponds to the specific value K = 1/2, allowing for a refermionization procedure. The
“new” fermions have an energy-dependent transmission amplitude, which incorporates the strong correlation
effects and yields the exact dc current and zero-frequency noise through expressions similar to those of
the scattering approach. We recall and discuss these results for our present purpose. Then, we compute the
finite-frequency differential conductance and the finite-frequency nonsymmetrized noise. Contrary to intuitive
expectation, both can not be expressed within the scattering approach for the new fermions, even though they
are still determined by the transmission amplitude. Even more, the finite-frequency conductance obeys an exact
relation in terms of the dc current, which is similar to that derived perturbatively with respect to weak tunneling
within the Tien-Gordon theory, and extended recently to arbitrary strongly interacting systems coupled eventually
to an environment and/or with a fractional charge. We also show that the emission excess noise vanishes exactly
above eV , even though the underlying Tomonaga-Luttinger liquid model corresponds to a many-body correlated
system. Our results apply for all ranges of temperature, voltages, and frequencies below the RC frequency, and
they allow us to explore fully the quantum regime.
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I. INTRODUCTION

Laws of electrical circuits are drastically modified when
mesoscopic systems are incorporated. A coherent conductor
embedded into a circuit sees the imposed voltage by the
generator reduced by a fluctuating voltage associated with the
impedance of the surrounding electromagnetic environment.
This gives rise to a current reduction with a pronounced
nonlinearity, called zero-bias anomaly (ZBA): transfer of
electrons becomes inelastic as they exchange photons with
the electromagnetic environment. This phenomena, called
the dynamical Coulomb blockade (DCB), has attracted a
tremendous interest both theoretically and experimentally.1

Nevertheless, most of the works have been initially developed
by focusing on the limit of a weakly transmitting conductor,
i.e., the tunneling regime.2 More recently, interest in the regime
of few well-transmitting channels has emerged. On one hand,
reducing the number of channels makes more apparent the
effect of the circuit, as many channels could play as well
the role of an out-of-equilibrium environment. On the other
hand, highly transmitting conductors raise two interesting
questions. First, whether the charge fluctuations wash out
the DCB, and second, whether the reduction in the current
is related to shot noise in the absence of the environment.
Indeed, this intuitive and attractive relation had been proposed
through a perturbative computation with respect to a very
weak impedance, and has been checked experimentally.3–5

Nevertheless, its validity domain is restricted to high enough
energies, as logarithmic divergences arise: one needs to go
beyond the weak feedback action. This was particularly the
case for an Ohmic environment, i.e., having an impedance

Z(ω) = R at frequencies ω < ωRC = 1/RC (where R is the
resistance and C the capacitance): this situation has not only
relevance to realistic experiments but also a fundamental
interest, being related to the investigation of electronic in-
teractions. The logarithmic divergences have been resummed
using a renormalization group (RG) scheme by Kindermann
and Nazarov,6 dealing again with R � Rq , where Rq = h/e2

is the quantum of resistance. It has been nevertheless possible,
in a simultaneous and independent work, to deal with an
arbitrary value of R: one of the authors, with Saleur,7 has
shown that the problem of a short-coherent conductor in series
with a resistance R is equivalent to the impurity problem
in a Tomonaga-Luttinger liquid8,9 (TLL) with an interaction
parameter

K = (1 + R/Rq)−1. (1)

When specified to the limit of small R, this mapping had led to
recover the same results as those by Kindermann and Nazarov.
These findings answer the two questions addressed above.
First, the DCB still persists at good transmission, showing up
below an energy scale eVB (depending in a nonuniversal way
on R and on transmission): it corresponds to the crossover
voltage between the so-called weak backscattering (WBS)
regime at high energy and strong backscattering (SBS) regime
at low energy.10 Second, the reduction in the current is related
to the noise in the presence of the environment, and not to the
noise of the isolated conductor as stated before [see Eq. (4)].

Recent pioneering experiments by Pierre’s group,11 where
the strong feedback of an arbitrary impedance on a one-channel
edge state has been investigated, has shown satisfactory
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agreement with the theoretical predictions of Refs. 6 and 7.
Interestingly, even though one has to take strictly the limit
of one channel in Ref. 7, the equivalence to a TLL thus
established seems to extend to many channels when they are
treated in a mean-field framework, provided one renormalizes
the parameter K by including the resistance of the channels,
and scales the voltage appropriately, as one can infer from a
more recent study.12

By mapping a one-channel conductor in series with an
Ohmic environment to a TLL, the parameter K of which can
be controlled by tuning R [see Eq. (1)], one gets as well a
promising alternative to test the theoretical predictions for the
impurity problem in a TLL. Indeed, satisfactory experimental
evidence has been lacking, even though partial success has
been claimed to be obtained. In particular, as noticed in
Ref. 7, the case of an environmental resistance equal to the
quantum of resistance R = Rq corresponds to a TLL with
an interaction parameter K = 1/2. In that case, the impurity
problem in a TLL can be solved exactly in a more transparent
way compared to other values of K (see Ref. 13 for instance).
Such an apparent simplicity is due to the introduction of new
chiral fermions, which arise from a mathematical construction
without any physical entity, and incorporate nontrivial strong
correlation effects. The nonperturbative investigation has a
fundamental interest: it explores crucial issues not reached
through perturbative approaches. Nevertheless, the situation
with K = 1/2 has never been achieved experimentally. Indeed,
the ideal candidate to investigate the TLL’s behavior is usually
provided by edge states with a constriction in the fractional
quantum Hall effect (FQHE). However, as K plays the role
of the fractional filling factor ν, and as the description of the
edges in terms of one-channel chiral TLL model is valid only
for simple values, ν = K = 1/(2n + 1) with n an integer, it
has not been possible to achieve a chiral TLL with K = 1/2.
Other potential candidates are provided by quantum wires and
carbon nanotubes. However, three main difficulties arise in
those systems: (i) achieving only one backscattering center;
(ii) tuning the interaction parameter K; and (iii) taking into
account the connection to reservoirs and finite-size effects,
where only a perturbative treatment of the impurity has
been possible.14–18 Thus, a coherent one-channel conductor
connected to a quantum of resistance R = Rq , as achieved
recently,11 offers a unique opportunity to explore the properties
of a TLL with an impurity at K = 1/2.

The specific value K = 1/2 is exciting as it allows us
to obtain handy analytic expressions for dc current and the
zero-frequency noise. Beyond the stationary regime, time-
dependent transport probes even more the dynamics and tests
in a precise way the underlying model.

This is the case of finite-frequency (FF) noise. In view of
the mapping in Ref. 7, one can use previous results obtained in
the FQHE. On the one hand, as far as the FF symmetrized noise
is concerned, Chamon et al.19 have computed it perturbatively
with respect to the impurity strength, and nonperturbatively
at the specific value K = 1/2. On the other hand, within the
framework of the exact solution of Ref. 13, Lesage and Saleur20

have obtained only its behavior for low frequencies or close to
the “Josephson” singularity e∗V , where V denotes the voltage
and e∗ = Ke.21 Notice that both approaches disagree, apart
from the particular value K = 1/2.

Nevertheless, it has been possible to measure experi-
mentally the FF nonsymmetrized noise,22 which is more
interesting to explore. It can be inferred from Ref. 23, dealing
with edge states at simple filling factors both in the WBS
and SBS regimes: the same results apply to a coherent
conductor with a good bare transmission τ0 connected to an
arbitrary resistance at high or low enough energies, as well
as for a low transmission.24 Our aim is to go beyond this
perturbative computation, offering a full description extending
over all energy ranges below ωc = min{ωF ,ωRC}, where ωF

is the frequency cutoff associated to the fermionic degrees
of freedom in the conductor. This is precisely possible at
R = Rq . Thus, our study gives nonperturbative results for
the FF nonsymmetrized noise, without assuming either weak
resistance or high or low enough energies associated to the
WBS or SBS regimes. In addition, this offers a benchmark for
other values of the resistance.

