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Dynamics of photoexcited carriers in graphene
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The nonequilibrium dynamics of carriers and phonons in graphene is investigated by solving the microscopic
kinetic equations with the carrier-phonon and carrier-carrier Coulomb scatterings explicitly included. The Fermi
distribution of hot carriers is found to be established within 100 fs and the temperatures of electrons in the
conduction and valence bands are very close to each other, even when the excitation density and the equilibrium
density are comparable, thanks to the strong interband Coulomb scattering. Moreover, the temporal evolutions
of the differential transmission obtained from our calculations agree with the experiments by Wang et al. [Appl.
Phys. Lett. 96, 081917 (2010)] and Hale et al. [Phys. Rev. B 83, 121404 (2011)] very well, with two distinct
differential transmission relaxations presented. We show that the fast relaxation is due to the rapid carrier-phonon
thermalization and the slow one is mainly because of the slow decay of hot phonons. We also show that the
remote-interfacial phonons have significant influence on the relaxation of the differential transmission and can
be responsible for the difference of the transmission evolutions in samples with few and many layers. In addition,
it is found that the temperatures of the hot phonons in different branches are different and the temperature of hot
carriers can be even lower than that of the hottest phonons. Finally, we show that the slow relaxation rate exhibits
a mild valley in the excitation-density dependence and is linearly dependent on the probe-photon energy.
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I. INTRODUCTION

The unique electrical and optical properties of graphene,
for example, large mobility, long coherent length and excep-
tionally low electrical noise, make it a promising material for
the development of nanoscale devices.1–5 The performance
of many such devices depends critically on the dynamic
properties of carriers and phonons. Therefore, a thorough
understanding of these properties is essential.

The time-resolved optical pump-probe measurement is a
powerful tool widely used to probe the ultrafast dynamics
of photoexcited carriers and has been applied extensively to
graphene lately. In these works, a fast differential transmission
(DT) relaxation of several hundred femtoseconds followed by
a slower picosecond relaxation were observed for graphene on
SiO2 and SiC substrates, where the pulse width is larger than
85 fs.6–9 Dawlaty et al.6 suggested that the fast one is due to the
equilibration of carriers through the carrier-carrier scattering
and the slow one is related to the cooling of the hot-carrier
distribution through the carrier-phonon scattering. However,
as shown by recent experimental investigation in graphene on
mica substrates with ultrashort pulses of 10 fs10 and theoretical
work by Malic et al.,11 the hot-carrier Fermi distribution is
established in tens of femtoseconds. Therefore, this process is
too fast to be resolved in the previous experiments6–9 and hence
cannot be responsible for the fast relaxation. Furthermore,
both experimental12,13 and theoretical works14 show that the
photoexcited carriers lose most energy to optical phonons
within the time scale of the fast relaxation (about 500 fs)
and the slow relaxation rate is in the same order of the
hot-phonon decay rate obtained from the time-resolved Raman
spectroscopy.15,16 Therefore, the fast relaxation is supposed
to be associated with the rapid carrier-phonon equilibration
due to the carrier-phonon scattering and the slow one to
the relaxation of hot phonons through the phonon-phonon
scattering.7–9

The theoretical investigation on this problem is still far from
completion. In the literature, the widely used method is the
coupled rate equations which calculate the energy transferred
among the carriers, phonons, and environment.7,8 This method
is based on the ansatz that the temperatures of electrons in
the conduction and valence bands are always identical after
buildup of the Fermi distribution. This is reasonable when the
excitation density is much larger than the equilibrium carrier
density, since the distributions of electron and hole are almost
identical in this case. Nevertheless, it should be examined when
these two densities are comparable. Moreover, in the previous
investigations, the contribution of the remote-interfacial (RI)
phonons is neglected. How these phonons influence the DT
relaxation is still unclear. In addition, the influence of the
excitation densities on the relaxation has been discussed in the
experiments,8 but the corresponding theoretical investigation
is still lacking. All these questions suggest that a detailed
theoretical investigation from a microscopic approach is
essential.