One of the key steps within the refermionization proce-
dure is that the chiral-independent fermions have now an
energy-dependent transmission amplitude t(ω) [see Eq. (5)],
which encodes the nontrivial many-body correlations. Indeed,
the associated transmission coefficient T (ω) = |t(ω)|2 has
nothing to do with the effective transmission obtained for
K ≈ 1 by the RG approach,6,25 and can not be obtained
adiabatically from that in the absence of interactions τ0. It
has been widely accepted that transport properties of the
system can be obtained within the scattering approach using
t(ω). This was shown to be valid both for the dc current, as
well as for the full counting statistics (FCS).26 Surprisingly,
our study shows that the scattering approach fails when one
deals with time-dependent transport: the FF noise can still be
expressed in terms of t(ω), nevertheless it obeys a different
relation. The same feature occurs for another quantity: the
out-of-equilibrium FF dissipative conductance Re[G(V,ω)],
which depends on the applied dc voltage and the frequency
of the superimposed modulation, in addition to its implicit
dependence on temperature.

This last quantity has started to be studied only recently
in few correlated systems, where its interest has been shown:
quantum wires with an impurity27 and Kondo problem.28 This
has become possible owing to a crucial result: Re[G(V,ω)]
is given by an out-of-equilibrium Kubo-type formula, i.e.,
by the asymmetry between the emission and absorption FF
noise.29–31 In this nonperturbative investigation, we show that
Re[G(V,ω)] does not fit with its expression obtained within the
scattering approach. Even more, it obeys exactly a surprising
relation [Eq. (14)], which determines it fully from the dc
current, in a way similar to that obtained in tunnel junctions
within the Tien-Gordon theory, but with a renormalized charge
here.32,33 Recently, such a relation has been generalized to
full extent, including arbitrary interactions: it has been shown
to be universal to lowest order with respect to a local or
spatially extended tunneling at arbitrary dimension, as well
as with respect to local or spatially extended backscattering if
one-dimensional systems are considered.34,35

Notice that our results will depend on parameters such as
the frequency cutoff ωc, an effective transmission we call τ ,
and the voltage scale VB , which is related in a nonuniversal
way to ωc and τ . Nevertheless, we will show that the scaling
laws, known to be obeyed by the dc current, can be extended
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to the FF conductance and FF noise. More precisely, all these
quantities depend only on V/VB , kBT /eVB , and h̄ω/eVB ,
where T denotes the temperature.

The paper is organized as follows: In Sec. II, we review the
mapping to an impurity problem in the TLL model, which is
used to take the Ohmic environment into account, and some of
its general consequences on dc transport for arbitrary values
of the environmental resistance.7 Next, in Sec. III, we present
our calculations performed in the case R = Rq , and give the
formal expressions of the current, noise, and conductance in
terms of transmission amplitude. In Sec. IV, we discuss in
details the dc regime [dc current, differential conductance,
and zero-frequency (ZF) noise] for which we recover known
results.36–39 In Sec. V, we explicit new results concerning the
time-dependent transport, FF conductance, and FF nonsym-
metrized noise, obtained in all energy ranges, and explore
them in the quantum regime. We finally conclude in Sec. VI.

II. MODEL AND OUTLOOK

We consider a one-channel coherent conductor with bare
transmission τ0 in series with a dissipative environment, the
effective capacitance C of which includes implicitly that of the
conductor, thus whose impedance reads as Z(ω) = R/(1 +
iωRC). However, we will restrict to energies below ωRC =
1/RC in the following, thus one can approximate

Z(ω) ≈ R for ω < ωRC. (2)

We denote the voltage imposed by the generator by V , and the
current through the circuit by I (see upper panel in Fig. 1).
The voltage drop across the conductor is generally different
from V . In the trivial limit of τ0 = 1, it is given simply by KV ,
where K is defined by Eq. (1), due to the resistance in series
of the perfect conductor and the resistance R of the Ohmic
environment. Whenever τ0 < 1, this is no more the case, apart
from the perturbative regime with respect to 1 − τ0, when τ0

is close to one.
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FIG. 1. (Color online) Upper panel: Schematic representation of
a one-channel conductor with bare transmission τ0 embedded in
an electric circuit. Lower panel: Profile of the frequency-dependent
transmission coefficient T of the equivalent system as a function of
the frequency ω/ωc and the effective transmission τ [see Eq. (6)].

From now to the end of this section, we review the results of
Ref. 7. The one-channel conductor in series with a resistance
has been shown to be equivalent to an impurity problem
in a TLL, the parameter K of which is given by Eq. (1).
Accordingly, one can use the TLL model in the presence of
backscattering with amplitude vB , the Hamiltonian of which
reads as

H = H0 + h̄ωF vB

4π
√

π
eiφ(t)−ieKV t/h̄ + H.c., (3)

where H0 is the TLL Hamiltonian (for simplicity, we do not
include spin degrees of freedom). The bosonic field φ coincides
with the charge that is transferred through the conductor
eφ(t) = Q(t). This bosonized Hamiltonian is an effective one
valid at energies below a typical energy h̄ωF . In combination
with the condition ω < ωRC for the mapping to hold, we denote
the effective frequency cutoff by ωc = min{ωF ,ωRC}.40 In
Eq. (3), the parameter K in exp(−ieKV t/h̄) results from
the dc conductance of the ballistic conductor (as can be
inferred for instance from Ref. 16). Moreover, the effective
backscattering amplitude vB is not related universally to the
bare transmission τ0 in the absence of the environment. Indeed,
one can not, in general, express the parameters of a strongly
correlated system in terms of those without interactions,
lacking correspondence between them.41 Nevertheless, we
introduce an effective transmission τ = 1/(1 + v2

B) keeping
in mind that τ does not have to coincide with τ0. Of course,
when τ0 = 1, one has no backscattering, and τ = 1 too. Also,
we restrict vB to be weak enough (thus τ close to one) in order
to write the backscattering Hamiltonian in its bosonized form
on the right-hand side of Eq. (3). It is reasonable, though not
well established, that this would correspond to τ0 close to one
as well. It is, however, possible that the Hamiltonian in Eq. (3)
could be extended beyond that restriction.42

The important effective parameter is indeed the scaling
voltage VB ,10 which appears in the Bethe-ansatz solution as
nonuniversal.13 It can be roughly related to the backscattering
amplitude through eVB � h̄ωcv

1/(1−K)
B . Indeed, VB charac-

terizes the crossover between the WBS and SBS regimes.
At energies high enough compared to eVB , one can use the
perturbative RG analysis with respect to a weak impurity
by Kane and Fisher.43 In the opposite limit (i.e., at energies
�eVB ), the wire is cut into two pieces, with weak tunneling
between them. Thus, even though one starts from a weak
impurity, lowering the energy drives the system from the
WBS behavior, where the conductance is slightly reduced,
into the SBS regime where the conductance is suppressed. This
means that the DCB still takes place even when the effective
transmission τ is close to one, but below an effective charging
energy eVB . In particular, at energies much smaller than eVB ,
thus in the SBS regime, it has been shown that one recovers
the P (E) theory, which is rather obtained starting from a
very weak transmission.1 Even more, it is possible to obtain
nonperturbative results not only with respect to R, but also
to 1 − τ , and to describe the whole regime of energies below
ωc. Such an achievement was made possible by exploiting
the Bethe-ansatz exact solutions of Fendley et al.13 for the
impurity problem in a TLL.

In particular, using these results for the current and noise,
it was possible to derive a crucial and exact relation between
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the derivative of the differential conductance G(V,ω = 0) =
dI (V )/dV and the differential ZF noise S(V,ω = 0) at zero
temperature:

Rq |eV | dG(V,ω = 0) = 2R dS(V,ω = 0). (4)

Let us remark that in the limit of small R � Rq , Eq. (4)
fits perfectly with the RG equation obtained by Kindermann
and Nazarov. Within the Bethe-ansatz solution, the FCS can
be computed exactly as well. Using its derivation at zero
temperature,44 the mapping permits to extend Eq. (4) to higher
cumulants. It has also motivated partly the recent investigations
of the FCS at finite temperature.27,45–48

More recently, in an interesting work, Golubev et al.12

have studied a mesoscopic interacting multichannel conductor
connected to an Ohmic environment, using a method based
on Keldysh action. They have confirmed the results presented
above (of Ref. 7) in the perturbative regime they restrict to
(with respect to 1 − τ ), which corresponds to high energies in
the WBS domain.49 Even more, when treating many channels
in a mean-field approach, the agreement holds too, provided
the TLL’s parameter in Eq. (1) incorporates the resistance of
the conductor. This shows that the mapping can be extended
to many channels, as well as its consequences discussed above
(at least at high enough energy), and motivates further the
computation done in this work.

In the following, we consider the situation where the
resistance is equal to the quantum of resistance: R = Rq .
In that case, the TLL parameter is K = 1/2 [see Eq. (1)],
and Eq. (3) is exactly solvable through a refermionization
procedure,19,36,50–53 thus one can perform a nonperturbative
analysis of transport properties. The refermionization intro-
duces new independent chiral fermions with a frequency-
dependent transmission amplitude:

t(ω) = ω

ω + ieVB/2h̄
, (5)

thus a transmission coefficient

T (ω) = |t(ω)|2 = 4h̄2ω2

4h̄2ω2 + e2V 2
B

= τ 2ω2

τ 2ω2 + (1 − τ )2ω2
c

,

(6)

where eVB = 2h̄ωcv
2
B is the energy crossover between the

WBS and SBS regimes. The profile of T (ω) is shown in the
lower panel of Fig. 1. Obviously, T (ω) is identical to 1 (perfect
effective transmission) when τ = 1, whatever the frequency is.

As we will show later on, T (ω = eV/h̄) yields the nonlinear
differential conductance G(V,ω = 0) at zero temperature. In
accordance with the features concerning the crossover from
WBS to SBS, one sees that as soon as τ deviates from one,
T (ω) decreases quickly to zero at low frequency compared to
eVB/h̄. From Eq. (6), notice that T (ω = vBωc) coincides with
the effective transmission τ .

III. RESULTS

In this section, we present the formal results for the
dc current, the nonsymmetrized noise, and the differential
conductance. We first calculate the dc current, defined as the
average of the time derivative of the charge which is transferred

through the conductor: I (V ) = 〈Î (t)〉 = 〈Q̇(t)〉, where Î is the
current operator. Since we consider a dc applied voltage, I (V )
is time independent. The details of the calculation are presented
in Appendix A. We obtain54

I (V ) = e

4π

∫ ∞

−∞
dωT (ω)[f (h̄ω − eV/2) − f (h̄ω + eV/2)],

(7)

which corresponds to the Landauer formulation of the cur-
rent, where the Fermi-Dirac distribution function is given
by f (h̄ω) = [1 + exp(h̄ω/kBT )]−1. The density of states
multiplied by the velocity is a constant, equal to 1/2π ,
because the energy spectrum of the new fermions is linear
too. Equation (7) describes the behavior of the dc current
over all voltage and temperature ranges, starting from the
WBS regime down to the SBS regime. We have to recall
that the model describes a strongly correlated system where
interactions can not be treated by any mean-field approach, and
that the transmission amplitude incorporates their nontrivial
effects. Notice that in Eq. (7) we have made the choice of
extending the limits of integration to plus and minus infinity.
Strictly speaking, these limits should be −ωc and ωc, however,
we have checked that the correction terms are negligible. In the
following, a similar choice will be made in all integrals over
frequencies.

Next, we calculate the FF nonsymmetrized noise defined as
the Fourier transform of the current fluctuations:

S(V,ω) =
∫ ∞

−∞
dt eiωt 〈δÎ (0)δÎ (t)〉, (8)

where δÎ (t) = Î (t) − 〈Î 〉. We obtain the following result (see
Appendix B for details):

S(V,ω) = e2

4π

∑
±

∫ ∞

−∞
dω′([T (ω′)T (ω + ω′) + |t(ω′) − t(ω + ω′)|2/4][1 − f (h̄ω′ ± eV/2)]f (h̄ω′ + h̄ω ± eV/2)

+ [T (ω′) − T (ω′)T (ω + ω′) − |t(ω′) − t(ω + ω′)|2/4][1 − f (h̄ω′ ± eV/2)]f (h̄ω′ + h̄ω ∓ eV/2)). (9)
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A crucial and surprising observation is that this expression
differs from that obtained within the scattering approach
for a one-channel conductor with an energy-dependent
transmission55–58 (see Appendix C for more details on that
comparison), even when applied to chiral fermions.59

It is interesting to cast Eq. (9) under the alternative form

S(V,ω) = e

2

∑
±

N (h̄ω ± eV )[I (±V ) + I (2h̄ω/e ± V )]

+ e2

4π

∑
±

[N (h̄ω ± eV ) − N (h̄ω)]
∫ ∞

−∞
dω′

×
[
T (ω′)T (ω + ω′) + |t(ω′) − t(ω + ω′)|2

4

]
× [f (h̄ω + h̄ω′ ± eV/2) − f (h̄ω′ ∓ eV/2)],

(10)

where N (h̄ω) = [exp(h̄ω/kBT ) − 1]−1 is the Bose-Einstein
distribution function. Notice that in the trivial limit τ = τ0 =
1 (i.e., perfect transmission), the voltage drop across the
mesoscopic conductor is V/2 and the FF noise reduces to
S(V,ω) = h̄ωN (h̄ω)Gq whatever the temperature is, where
Gq = e2/h is the quantum of conductance. An interesting
point is that, in the right-hand side of Eq. (10), both
distribution functions f for fermions and N for bosons (of the
electromagnetic environment, thus electron-hole excitations)
are involved, which explains the fact that the effective voltage
is not the same in their arguments: one has h̄ω ± eV/2 for the
function f , and h̄ω ± eV for the function N .

From Eq. (9), we deduce immediately the ZF noise

S(V,0) = e2

4π

∑
±

∫ ∞

−∞
dω′(T 2(ω′)[1 − f (h̄ω′ ± eV/2)]

× f (h̄ω′ ± eV/2) + T (ω′)[1 − T (ω′)]
× [1 − f (h̄ω′ ± eV/2)]f (h̄ω′ ∓ eV/2)). (11)

Contrary to what occurs for the FF noise, one recovers, in the
ZF limit, an expression in terms of the transmission coefficient
T similar to that within the scattering theory.