In this paper, we investigate the nonequilibrium dynamics
of carriers and phonons in graphene via the microscopic
kinetic equation approach with the carrier-phonon and carrier-
carrier Coulomb scatterings explicitly included. The temporal
evolutions of the carrier distribution and the phonon number
as well as the DT are obtained numerically. We find that the
hot-carrier Fermi distribution is established within less than
100 fs. Furthermore, due to the strong interband Coulomb
scattering, the temperatures of electrons in conduction and
valence bands are shown to be very close to each other even
when the excitation and equilibrium densities are comparable.
It is also shown that the calculated DTs have good agreement
with the experimental data by Hale et al.7 and Wang et al.8

for different graphene layer numbers and excitation densities.
Moreover, our calculations provide strong evidence to the
claim in the previous experimental works7–9 that the fast
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relaxation of the DT is due to the carrier-phonon thermalization
and the slow one mainly comes from the hot-phonon decay. We
also show that the RI phonons play an important role in the DT
relaxation and can be responsible for the difference of the DTs
in the few- and many-layer samples. Furthermore, it is shown
that, due to the different carrier-phonon scattering strengths,
the temperatures of hot phonons in different branches are
different. Moreover, the temperature of carriers can be even
lower than that of the hottest phonon. Finally, it is discovered
that the slow relaxation rate exhibits a mild valley in the
excitation-density dependence and depends linearly on the
probe-photon energy.

This paper is organized as follows. In Sec. II, we set up the
model and lay out the kinetic equations. In Sec. III the results
obtained numerically from the kinetic equations are presented.
We summarize in Sec. IV.

II. MODEL AND FORMALISM

We start our investigation from graphene on SiO2 or SiC
substrates. Exploiting the nonequilibrium Green’s function ap-
proach, the kinetic equations of the carriers can be constructed
as17–20

∂tfμkν = ∂tfμkν |ee + ∂tfμkν |ep + ∂tfμkν |ei. (1)

Here μ = +(−) represents the K(K′) valley, k stands for
the wave vectors relative to the K or K′ points, and fμkν

represents the electron distribution functions in the conduction
(ν = +) or valence (ν = −) bands. ∂tfμkν |ee describes the
carrier-carrier Coulomb scattering terms and ∂tfμkν |ep gives
the carrier-phonon scattering terms including the scatterings
between carriers and acoustic, optical, as well as RI phonons.
As the isotropic carrier distribution can be reached in tens
of femtoseconds,11 this allows us to use an isotropic initial
carrier distribution. Thus, the carrier-impurity scattering terms
∂tfμkν |ei are always zero. The carrier-carrier scattering terms
can be written as (h̄ ≡ 1 throughout this paper)

∂tfμkν |ee = −4π
∑

k′ν ′μ′

∑
k1ν

′
1ν

′
2

Ikν,k′ν ′Ik1+k−k′ν ′
1,k1ν

′
2

× ∣∣V νν ′
k,k′

∣∣2
δ(εk′ν ′ − εkν + εk1+k−k′ν ′

1
− εk1ν

′
2
)

× (f >
μ′k1+k−k′ν ′

1
f <

μ′k1ν
′
2
f >

μk′ν ′f
<
μkν − f <

μ′k1+k−k′ν ′
1

× f >
μ′k1ν

′
2
f <

μk′ν ′f
>
μkν), (2)

in which Ikν,k′ν ′ = 1
2 [1 + νν ′ cos(θk − θk′)], f <

μkν ≡ fμkν ,
f >

μkν ≡ 1 − fμkν , and εkν = νvFk, with vF being the Fermi

velocity. V νν ′
k,k′ denotes the screened Coulomb potential under

the random-phase approximation21–23

V νν ′
k+q,k = V 0

q

/[
1 − V 0

q �(q,εk+qν − εkν ′ )
]
, (3)

in which V 0
q = 2πvF rs/q is the two-dimensional bare

Coulomb potential, with rs being the dimensionless Wigner-
Seitz radius22–26 and �(q,ω) given by23,27–29

�(q,ω) =
∑
μνν ′k

2Ikν,k+qν ′
fμkν − fμk+qν ′

εkν − εk+qν ′ + ω + i0+ . (4)

The carrier-phonon scattering terms are given by

∂tfμkν |ep = −2π
∑
k′μ′ν′
λ,±

∣∣Mλμμ′
kν,k′ν ′

∣∣2
δ(εk′ν ′ − εkν ± ωk−k′λ)

× (f >
μ′k′ν ′f

<
μkνn

±
k−k′λ − f <

μ′k′ν ′f
>
μkνn

∓
k−k′λ). (5)

Here λ is the phonon branch index and ωqλ is the corresponding
phonon energy; n±

qλ = nqλ + 1
2 ± 1

2 , with nqλ representing the
phonon number. For acoustic phonons, ωqAC = vphq, with vph

being the acoustic phonon velocity, and the scattering matrices
are

∣∣MACμμ′
kν,k+qν ′

∣∣2 = D2q

2ρmvph
Ikν,k+qν ′δμμ′, (6)

in which D is the deformation potential and ρm denotes the
graphene mass density.30,31 For the RI phonons,