Let us now calculate the FF conductance, which is related
to the nonsymmetrized noise through the exact relation27,29

Re[G(V,ω)] = S(V,−ω) − S(V,ω)

2h̄ω
. (12)

Reporting Eq. (9) in Eq. (12), all the terms that contain a
product of transmission coefficients vanish, and we find simply

Re[G(V,ω)] = e2

4hω

∑
±

∫ ∞

−∞
dω′T (ω′)[f (h̄ω′ ± eV/2)

− f (h̄ω + h̄ω′ ± eV/2)], (13)

which obeys unexpectedly the exact relation60

Re[G(V,ω)] = e

4h̄ω
[I (V + 2h̄ω/e) − I (V − 2h̄ω/e)] .

(14)

This is a central result of our paper: even though our
computation is nonperturbative, one recovers a similar relation
to that obtained within the perturbative Tien-Gordon theory,
with a renormalized charge e/2.32,33 Indeed, such a relation

has been recently shown in Ref. 35 to be generally valid
for all strongly correlated systems at arbitrary dimensions,
with possible coupling to an arbitrary electromagnetic en-
vironment, provided one requires the tunneling regime. In
one-dimensional systems, the same work has shown the
universality of the relation for one or many weak impurities in
the WBS regime aside from its validity in the SBS regime or
for tunneling barriers. Here, surprisingly, for a TLL with an
impurity and K = 1/2, or a conductor coupled to a quantum
resistance, Eq. (14) is valid for all voltage, temperature, and
frequency ranges (below h̄ωc) with a renormalized charge e/2.

It is interesting as well to specify to frequencies much larger
than the applied voltage V , where the FF conductance becomes
voltage independent, thus reaches a linear regime. In that case,
Eq. (14) can be approximated simply, as in Ref. 35, by

Re[G(V � h̄ω/e,ω)] ≈ eI (2h̄ω/e)

h̄ω
. (15)

In the two following sections, starting from the expressions
derived here, we first recall some known results of the
stationary regime (Sec. IV), and next we discuss in details
the new results of the time-dependent regime (Sec. V).

IV. DIFFERENTIAL CONDUCTANCE AND ZF NOISE

In this section, we explicit in more details the dc transport in
all the temperature and voltage ranges, starting from the low-
temperature regime (kBT � eV ) and ending with the high-
temperature regime (kBT � eV ).

Low-temperature behavior. In the limit of strictly zero
temperature, the integral over frequency in Eq. (7) can be
performed analytically and the dc current reads as36–38

I (V ) = GqVB

2

[
V

VB

− arctan

(
V

VB

)]
. (16)

The dc current is thus given by a product of VB multiplied by
a function of V/VB . This result has been used successfully
to describe recent experimental data.61 For perfect effective
transmission τ = 1 (i.e., VB = 0), we recover Ohm’s law:
I (V ) = V/(2Rq), whereas at τ < 1, the dc current is reduced;
DCB persists even though one starts from a good effective
transmission. Even more, one can check, as shown in Ref. 7,
that in the SBS regime, at V � VB , one recovers a power-law
behavior controlled by the exponent 1 + 2R/Rq = 3 as in the
P (E) theory, and obtained rather for a weakly transmitting
conductor.1 For that, one expands Eq. (16) with respect to
V/VB :

I (V � VB) = GqV
3

6V 2
B

. (17)

In the opposite limit of the WBS regime, i.e., at V � VB ,
the reduction to the perfect current, called the backscattering
current

IB(V ) = GqV

2
− I (V ), (18)

can be expanded with respect to VB/V :

IB(V � VB) � GqVB

2

(
π

2
− VB

V

)
. (19)
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FIG. 2. (Color online) Left panel: Differential conductance, in
units of e2/h, as a function of eV/h̄ω, for different values of τ ,
at kBT /h̄ωc = 0.001. Since we have eVB/h̄ωc = 2(1 − τ )/τ , the
corresponding values of VB are eVB/h̄ωc = 0.02 (red solid line),
eVB/h̄ωc = 0.1 (green dashed line), eVB/h̄ωc = 0.22 (blue short
dashed line), and eVB/h̄ωc = 0.5 (black dotted line). Right panel: All
the curves of the left graph scale to a single one when one considers
the variation with V/VB . We take kBT /eVB = 0.001.

Notice that the first term on the right-hand side corresponds to
that obtained within the perturbative computation38 IB(V ) ∼
V 2K−1, which becomes voltage independent at K = 1/2.

The differential conductance can be obtained either by
letting ω → 0 in Eq. (13), or by differentiating the dc current
of Eq. (16). At zero temperature, it reads as

G(V,ω = 0) = dI (V )

dV
= Gq

2

[
1 − V 2

B

V 2 + V 2
B

]
, (20)

and obeys the relation

G(V,ω = 0) = Gq

2
T

(
eV

2h̄

)
, (21)

where the behavior of the transmission coefficient T is shown
on the lower panel of Fig. 1. Notice that, at τ = 1, the
differential conductance becomes constant (linear): it is equal
to Gq/2 as the ballistic conductor is in series with a resistance
R = Rq . At τ < 1, G(V,ω = 0) can formally reach Gq/2 for
V → ∞, nevertheless, it stays below since eV is limited by
the cutoff h̄ωc.

The left panel of Fig. 2 gives the differential conductance at
low temperature, which shows a ZBA that is more pronounced
when τ is reduced. A surprising result is its large sensitivity
with respect to small variations of τ in the vicinity of 1 (see the
red and green curves in Fig. 2 for example): it is due both to
the rapid variations of T (ω′) at frequencies low compared to
ωc (when τ is close to 1, see the lower panel of Fig. 1), which
are precisely those that give the dominant contribution to the
integral over ω′ in Eq. (13).62 We can see that the crossover
VB varies rapidly in the vicinity of τ close to one, thus, the
SBS regime is reached much more rapidly when τ decreases.
It is important to recall that all the curves scale to the same
one when one scales the voltage by VB , as shown in the right
panel of Fig. 2.

At zero temperature, the ZF noise of Eq. (11) becomes

S(V,ω = 0) = GqeVB

4

∣∣∣∣arctan

(
V

VB

)
− V VB

V 2 + V 2
B

∣∣∣∣ . (22)

As for the dc current, the ZF noise is given by a product of
VB multiplied by a function of V/VB . One can check that the
ZF noise obeys Eq. (4), with R = Rq , which confirms that the
ZBA is exactly linked to the ZF shot noise in the presence of
the electromagnetic environment.
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FIG. 3. (Color online) dc current and ZF noise as a function of
the effective transmission τ , for eV/h̄ωc = 0.2, at a low temperature:
kBT /h̄ωc = 0.001. The arrows indicate the associated values of
eVB/h̄ωc. With a frequency cutoff of about 1 THz, the value 0.01
eωc on the axis corresponds to a current of about 10 nA.

Figure 3 shows the dc current and the ZF noise as functions
of τ , at low temperatures compared to voltage kBT � eV : the
current shows an increasing behavior, whereas the ZF noise
is nonmonotonous. This is due to the fact that the current is
expressed as the integral of the transmission coefficient [see
Eq. (7)], and that the integral expression of the ZF noise of
Eq. (11) contains a term proportional to T (ω′)[1 − T (ω′)].
For VB > V (i.e., τ < 0.9 using the parameters of Fig. 3),
the current and ZF noise curves converge to the same value.
Thus, the Fano factor [given by the ratio S(V,ω = 0)/|I (V )|]
tends to e, the value obtained in the Poissonian regime
with independent transfer events of charge e through the
mesoscopic conductor. For VB � V , the transfer events are no
more independent, but the noise is still close to zero because
of the [1 − T (ω′)] factor. In addition, the Fano factor [defined
this time by the ratio S(V,ω = 0)/|IB(V )|, where IB is the
backscattering current given by Eq. (18)] is equal to e∗ = e/2.
In the FQHE at ν = K = 1/(2n + 1), the Fano factor would
be given by fractional charge e∗ = Ke. In the DCB context,
this renormalization is related to the dc conductance Gq/2
without backscattering.