∣∣MRIμμ′
kν,k+qν ′

∣∣2 = g
v2

F e−2qd

aq

Ikν,k+qν ′δμμ′∣∣1 − V 0
q �(q,εkν − εk+qν ′)

∣∣2 , (7)

where g represents the dimensionless coupling parameter
depending on the material of the substrate,26,32 a is the C-C
bond distance, and d stands for the effective distance of the
substrate to the graphene sheet.22,24–26 For the optical phonons,

∣∣MOPμμ′
kν,k′ν ′

∣∣2 = AOP
μμ′νν ′kk′

2ρmωOP
. (8)

In this investigation, we include the transverse optical phonons
(KTO) near the K(K′) point and the longitudinal (�LO) as well
as transverse optical (�TO) phonons near the � point. The
corresponding parameters read

A
�LO/�TO
μμ′νν ′kk′ = 〈

D2
�

〉
[1 − κνν ′ cos(θk + θk′ − 2θk′−k)]δμμ′, (9)

A
KTO
μμ′νν ′kk′ = 〈

D2
K

〉
[1 − νν ′ cos(θk − θk′)]δμ,−μ′ , (10)

with κ = 1(−1) for �LO (�TO) phonons.33,34

In this paper, the dynamics of the RI and optical phonons are
studied, while the acoustic phonons are always set to be at the
environment temperature T0. Similar to those of the carriers,
one can obtain the kinetic equations of the hot phonons

∂tnqλ = ∂tnqλ|ep + ∂tnqλ|pp. (11)

Here, ∂tnqλ|ep and ∂tnqλ|pp come from the carrier-phonon
scattering and the anharmonic decay of hot phonons, respec-
tively. In principle, the hot-phonon distribution is q dependent.
Nevertheless, since the q-revolved phonon distribution nqλ

cannot be measured by the concerned experiments, in the pre-
vious investigations on the DT evolution, an effective phonon
temperature Tλ, determined by the average phonon number
nλ, is used to describe the hot-phonon system instead.7,8 In
this investigation, we also adopt this approximation for the
sake of both simplicity and comparison with the previous
works. The good agreements between our calculations and the
experimental data below also justify this approximation. The
average phonon number can be obtained by nλ = 1

Nph

∑
q nqλ,

where Nph = m(Emax/vF )2/4π is the number of the phonon
modes participating in the carrier-phonon scattering with Emax

representing the upper energy of the hot carriers which are able
to emit phonons,7,8,35 m = 1 for the RI, �TO, and �LO phonons,
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TABLE I. Parameters used in the computation.

a 1.42 Å vF 1×108 cm/s
ω� 196 meVa 〈D2

�〉 45.60 eV2/Å2a

ωK 161 meVa 〈D2
K〉 92.05 eV2/Å2a

D 19 eVb vph 2 × 106 cm/sb

ρm 7.6 × 10−8 g/cm2b d 0.4 nmc,d

SiO2 ωRI1 59 meVd g1 5.4 × 10−3d

ωRI2 155 meVd g2 3.5 × 10−2d

rs 0.8e nref 1.5f

SiC ωRI 116 meVg g 1.4 × 10−2g

rs 0.4d,i nref 2.6h

aReferences 33 and 34.
bReferences 30 and 31.
cReference 25.
dReference 26.
eReferences 24 and 23.
fReference 43.
gReference 32.
hReference 45.
iReference 44.

and m = 2 for the two degenerate KTO phonons at the K and
K′ points. Then ∂tnλ|ep and ∂tnλ|pp can be written as

∂tnλ|ep = 4π

Nph

∑
kq

∑
νν ′μμ′

δ(εk+qν ′ − εkν − ωqλ)
∣∣Mλμμ′

kν,k+qν ′
∣∣2

× [f >
μkνf

<
μ′k+qν ′ (nλ + 1) − f <

μkνf
>
μ′k+qν ′nλ], (12)

∂tnλ|pp = −nλ − n0
λ

τpp

. (13)

In above equations, τpp is the phenomenological relaxation
time from the phonon-phonon scattering; n0

λ is the number of
the λ branch phonons at environment temperature T0.

By numerically solving the kinetic equations [Eqs. (1) and
(11)] with the same numerical scheme laid out in Ref. 36, the
temporal evolutions of the carrier distribution and the phonon
number can be obtained. Then, the evolution of the optical
transmission at the probe-photon energy ωpr can be calculated
from Tpr(ωpr) = |1 + Nlayσ (ωpr)

√
μ0/ε0/(1 + nref)|−2, where

nref is the refractive index of the substrate and Nlay is the num-
ber of graphene layers. The optical conductivity is given by
σ (ωpr) = −e2(fμkω+ − fμkω−)/4, with |kω| = ωpr/2vF .6,37–40

The DT is then calculated from �Tpr/T 0
pr = (Tpr − T 0

pr)/T 0
pr,

with T 0
pr representing the transmission before pumping. It

is noted that the epitaxial multilayer graphene can also be
described by our model, since they have been demonstrated
to have similar phononic and electronic properties to those
of single-layer graphene.6,41,42 Nevertheless, the differences
between these two systems, that is, the carrier-RI phonon
scattering becomes negligible when the number of layers is
large, should be taken into account. The material parameters
used in our calculations are listed in Table I.

III. RESULTS

In this section we first study the buildup of the hot-carrier
Fermi distribution in Sec. III A. We show that the Fermi
distribution with identical temperature in the conduction and

valence bands can be established within 100 fs. Then, in
Sec. III B we simply use the hot-carrier Fermi distribution
as the initial carrier distribution and compare the calculated
DT with the experimental data. The evolutions of carrier
and phonon temperatures are also investigated here. Finally,
we study the excitation-density and probe-photon–energy
dependencies of the slow DT relaxation rates in Sec. III C.

A. Buildup of hot-carrier Fermi distribution

We set the initial carrier distribution to be

fμkν = F (εkν) + νG(εkν), (14)

in which F (εkν) = 1/{1 + exp[(εkν − μ0)/(kBT0)]} is
the carrier Fermi distribution before pumping with
μ0 denoting the initial chemical potential; G(εkν) =
A exp[−(|εkν | − ωpu/2)2/(2�2)] is the photogenerated carrier
distribution with A and � representing the amplitude and
standard deviation, respectively, and ωpu standing for the
pump-photon energy. In our computation here, the substrate
is chosen to be SiO2 and the equilibrium carrier density N0 is
taken to be 6 × 1011 cm−2; correspondingly, μ0 = 78 meV.
We also set A = 0.15, � = 19.3 meV, and ωpu = 1.5 eV,
corresponding to the excitation density Nex = 8 × 1011 cm−2

and the absorbed intensity Ia = 1.9 mJ/m2. Then the
conduction-band–electron density is about 1.75 times
of the hole density (hole distribution is defined as
fμkh ≡ 1 − fμk−). The other parameters are taken to be
T0 = 300 K, Emax = 0.9 eV, and τpp = 3.8 ps. We first focus
on the distribution of the conduction-band electrons and plot
the evolution of ln(f −1

μk+ − 1) in Fig. 1(a). Note that if the
distribution fμkν is the Fermi distribution, one has

ln
(
f −1

μkν − 1
) = (νvFk − μν)/(kBTν), (15)

with Tν and μν representing the temperature and chemical
potential in the corresponding band. Therefore, if the curves
in the figure become linear with |εkν |, the buildup of the Fermi
distribution is identified. In the inset of Fig. 1(a), one finds
a valley located at |εkν | = 0.8 meV in the initial distribution,
coming from the photogenerated carriers. With the evolution
of time, the valley is rapidly smeared out by the carrier-carrier
Coulomb scattering as shown by the curves with t = 3 and
30 fs in Fig. 1(a). Moreover, the curve with t = 100 fs becomes
almost linear with |εkν |, indicating the buildup of the Fermi
distribution. It is noted that this time scale is in the same order
as those in the previous investigations in graphene10,11 and
graphite.12

Then we turn to the valence-band electrons. Our calcu-
lations show that the Fermi distribution of the valence-band
electrons is established in the same time scale as that of the
conduction-band ones, and we only plot − ln(f −1

μk− − 1) at
t = 100 fs in Fig. 1(a). More importantly, one finds that the
slopes for conduction (black dotted curve) and valence (yellow
dashed curve) bands are very close to each other at t = 100 fs.
This indicates that their corresponding temperatures T+ and
T− are very close to each other [see Eq. (15)], even though
the conduction-band–electron density is about 1.75 times
of the hole density. To make this more pronounced, we plot
the evolution of the hot-carrier temperatures Tν fitted from
Eq. (15) in Fig. 1(b). The difference between T+ and T− is
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FIG. 1. (Color online) (a) ν ln(f −1
μkν − 1) as function of |εkν | for

conduction-band electrons (ν = +) at t = 3, 30, and 100 fs and
valence band electrons (ν = −) at t = 100 fs. The results at t = 0
and 3 fs for conduction-band electrons are plotted in the inset.
(b) Temporal evolution of temperatures of electrons in conduction
(blue dots) and valence bands (red squares) from the calculations with
(solid curves) and without (dashed curves) the interband Coulomb
scattering H ee

inter.

shown to be less than 10%. This phenomenon is due to the
strong interband Coulomb scattering, which can be seen by
comparing the temperatures from the calculations with (solid
curves) and without (dashed curves) the interband Coulomb
scattering H ee

inter.