Intermediate-temperature behavior. The left panel of Fig. 4
shows the differential conductance at zero voltage as a function
of temperature for various values of τ . When the temperature
increases, the ZBA is suppressed, a behavior similar to what
is obtained within the P(E) theory.1,63 Again, all these curves
coincide when one considers their variation with respect to
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FIG. 4. (Color online) Left panel: Differential conductance, in
units of e2/h, as a function of temperature T , in units of h̄ωc/kB , for
different values of τ , at V = 0. Right panel: All the curves of the left
graphic scale to a single one when one considers the variation with
respect to kBT /eVB .
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FIG. 5. (Color online) dc current and ZF noise as a function of
the effective transmission τ , for eV/h̄ωc = 0.2 and kBT /h̄ωc = 0.2.
The arrows indicate the associated values of eVB/h̄ωc.

kBT /eVB (see right panel of Fig. 4). Figure 5 shows that the
current and the ZF noise increase both monotonously with τ ,
and that the noise is larger than the current due to thermal
fluctuations. In the intermediate-temperature regime kBT ≈
eV , the ZF noise has a totally different dependence on τ in
comparison to its behavior at low temperature due again to an
increasing contribution of the thermal noise. However, the total
noise is not a direct superposition of shot noise and thermal
noise, but results from a more complicated interplay between
them.16,23,27

High-temperature behavior. In the equilibrium regime (i.e.,
for kBT � eV ), the dc current of Eq. (7) becomes strictly
linear in V , and the linear conductance takes the value36–39

G = G(V = 0,ω = 0)

= Gq

2

[
1 − eVB

4πkBT
� ′

(
1

2
+ eVB

4πkBT

)]
, (23)

where �(x) = 	′(x)/	(x), and 	 is the gamma function. In
particular, in the SBS, at kBT � eVB , one recovers the power
law

G = 2π2Gqk
2
BT 2

3e2V 2
B

. (24)

This result is in accordance with the generic behavior of the
TLL in the SBS regime,38,43 where one has G ∼ T 2/K−2,
as K = 1/2 here. It is also similar to that obtained within
the P (E) theory in the tunneling regime, even though the
conductor is well transmitting here.7 Notice that this depen-
dence on temperatures kBT � eVB in Eq. (24) is similar
to that of the nonlinear conductance on voltages V � VB ,
as one can see from differentiating Eq. (17). This confirms,
as generally expected, that temperature and voltage play
symmetric roles. More precisely, the differential conductance
at both finite temperatures and voltages obeys a scaling law:
G ∼ T αF (V/T ), where F (x � 1) � xα and F (x � 1) →
constant value. This leads in particular to the same power-law
behavior with respect to max{kBT ,eV }. While this is valid
in the SBS regime as we have just shown, with α = 2, it
turns out that this scaling behavior is violated in the opposite
limit of WBS as we discuss in detail now. More precisely,
one has to consider the backscattering conductance, defined
as the differential of the backscattering current in Eq. (18):

GB = Gq/2 − G. Using Eq. (23) at kBT � eVB yields

GB = πGqeVB

16kBT
, (25)

in accordance with the behavior VBT 2K−2 at arbitrary K . We
see, however, that this dependence on temperature is different
from that on voltage obtained by expanding Eq. (20) in the
WBS regime (V � VB) [see also Eq. (19)]:

GB = GqV
2
B

2V 2
. (26)

As we have already commented concerning Eq. (19), for
generic values of K , the lowest-order expansion of the
backscattering current is given by IB ∼ VBV 2K−1, leading to
a differential conductance proportional to (2K − 1)VBV 2K−2,
which cancels at K = 1/2. This can be seen as well by
differentiating the constant term on the right-hand side of
Eq. (19): thus, one needs the next term, yielding to the first
nonzero contribution in Eq. (26).

V. FF CONDUCTANCE AND FF NOISE

In this section, we discuss the dynamical properties of our
system by performing plot analysis of the formal expressions
of the FF conductance Re[G(V,ω)] and the FF nonsym-
metrized noise S(V,ω) obtained in Sec. III. Both quantities
depend not only of the voltage V and frequency ω, but also on
temperature. More precisely, they can be cast into a scaling
form, being a function of V/VB , h̄ω/eVB , and kBT /eVB .
All the dependencies can be obtained exactly, provided these
energies are below h̄ωc, but we have to make restrictions
on the number of curves presented. Here, we will focus
first on low temperatures compared to voltage and frequency,
kBT � {h̄ω,eV }, thus both out-of-equilibrium and quantum
regime allowing for h̄ω to be of the order or greater than eV .
Then, we will consider intermediate and high temperatures
compared to the voltage.

Low-temperature behavior. At T = 0, using Eqs. (14) and
(16), the FF conductance reads as

Re[G(V,ω)] = Gq

2

[
1 − eVB

4h̄ω

∑
±

arctan

(
2h̄ω ± eV

eVB

)]
.

(27)

For τ = 1, it reduces to the perfect conductance (equal to
Gq/2), whereas for τ < 1, it acquires a frequency dependence
as shown on Fig. 6. Since Re[G(V,ω)] is an even function of ω,
it is plotted at positive frequencies only. This result is interest-
ing in the sense that the FF conductance has a nonmonotonous
behavior. It exhibits a minimum (see the left panel of Fig. 6)
at a frequency depending on both V and VB , which is fixed
by the cancellation of the derivative ∂ωRe[G(V,ω)]. When τ

decreases, this nonmonotonous behavior disappears, and the
FF conductance increases regularly with frequency. All these
curves scale to the same one when one considers their variation
with respect to h̄ω/eVB , at fixed V/VB and kBT /eVB (see right
panel of Fig. 6). Notice that because of the finite value of the
voltage, the FF conductance acquires a nonzero value, even
though small, at zero frequency. This has been checked by
zooming around ω = 0 (not shown).

125421-7
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FIG. 6. (Color online) Left panel: FF conductance, in units of
e2/h, as a function of ω/ωc, for different values of τ , at eV/h̄ωc = 0.2
and kBT /h̄ωc = 0.001. Right panel: All the curves of the left graphic
scale to a single one when one considers their variation with h̄ω/eVB .
We take V/VB = 0.2 and kBT /eVB = 0.001.

We turn now our attention to the FF noise. At T = 0, the
integral in Eq. (9) can be performed analytically and the FF
nonsymmetrized noise reads as

S(V,ω) = GqeVBF
(

V

VB

,
h̄ω

eVB

)
, (28)

where the dimensionless function F is given by

F(Ṽ ,ω̃) = −ω̃�(−ω̃) + 1

8

∑
±

[±�(−ω̃ ± Ṽ )arctan(Ṽ )

+ [3�(−ω̃) − �(−ω̃ ∓ Ṽ )]arctan(2ω̃ ± Ṽ )]

+ 1

8ω̃

∑
±

[−�(−ω̃) + �(−ω̃ ± Ṽ )]

× [ln(1 + Ṽ 2) − ln(1 + (2ω̃ ∓ Ṽ )2)]. (29)

Here, � is the Heaviside function, Ṽ = V/VB , and ω̃ =
h̄ω/eVB . Notice that the FF noise is an even function of V .
Because of this parity, we will specify only to positive values
of the voltage. We recall that the FF nonsymmetrized noise
at positive (negative) frequencies corresponds to emission
(absorption) noise.64