B. Temporal evolutions of DT and temperatures of carriers
and phonons

As shown in the previous section, the hot-carrier Fermi
distribution is established very rapidly and the temperatures
of electrons in the conduction and valence bands are almost
identical. Therefore, in the following calculations, the initial
carrier distribution is set to be

fμkν(t = 0) = 1/
{
1 + exp

[(
εkν − μ0

ν

)/(
kBT 0

e

)]}
, (16)

where T 0
e denotes the hot-carrier temperature; μ0

ν represents
the chemical potentials in conduction (ν = +) and valence
(ν = −) bands. T 0

e and μ0
ν can be determined by the equilib-

rium carrier density and the excitation density Nex as well as
the absorbed intensity Ia . For simplicity, we set Ia = Nexωpu,
with ωpu denoting the pump-photon energy. With this initial

carrier distribution, the evolution of the DT can be obtained
numerically.

We first compare the DT from our calculations with the
experimental results by Hale et al.7 in single-layer graphene
on SiO2 substrates [Fig. 2(a)].46,47 Here T0 = 300 K, ωpr =
1.1 eV, and ωpu = 1.5 eV, as indicated in the experiment. In this
case, the excitation density is much larger than the equilibrium
carrier density; thus, the chemical potential before the pumping
has little influence on the evolution of the DT and is set to be
at the Dirac point for simplicity. Then T 0

e = 4163 K and μ0
+ =

−μ0
− = −478 meV correspond to Nex = 4.6 × 1012 cm−2

and Ia = 11 mJ/m2, which are close to the estimated
values given in Ref. 7. The only fitting parameters here are
Emax = 0.9 eV and τpp = 3.8 ps. Our results agree very well
with the experimental data and show a fast relaxation with the
characteristic time about 0.28 ps, followed by a slow one with
1.33 ps.

To reveal the underlying physics of these two relaxations,
we plot the evolution of carrier and effective phonon tempera-
tures in Fig. 2(b). The carrier temperature Te can be obtained by
fitting ln(f −1

μkν − 1). The effective temperature of hot phonons
in λ branch can be obtained from Tλ = ωλ/[kB ln(1 + 1/nλ)].
From Fig. 2(b), it is seen that the temperatures of the phonons
first increase rapidly and then decrease slowly, with the peaks
very close to the crossover point between the fast and slow
DT relaxations [see Fig. 2(a)]. Since the fast increase of
the phonon temperatures is due to the rapid equilibration
of the carrier-phonon system (less than 500 fs)12–14 and the
decrease comes from the slow hot-phonon decay (about several
picoseconds),15,16 the fast and slow relaxations of the DT can
also be attributed to these two processes, respectively.48 This
result supports the conjectures in the previous experimental
works.7,8,23 In addition, by comparing the slow relaxation
of the DT with the exponential fitting curve [black dotted
curve in Fig. 2(a)], one finds that the relaxation rate slightly
increases with the temporal evolution when t > 4 ps. This can
be understood via the approximate formula Eq. (A4), which
can be rewritten into

�r = �T ωpr
Te − T0

2kBT 2
e

− 1

kBTe

dμ+
dt

(17)

by considering that Te can be fitted with Te = T0 + TA exp−�T t

for t > 1.5 ps, as shown in Fig. 2(b). We plot �r calculated
from this equation with and without the second term in the
inset of Fig. 2(a). It is seen that the first term in the equation is
dominant and exhibits a peak at Te = 2T0 = 600 K. In the time
range investigated here, Te is larger than 2T0 and thus �r shows
a slight increase with increasing t (decreasing temperature).
Nevertheless, in the slow relaxation regime investigated in
the experiment, that is, 2–4 ps, the exponential fit of DT is
still acceptable because the corresponding �r only changes by
about 8%.

Figure 2(b) also shows that the temperatures of phonons
in different branches are very different, originating from
the different carrier-phonon scattering strengths in different
phonon branches. Interestingly, the temperatures of the �TO

and �LO phonons differ much even though their carrier-
phonon scattering matrices are very similar [see Eq. (9)]. This
phenomenon comes from their different angular dependencies,
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FIG. 2. (Color online) (a) DT from the numerical results compared with the experimental results in single-layer graphene on SiO2 in Ref. 7.
The calculation without the RI phonons (dash-dotted curve) is also plotted here. The results are normalized as Ref. 7. The black dotted curve
represents the exponentially fitted curve of the DT in the time range of 2–4 ps. In the inset we plot �r calculated from Eq. (A4) with (solid curve)
and without (dashed curve) the second term in the equation. (b) Temporal evolutions of the temperatures of carriers and phonons. Here the
carrier temperature is shown to be fitted well by T0 + TA exp(−�T t) (black dotted curve) for t > 1.5 ps with TA = 1240 K and �T = 0.16 ps−1.
The inset magnifies the time range 4–8 ps. (c) Angular integration Iλ(E) from Eq. (19) for �LO and �TO phonons as function of the carrier
energy E. The two black dotted lines indicate E = 0 and ω� , respectively.

which is neglected in the simple model in the experimental
works.7,8 To show this more clearly, we utilize the conditions
that the carrier distribution is isotropic and rewrite Eq. (12) as

∂tnλ|ep = −4π

Nph

∫ ∞

−∞
dEIλ(E)[f <(E − ω�)f >(E)nλ

− f >(E − ω�)f <(E)(nλ + 1)], (18)

where f >,<(E) = f
>,<
μkν |εμkν=E and the angular integration

Iλ(E) is given by

Iλ(E) =
∑

kνμ

k′ν′μ′

∣∣Mλμμ′
kν,k′ν ′

∣∣2
δ(εk′ν ′ − E)δ(εkν − E + ω�). (19)

Iλ(E) for �LO and �TO phonons are plotted as a function of
E in Fig. 2(c). One finds that Iλ(E) for �LO (�TO) phonons
is larger than the other one in the regime E > ω� and E < 0
(0 < E < ω�). For the investigated excitation, ωpu is much
larger than ω� . Thus, the intraband carrier-phonon scattering
(corresponding to E > ω� and E < 0) dominates the carrier-
phonon thermalization. Consequently, the scattering strength
of �LO phonons is stronger and the corresponding temperature
is higher. Another more interesting phenomenon shown in
Fig. 2(b) is that the carrier temperature can be even lower than
the hottest phonon one. This can be understood as follows:
When the hot carriers are in equilibrium with the hottest
phonons, the cooling of the carrier is due to the energy
exchange with the other colder phonons, whereas the cooling
of the hottest phonons comes from the anharmonic decay of hot
phonons. As shown above, the carrier-phonon thermalization
is faster than the hot-phonon decay. Thus, the temperature of
carrier decreases faster and hence becomes lower than that of
the hottest phonons. We also discuss the contribution from the
RI phonon, which is neglected in the literature7,8 by plotting the
DT from the calculation without the RI phonons in Fig. 2(a).
It is seen that the exclusion of this phonon scattering makes
a marked difference, indicating that the RI phonons are very
important to the cooling process.

We then investigate the temporal evolutions of DT and
temperatures of carriers and phonons in graphene on 6H-SiC.
The results are compared with the experimental data reported
by Wang et al.8 (Fig. 1 in that paper) in Fig. 3(a).46 As
mentioned above, the RI phonons are important only when
the number of the graphene layers is small. Therefore,
we include the carrier–RI-phonon scattering for the two-
layer sample (Sample C in Ref. 8) and exclude it for the
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FIG. 3. (Color online) (a) Temporal evolution of the DT from
the numerical results compared with the experimental data on SiC
substrates extracted from Fig. 1 in Ref. 8. The results are normalized
as that paper. (b) Temporal evolutions of the temperatures of carriers
and phonons in the two-layer graphene.
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55-layer sample (Sample A). As presented in Ref. 8, ωpu =
ωpr = 1.6 eV and the average equilibrium carrier densities
for 55-layer and 2-layer samples are taken to be 1 × 1011

and 6 × 1011 cm−2, respectively. Nex = 8.6 × 1011 cm−2 and
Ia = 2 mJ/m2 are consistent with the estimated values in the
experiment. Then the corresponding initial temperatures and
chemical potentials are T 0

e = 4193 K, μ0
+ = −1061 meV, and

μ0
− = 1099 meV for the 55-layer sample and T 0

e = 3512 K,
μ0

+ = −663 meV, and μ0
− = 825 meV for the 2-layer sample.