An important fact we observe is that the emitted noise
vanishes exactly above eV . In the perturbative regime, one
usually expects that the emitted noise vanishes above eKV .23

Indeed, it has been shown universally for a weak tunneling
junction (between strongly correlated systems in arbitrary
dimensions and with possible coupling to an environment) that
the FF noise associated to tunneling vanishes above qV , where
q is the transferred charge.29 Nevertheless, when higher-order
processes with respect to tunneling are taken into account, one
expects the implication of a many-body complicated process,
and energy conservation at the level of one particle can not
be used anymore. In strongly correlated systems or in a
conductor coupled to an environment, we are not aware of
any nonperturbative statement about the existence of a value
of the frequency ω over which the emitted noise vanishes.
However, we obtain an exact result here: the emitted noise
vanishes strictly at frequencies h̄ω > eV , whatever the values
of V and VB are. This is due to the Bose-Einstein distribution
functions of Eq. (10), which reduce, in the zero-temperature
limit, to the Heaviside functions of Eq. (29). Their presence
is related to the photon exchange between the conductor
and the environment corresponding to electron-hole–type
excitations. One can think of two possible scenarios: (i) The
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FIG. 7. (Color online) Left panel: Nonsymmetrized excess noise
at negative frequency, in units of e2ωc, as a function of ω/ωc, for
different values of τ , at eV/h̄ωc = 0.2 and kBT /h̄ωc = 0.001. Right
panel: Nonsymmetrized excess noise at negative frequency, in units
of e2VB/h̄, as a function of h̄ω/eVB , at V/VB = 0.2 and kBT /eVB =
0.001.

new fermions are independent. For noninteracting electrons,
scattering theory predicts that the emitted noise vanishes above
eV . Even though the FF noise in our case does not obey the
same relation with respect to the transmission amplitude t(ω),
one can imagine that a similar fact holds. (ii) The second
scheme is that the system can not emit at higher frequencies
compared to what the generator can afford, and not compared
to the voltage across the conductor V/2 if it was perfect. If this
is plausible, it opens the question as to whether such a result is
universal for the TLL with an arbitrary value of the parameter
K , thus for other values of the resistance R. Equivalently, for
h̄ω < −eV , we have S(V,−ω) = 0, and Eq. (12) reduces to29

S(V,ω < −eV/h̄) = −2h̄ω Re[G(V,ω)], (30)

which means that at negative frequencies below −eV/h̄ and
zero temperature, the absorption FF noise is governed by the
FF conductance.

It is also interesting to express the FF nonsymmetrized
excess noise, which is often measured experimentally, both
because zero-point fluctuations are not easy to measure (apart
from a pioneering work in Ref. 65), and in order to subtract
undesirable sources of noise. It is given by


S(V,ω) = S(V,ω) − S(V = 0,ω). (31)

At zero temperature, it reads as


S(V,ω) = GqeVB [F(Ṽ ,ω̃) − F(0,ω̃)], (32)

where the function F is given by Eq. (29).
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FIG. 8. (Color online) Left panel: Nonsymmetrized excess noise
at positive frequency, in units of e2ωc, as a function of ω/ωc, for
different values of τ , at eV/h̄ωc = 0.2 and kBT /h̄ωc = 0.001. Right
panel: Nonsymmetrized excess noise at positive frequency, in units
of e2VB/h̄, as a function of h̄ω/eVB , at V/VB = 0.2 and kBT /eVB =
0.001.
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FIG. 9. (Color online) Left panel: FF conductance, in units of

e2/h, as a function of kBT /h̄ωc, for different values of τ , at V = 0
and ω/ωc = 0.1. Right panel: All the curves of the left graphic scale
to a single one when one considers their variations with respect to
kBT /eVB . We take V = 0 and h̄ω/eVB = 0.1.

In the left panels of Figs. 7 and 8 is plotted the excess noise at
a very low temperature66 at positive and negative frequencies,
respectively. The red curve corresponds to a value of VB � V ,
i.e., to the WBS regime. In that case, one sees, according to
Eq. (29), that the dependence close to h̄ω = ±e∗V = ±eV/2
is due mainly to the arctan function: this explains the step
whose width is controlled by VB . The step is smoothed out
at higher VB (i.e., lower τ ) in the green and blue dashed
curves of Fig. 7. However, the asymmetry between absorbed
and emitted excess noise is always present, whatever the
value of the effective transmission is. This asymmetry has
been shown to be related, in a universal way, to nonlinearity,
using Eq. (12).29 Here, the nonlinearity is induced by the
electromagnetic environment. All these curves at different τ

scale to a unique one as it is shown in the right panels of Figs. 7
and 8, where 
S is plotted as a function of h̄ω/eVB when the
ratios V/VB and kBT /eVB are fixed. We have to draw attention
to the fact that this requires us to change simultaneously all
energy scales while VB changes.

Intermediate-temperature behavior. Next, we look at the
effect of the temperature on the FF conductance and the FF
noise. The left panel of Fig. 9 shows that the FF conductance
increases monotonously with temperature. Again, all the
curves scale to a single one when one considers the variation
with respect to kBT /eVB at fixed h̄ω/eVB (see the right panel
of Fig. 9). The FF excess noise at intermediate temperatures is
plotted on the left panel of Fig. 10. However, the asymmetry
of the FF excess noise is still visible in that regime, and
we observe its enhancement when the effective transmission
decreases. Again, all the curves scale to a single one when one
considers the variation with h̄ω/eVB at fixed values of V/VB

and kBT /eVB (see the right panel of Fig. 10).
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FIG. 10. (Color online) Left panel: Nonsymmetrized excess
noise, in units of e2ωc, as a function of ω/ωc, for different values of τ .
We use the values eV/h̄ωc = 0.2 and kBT /h̄ωc = 0.2. Right panel:
Nonsymmetrized excess noise, in units of e2VB/h̄, as a function of
h̄ω/eVB , at V/VB = 0.2 and kBT /eVB = 0.2.

High-temperature behavior. At high temperature compared
to voltage, kBT � eV , we have checked, using Eqs. (10) and
(14), that the FF nonsymmetrized noise is related to the FF
conductance and becomes voltage independent in that limit
according to the fluctuation-dissipation theorem

S(V � kBT /e,ω) = 2h̄ωN (h̄ω)Re[G(V � kBT /e,ω)].

(33)

VI. CONCLUSION

In this paper, we have studied both stationary and time-
dependent transport properties of a well-transmitting one-
channel conductor embedded in an Ohmic environment with
a quantum of resistance Rq = h/e2. We have taken advantage
of the mapping of this problem to a TLL with a particular
value of the interaction parameter K = 1/2. This has allowed
us to obtain results which are nonperturbative with respect
to the resistance of the environment R [here being equal to
Rq , see Eq. (1)], and which describes all regimes of voltages,
frequencies, and temperatures below the cutoff ωc. The results
are controlled by a unique scaling and nonuniversal parameter
VB , which depends on both the properties of the conductor
and the environment. While the dc properties can as well be
derived exactly for other values of R (analytically at zero
temperature, otherwise one would need numerical methods),
using the Bethe-ansatz solution for the impurity problem in
the TLL, the particular choice of R = Rq has allowed us to
obtain the first nonperturbative results for both the FF noise and
the FF conductance. For the latter, we have used its universal
relation to the asymmetry of the emission and absorption noise
via an out-of-equilibrium fluctuation-dissipation theorem type
formula [see Eq. (12)] derived in Ref. 31.