The fitting gives Emax = 0.8 eV and τpp = 2.5 ps.
Figure 3(a) shows good agreement between our calculations

and the experimental data in both samples sharing the identical
fitting parameters Emax and τpp. This indicates that the
contribution from the RI phonons can be responsible for
the difference between the DTs in the graphene samples
with few and many layers. It is noted that in the above fit-
tings the carrier–optical-phonon interaction parameters 〈D2

�〉
and 〈D2

K〉 are chosen to be the same as those adopted in
Ref. 8 but twice those obtained from the density functional
calculations.33,34 In fact, the values of these parameters are still
a matter of debate.33,34,49–51 Especially, the influences of the
electron-electron correlation49,52 and the interlayer coupling53

on the carrier-phonon interaction parameters in the epitaxial
multilayer graphene are still unclear. Thus, these parameters
can be sample dependent. We also show the evolution of
carrier and phonon temperatures in the two-layer graphene in
Fig. 3(b). From our results in Figs. 3(a) and 3(b), it can be seen
that the dynamics of carriers and phonons in graphene on SiC
substrate behaves similarly to that on SiO2 substrate, that is, a
fast DT relaxation of hundreds of femtoseconds followed by a
slower picosecond one as well as a lower carrier temperature
compared with the hottest phonons. In addition, the DT in
the slow relaxation regime decays exponentially in a large
time range. This is because Te is around 2T0, where �r varies
mildly with Te, as shown in the inset of Fig. 2(a).

C. Excitation-density and probe-photon–energy dependencies
of the slow DT relaxation

In this section, we first compare the calculated DT with
the experimental data extracted from Fig. 3(b) in Ref. 8 for
different excitation densities in Fig. 4(a).46 Here the parameters
are the same as those in Fig. 3 unless otherwise specified
and the RI phonons are not included since the layer number
of the sample is 16. The fittings give the excitation densities
Nex = 2, 5, and 8 × 1011 cm−2 as well as Emax = 0.6, 0.7, and
0.8 eV for the experimental results with pump-pulse energies
being 2.5, 6, and 9.8 nJ, respectively. The corresponding
initial temperatures and chemical potentials in these three
cases are T 0

e = 3287, 3954, and 4167 K, μ0
+ = −993, −1108,

and −1071 meV, and μ0
− = 1088, 1166, and 1112 meV,

respectively. From this figure, one finds good agreement
between our numerical results and the experimental data for
all three excitation densities.

By assuming that Emax is a linear function of Nex and
fitting the above values of Emax and Nex , we obtain Emax =
0.033Nex + 0.533 (Emax and Nex are in units of eV and
1011 cm−2). With this relation, one can obtain the evolution
of DT for other excitation densities. Here we concentrate on
the relaxation rate in the time range of 2–3 ps, since the
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FIG. 4. (Color online) (a) DT from the numerical calculations
compared with the experimental data [Fig. 3(b) in Ref. 8]. The pump
pulse energies in the experiments are 2.5, 6, and 9.8 nJ from the
bottom to the top. (b) Slow relaxation rates of the DT from the
numerical calculations (dots) and the approximate formula Eq. (A4)
(solid curves) as function of the excitation density Nex for different
probe-photon energies. The DTs calculated from the first term in
Eq. (A4) (dashed curves) are also plotted here. Note that the scale of
Ia corresponding to Nex is on top of the frame. The arrows show the
positions of the valleys. (c) Slow relaxation rate of the DT as function
of the probe-photon energy for different excitation densities. The
results are fitted with linear functions (solid lines).

evolution of DT in this regime shows a good exponential decay
in the whole excitation-density range in this investigation. The
results are plotted as dots in Fig. 4(b). It is seen that mild valleys
appear in the Nex dependence and the excitation densities
where valleys appear tend to be lower for smaller ωpr. To better
understand this phenomenon, we also plot the results from the
approximate formula Eq. (A4) (solid curves) in Fig. 4(b). Here
Te, dTe/dt , and dμ+/dt in Eq. (A4) are chosen to be the ones

125413-6



DYNAMICS OF PHOTOEXCITED CARRIERS IN GRAPHENE PHYSICAL REVIEW B 85, 125413 (2012)

at the middle of this time region, that is, t = 2.5 ps for each
Nex . One can see that the results from Eq. (A4) agree very
well with those from the kinetic equations and exhibit valleys
at the same Nex . The scenario of these valleys is as follows.
With the increase of excitation density, the carrier and phonon
temperatures increase. Thus, the electron-hole recombination
and the cooling of carrier-phonon system both accelerate due to
the enhanced carrier-phonon and phonon-phonon scatterings.
As a result, −dμ+/dt and −dTe/dt in Eq. (A4) increase
with Nex . Furthermore, our calculations show that −dμ+/dt

almost increases linearly with Nex and −dTe/dt ∼ N0.3
ex in

the excitation-density range investigated here. The excitation-
density dependence of Te is more complex: For Te ∼ Nα

ex , α is
around 0.18 for 1 × 1011 cm−2 < Nex < 5 × 1011 cm−2 and
then decreases slowly with increasing Nex and reaches 0.1 for
Nex = 1.3 × 1012 cm−2. Therefore, the first term in Eq. (A4)
first decreases and then increases with increasing Nex , while
the second term increases monotonically with Nex . Under the
joint effects of these two terms, the relaxation rate shows a
valley at the excitation density lower than that solely from
the first term [dashed curves in Fig. 4(b)]. Also by considering
that the contribution of the first term decreases with decreasing
ωpr, the valley moves to lower Nex when ωpr becomes smaller.
We also present more detail about the probe-photon–energy
dependence in Fig. 4(c). It is seen that the relaxation rate
increases linearly with the increase of probe-photon energy
ωpr. This can also be understood via Eq. (A4) if one notices
that μ+ and Te are independent of ωpr.

IV. CONCLUSION AND DISCUSSION

In conclusion, we have microscopically investigated the dy-
namics of nonequilibrium carriers and phonons in graphene by
solving the kinetic equations with the carrier-phonon and the
carrier-carrier scatterings explicitly included. The hot-carrier
Fermi distribution is found to be established within 100 fs.
Furthermore, the temperatures of electrons in conduction and
valence bands are shown to be very close to each other even
when the excitation density is comparable with the equilibrium
carrier density. This is shown to be due to the strong interband
Coulomb scattering. Moreover, the temporal evolutions of the
DT obtained from the kinetic equations agree well with the
experimental results7,8 for different graphene layer numbers
and excitation densities, with a fast relaxation about hundreds
of femtoseconds followed by a slow picosecond one presented.
Based on the results of the evolutions of carrier and phonon
temperatures, we find that the mechanisms leading to these
two relaxations are the fast carrier-phonon thermalization
and the hot-phonon decay, respectively, which is consistent
with the conjecture in the previous experimental works.7–9 We
also show that the temperatures of the hot phonons in various
branches are very different due to their different carrier-phonon
scattering strengths. Particularly, in spite of the similar carrier-
phonon interaction matrices, the scattering strengths of the TO
and LO phonons near the � point are very different due to their
different angular dependencies. In addition, the temperature
of carriers can be lower than that of the hottest phonons. This
comes from the fact that the phonon temperatures are different
for different branches and the hot-phonon decay is unimportant
during the phonon thermalization. Our calculations also show

that the contribution of the RI phonons is important in the
relaxation process and can be used to explain the differences
of the DTs in few- and many-layer samples.

We also investigate the excitation-density and the probe-
photon–energy dependencies of the slow DT relaxation rate.
The relaxation rate is found to exhibit a mild valley in the
excitation-density dependence. This phenomenon comes from
the competition among the increasing carrier temperature
and the accelerating electron-hole recombination and carrier-
phonon cooling with an increase of the excitation density.
We also show that the slow relaxation rate is linear with the
probe-photon energy.
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APPENDIX: APPROXIMATE FORMULA OF SLOW
RELAXATION RATE OF DT

We present the derivation of the approximate formula
of the slow relaxation rate of DT here. In this time re-
gion, the Fermi distribution has been established. Thus,
the distribution functions for electrons in the conduction
and valence bands are fc = {exp[β(ωpr/2 − μ+)] + 1}−1

and fv = {exp[β(−ωpr/2 − μ−)] + 1}−1, with β = 1/(kBTe).
Since Nlayσ (ωpr)

√
μ0/ε0/(1 + nref) 
 1,

Tpr ≈ 1 + Nlaye
2√μ0/ε0

2(1 + nref)

[
1

eβ(ωpr/2−μ+) + 1

− 1

eβ(−ωpr/2−μ−) + 1

]
. (A1)

Also, considering that ωpr is much larger than μ+, μ− and
kBTe, �Tpr ≡ Tpr − T 0

pr can be expressed as

�Tpr ≈ e2Nlay
√

μ0/ε0

2(1 + nref)
e−βωpr/2(eβμ+ + e−βμ− ). (A2)

Thus, the relaxation rate of DT is given by

�r ≡ − 1

�Tpr

d

dt
(�Tpr)

≈ ωpr

2

dβ

dt
− β

dμ+
dt

+ β

(
dμ+
dt

+ dμ−
dt

)
eβ(μ++μ−) + 1

. (A3)

In the excitation-density range investigated here, |dμ+/dt +
dμ−/dt | 
 |dμ+/dt |. Therefore, one has

�r = − ωpr

2kBT 2
e

dTe

dt
− 1

kBTe

dμ+
dt

. (A4)
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