We have first recalled the results for the dc transport ob-
tained in a TLL with parameter K = 1/2 in order to apply them
to our present problem and to discuss them in more details. The
key procedure is based on refermionization, i.e., casting the
nontrivial strong correlation effects into new chiral fermions
with an energy-dependent transmission coefficient T (ω). This
can not be obtained by any “adiabatic” evolution from the
effective transmission τ (which explains our choice for a
different notation). The dc current through the mesoscopic con-
ductor takes a form similar to that within the scattering theory,
applied to the new fermions: it is expressed as the integral over
energy of T (ω) times the difference of the Fermi-Dirac distri-
bution functions of the left and right reservoirs. Even for a good
effective transmission τ , one recovers the DCB at energies be-
low the voltage VB . The reduction to the dc current has a power
law with different exponents when voltages are high or low
compared to VB , corresponding to the WBS and SBS regimes.
In particular, in the latter limit, one recovers the behavior pre-
dicted within the P (E) theory for V � VB for a weakly trans-
mitting conductor, even though we consider a well transmitting
one here. In these two opposite limits, the ZF noise becomes
Poissonian, with a Fano factor respectively given by e/2 or e.
The former renormalization is related to the conductance of
the conductor in the perfect limit, being in series with the envi-
ronmental quantum resistance. The ZF noise obeys as well the
same expression in terms of T (ω) as within the scattering ap-
proach. Nevertheless, this does not hold for the FF noise: even
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though it can be expressed in terms of the transmission ampli-
tude t(ω): this is a surprising and crucial result of our paper.
Another interesting fact is that the emitted FF noise vanishes
strictly above eV at zero temperature, a fact common to non-
interacting electrons, which is not obvious to expect within the
underlying strongly correlated system. We have shown that the
FF conductance does not obey the scattering approach formu-
lation for the new fermions. Rather, it obeys a simple relation
that involves dc currents. This kind of relation was previously
shown for tunneling barriers within the Tien-Gordon theory, or
in the FQHE at simple fillings.23 Recently, it has been extended
to arbitrary filling factors, and even more has been shown to be
universal either for tunneling barriers in arbitrary dimensions,
as well as weak barriers in one dimension.35 It is quite remark-
able that such a relation extends to arbitrary regimes within the
TLL model at K = 1/2. It turns out that the FF conductance
has a nonmonotonous behavior with respect to frequency,
having a minimum at a frequency that depends both on the
applied voltage and the scaling voltage VB , and the value of
which is reduced when the effective transmission τ decreases.

We have shown that both the FF conductance
and the FF noise have a universal behavior at different τ when
voltages, temperatures, and frequencies are all divided by the
same scaling voltage VB . This extends the result obtained for
the differential conductance, valid for arbitrary values of the
parameter K (thus of the resistance R in our problem) where
we expect to get the same scaling behavior for time-dependent
transport as well.

The coherent conductor connected to an Ohmic environ-
ment offers a unique framework to realize a TLL with a tunable
parameter K , and a unique possibility to realize K = 1/2. The
present experiments on that direction are very promising.11

Beyond this issue, our work provides benchmark results for
time-dependent transport in various fundamental problems:
the DCB phenomena, other strongly correlated systems where
the special value K = 1/2 has been studied fully,48 and more
generally those where one solves the interacting problem
in terms of new independent particles, such as within the
Bethe-ansatz methods for the impurity problem in TLL.13 We
have highlighted counterintuitive facts, in particular, we have
shown that one can not systematically apply the scattering
approach to those new independent particles.
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APPENDIX A: CALCULATION OF THE CURRENT

The mapping of Ref. 7 applies to the effective action once
degrees of freedom apart from those at x = 0 are integrated

x

R R

L L
BV

0

FIG. 11. Schematic representation of the left and right propagat-
ing channels in the reservoirs. eVB = 2h̄ωF v2

B is the energy scale that
characterizes backscattering of electrons at the conductor position
x = 0.

out. It is more convenient, for the present computation, to
consider the extended TLL Hamiltonian over space coordinate
x, with an impurity located at x = 0 (see Fig. 11):

H = h̄vF

4π

∫
dx{[∂xφ(x,t)]2 + [∂xφ̃(x,t)]2}

+
√

h̄ωF eVB

32π3
eiφ(0,t)−ieV t/2h̄ + H.c., (A1)

where the bosonic fields φ and φ̃ are related to the initial
bosonic fields describing right (R) and left (L) movers through

φ(x,t) = 1√
2

[φR(x,t) + φL(x,t)], (A2)

φ̃(x,t) = 1√
2

[φR(x,t) − φL(x,t)], (A3)

where ψL,R = ηL,ReiφL,R (x,t)/
√

2πa are the initial fermionic
operators. a is the distance cutoff of the TLL theory. The
Klein factors ηL,R allow us to have the proper commutation
relation for the fermionic operators. Notice that in Eq. (3), the
bosonic field refers to φ(t) ≡ φ(0,t).

The average current through the conductor is given by42

I = evF 〈ρ̂R − ρ̂L〉, (A4)

where vF is the Fermi velocity. The operators ρ̂R and ρ̂L

refer to the densities of right- and left-moving electrons
in TLL reservoirs (see Fig. 11). They are related to the
new fermionic operators introduced in the refermionization
procedure through the relations

ρ̂R(x,t) = ψ̃†(x,t)ψ̃(x,t) + ψ†(x,t)ψ(x,t)

2
, (A5)

ρ̂L(x,t) = ψ̃†(−x,t)ψ̃(−x,t) − ψ†(−x,t)ψ(−x,t)

2
, (A6)

where ψ(x,t) = ηeiφ(x,t)/
√

2πa and ψ̃(x,t) =
η̃eiφ̃(x,t)/

√
2πa are the new fermionic fields associated

to the bosonic fields φ and φ̃: ψ(x,t) is affected by
backscattering and by the applied voltage [see Eq. (A1)],
whereas ψ̃(x,t) is neither affected by backscattering nor
by the applied voltage. In Eq. (A4), the average value is
defined as the average over the scattering state19 minus the
average at equilibrium (i.e., V = 0) since we have to take
the normal order52 in the products of operators that appear
in Eqs. (A5) and (A6). Thus, we immediately conclude that
〈ψ̃†(x,t)ψ̃(x,t)〉 = 0. The Klein factors η and η̃ allow us to
have the proper commutation relation for the new fermionic
operators.

From Eqs. (A5) and (A6), we understand that ρ̂R and
ρ̂L depend on the position x, however, the average of the
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difference 〈ρ̂R − ρ̂L〉, which appears in the current, does not
depend on the position since the average of the total current is
a conserved quantity (it is the reason why we do not keep the
x dependency in the current).

Using this Hamiltonian, one can write the equations of
motion for the fields. The solution for the fermionic field
ψ̃ , associated with the free bosonic field, is that of free
propagating electrons, whereas the solution for ψ is given
by19 (from now, we take x > 0)

ψ(−x,t) = 1√
2πaωF

∫ ∞

−∞
aωe

−i(ω+ eV
2h̄ ) x

vF
−iωt

dω, (A7)

ψ(x,t) = 1√
2πaωF

∫ ∞

−∞
bωe

i(ω+ eV
2h̄ ) x

vF
−iωt

dω, (A8)

where the operator bω = t(ω)aω + r(ω)a†
−ω is a combination

of the annihilation and creation operators a†
ω and aω, which

obey the commutation relation {aω,a
†
ω′ } = δω,ω′ . The trans-

mission and reflection amplitudes read as

t(ω) = 2h̄ω

2h̄ω + ieVB

, (A9)

r(ω) = ieVB

2h̄ω + ieVB

. (A10)

With the help of the solutions given by Eqs. (A7) and (A8),
one can calculate the average over the product of the two
fermionic fields:

〈ψ†(−x,t)ψ(−x,t)〉
= 1

2πvF

∫ ∞

−∞
dω[f (h̄ω − eV/2) − f (h̄ω)] (A11)

and

〈ψ†(x,t)ψ(x,t)〉 = 1

2πvF

∫ ∞

−∞
dω[2T (ω) − 1]

× [f (h̄ω − eV/2) − f (h̄ω)], (A12)

where T = t∗t . We have used the following average values:
〈aωaω′ 〉 = 0 and 〈a†

ωaω′ 〉 = f (ω − eV/2)δω,ω′ , with f the
Fermi-Dirac distribution function. Reporting Eqs. (A11) and
(A12) into Eqs. (A4) and (A5), we finally obtain Eq. (7).

APPENDIX B: NOISE CALCULATION

To calculate the FF nonsymmetrized noise, we need to
evaluate the following correlators (x > 0):

S1 =
∫ ∞

−∞
dt eiωt 〈ψ†(−x,0)ψ(−x,0)ψ†(−x,t)ψ(−x,t)〉,

S2 =
∫ ∞

−∞
dt eiωt 〈ψ†(x,0)ψ(x,0)ψ†(−x,t)ψ(−x,t)〉,

S3 =
∫ ∞

−∞
dt eiωt 〈ψ†(−x,0)ψ(−x,0)ψ†(x,t)ψ(x,t)〉, (B1)

S4 =
∫ ∞

−∞
dt eiωt 〈ψ†(x,0)ψ(x,0)ψ†(x,t)ψ(x,t)〉.

The determination of S1 is rather simple since it involves
contributions that are not affected by the backscattering:

〈ψ†(−x,0)ψ(−x,0)ψ†(−x,t)ψ(−x,t)〉
= 1

4π2a2ω4
F

∫
dω1

∫
dω2

∫
dω3

∫
dω4

〈
a†

ω1
aω2a

†
ω3

aω4

〉
× e

i(−ω1+ω2−ω3+ω4) x
vF

+i(ω3−ω4)t
. (B2)

We use Wick’s theorem to calculate the correlator
〈a†

ω1
aω2a

†
ω3

aω4〉. After successive integrations over frequencies
and times, we obtain

S1 = 1

2πv2
F

∫ ∞

−∞
dω′f (h̄ω + h̄ω′ − eV/2)

× [1 − f (h̄ω′ − eV/2)]. (B3)

The calculation of S2 and S3 mix aω and bω operators since

〈ψ†(x,0)ψ(x,0)ψ†(−x,t)ψ(−x,t)〉
= 1

4π2a2ω4
F

∫
dω1

∫
dω2

∫
dω3

∫
dω4

〈
b†ω1

bω2a
†
ω3

aω4

〉
× e

i(−ω1+ω2−ω3+ω4) x
vF

+i(ω3−ω4)t (B4)

and

〈ψ†(−x,0)ψ(−x,0)ψ†(x,t)ψ(x,t)〉
= 1

4π2a2ω4
F

∫
dω1

∫
dω2

∫
dω3

∫
dω4

〈
a†

ω1
aω2b

†
ω3

bω4

〉
× e

i(−ω1+ω2−ω3+ω4) x
vF

+i(ω3−ω4)t
. (B5)

We obtain S2 = S3 with

S2 = 1

2πv2
F

∫ ∞

−∞
dω′f (h̄ω + h̄ω′ − eV/2)

× [1 − f (h̄ω′ − eV/2)][t(ω′)t∗(ω′)t(ω + ω′)
× t∗(ω + ω′) − r(ω′)r∗(ω′)r(ω + ω′)r∗(ω + ω′)].

(B6)

Next, we calculate S4, which involves bω and b†ω operators,
since

〈ψ†(x,0)ψ(x,0)ψ†(x,t)ψ(x,t)〉
= 1

4π2a2ω4
F

∫
dω1

∫
dω2

∫
dω3

∫
dω4

〈
b†ω1

bω2b
†
ω3

bω4

〉
×e

i(−ω1+ω2−ω3+ω4) x
vF

+i(ω3−ω4)t
. (B7)

Applying Wick’s theorem, we obtain

S4 = 1

2πv2
F

∫ ∞

−∞
dω′

{
f (h̄ω + h̄ω′ − eV/2)

× [1 − f (h̄ω′ − eV/2)][|t(ω′)|2|t(ω + ω′)|2
+ |r(ω′)|2|r(ω + ω′)|2 − 2t(ω′)t∗(ω + ω′)r∗(ω′)

× r(ω + ω′)] +
∑
±

f (h̄ω + h̄ω′ ± eV/2)

× [1 − f (h̄ω′ ∓ eV/2)][|t(ω′)|2|r(ω + ω′)|2

+ t(ω′)t∗(ω + ω′)r∗(ω′)r(ω + ω′)]

}
. (B8)
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Finally, the FF nonsymmetrized noise of Eq. (9) is ob-
tained from S(V,ω) = e2v2

F [S1 + S2 + S3 + S4]/4, where we
replace, everywhere it appears, r(ω) by 1 − t(ω).

APPENDIX C: COMPARISON TO THE RESULTS
OBTAINED WITHIN THE SCATTERING THEORY

In this appendix, we compare the expressions of current,
FF conductance, and noise that we have established to those
obtained in the framework of the scattering theory. It has been
already noted that the expressions of the dc current given
by Eq. (7) and the ZF noise are formally identical to those

derived from the scattering approach (i.e., they are expressed
as integrals of the transmission coefficient times Fermi-Dirac
distribution functions), even though the nontrivial many-body
effects are encoded into this transmission. We show here
that the FF conductance and the FF noise, even though
expressed in terms of the transmission and reflection ampli-
tudes, do not obey the relation derived within the scattering
approach.

To make a comparison with the FF noise given in the
literature,55–58 we need to symmetrize the noise given by
Eq. (9):

S(V,ω) + S(V,−ω) = e2

4π

∫ ∞

−∞
dω′([T (ω′)T (ω + ω′) + |t(ω′) − t(ω + ω′)|2/4][F++(ω,ω′) + F−−(ω,ω′)]

+ [T (ω′) − T (ω′)T (ω + ω′) − |t(ω′) − t(ω + ω′)|2/4][F+−(ω,ω′) + F−+(ω,ω′)]), (C1)

where Fss ′ (ω,ω′) = ∑
± f (h̄ω′ ± h̄ω ± seV/2)[1 − f (h̄ω′ ± s ′eV/2)]. Using our notations, the symmetrized noise of a coherent

one-channel coherent conductor with an energy-dependent transmission T can be obtained within the scattering approach57

Sscattering(V,ω) + Sscattering(V,−ω) = e2

4π

∫ ∞

−∞
dω′([T (ω′)T (ω + ω′) + |t(ω′) − t(ω + ω′)|2]F++(ω,ω′) + T (ω′)T (ω + ω′)

×F−−(ω,ω′) + T (ω′)[1 − T (ω + ω′)]F+−(ω,ω′) + T (ω + ω′)[1 − T (ω′)]F−+(ω,ω′)).
(C2)

The main difference between Eqs. (C1) and (C2) resides
into the factors in front of F++ and F−−, which are identical
in Eq. (C1) but not in Eq. (C2). The same remark applies to

the factors in front of F+− and F−+. If one had a transmission
coefficient T independent on energy, both expressions would
have been identical.
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53D. N. Aristov and P. Wölfle, Phys. Rev. B 80, 045109 (2009).
54From Eq. (7), we directly see that the current is an odd function

with voltage.
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