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Coulomb blockade of nonlocal electron transport in metallic conductors
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We consider a metallic wire coupled to two metallic electrodes via two junctions placed nearby. A bias voltage
applied to one of such junctions alters the electron distribution function in the wire in the vicinity of another
junction, thus modifying both its noise and the Coulomb blockade correction to its conductance. We evaluate such
interaction corrections to both local and nonlocal conductances, demonstrating nontrivial Coulomb anomalies
in the system under consideration. Experiments on nonlocal electron transport with Coulomb effects can be
conveniently used to test inelastic electron relaxation in metallic conductors at low temperatures.
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I. INTRODUCTION

A direct relation between shot noise and Coulomb block-
ade of electron transport in mesoscopic conductors is well
known. In normal conductors this relation was established
theoretically1,2 and subsequently confirmed experimentally.3

Later the same ideas were extended to subgap electron
transport in normal-superconducting (NS) hybrids.4 The latter
results appear to provide an adequate interpretation for exper-
imental observations5 of Coulomb effects in such systems.

While all the above developments concern local electron
transport and shot noise, the question arises if there also exists
any general relation between nonlocally correlated shot noise
in multiterminal conductors and Coulomb effects on nonlocal
electron transport in such systems. An important example is
provided by three-terminal NSN structures, which have re-
cently received a great deal of attention in both experiments6–9

and theory10 in connection with the phenomenon of crossed
Andreev reflection. The latter phenomenon yields nontrivial
behavior of the nonlocal subgap conductance in such struc-
tures. Further interesting features emerge if one takes into
account electron-electron interactions. One can observe, for
example, the sign change of the nonlocal conductance caused
either by the influence of the electromagnetic modes propagat-
ing along the wire11 or by positive cross-correlations in non-
local current noise.12 Furthermore, positive cross-correlations
in shot noise are directly linked to Coulomb antiblockade, i.e.
stimulation, of nonlocal electron transport.12,13 Thus, a general
relation between cross-correlated shot noise and Coulomb
effects in nonlocal subgap electron transport in NSN systems
turns out to be much richer than that in the local case.4

In this paper we will address the impact of electron-electron
interactions on nonlocal effects in normal metallic structures
depicted in Fig. 1. Nonlocal properties of such systems turn out
to be very sensitive to inelastic processes. At low temperatures
such processes in metallic conductors usually become rather
weak and electrons can propagate at long distances, typically
of order microns, without suffering any significant energy
changes. Hence, provided voltage bias is applied to a meso-
scopic conductor, its electron distribution function f (E) may
substantially deviate from its equilibrium value universally

defined by the Fermi function fF (E) = 1/(1 + eE/T ). For
example, low temperature distribution function f (E) may
take the characteristic double-step form in comparatively short
metallic wires attached to two big reservoirs with different
electrostatic potentials.14

Further interesting effects emerge if one takes into account
an interplay between nonequilibrium effects and electron-
electron interactions. Consider, e.g., a tunnel junction between
two metallic leads. Provided the the junction resistance
significantly exceeds that of the leads, the effect of Coulomb in-
teraction can be modeled by introducing interactions between
electrons and some linear electromagnetic environment.15,16 In
this case the strength of Coulomb interaction is characterized
by an effective impedance of the environment and the current
across the tunnel junction reads

I (V ) = 1

eR

∫
dELdER{fL(EL)[1 − fR(ER)]

×P (EL − ER − eV ) − [1 − fL(EL)]fR(ER)

×P (−EL + ER + eV )}, (1)

where fL,R(E) are the electron distribution functions in the
left and right electrodes and P (E) is the probability to excite
a photon with energy E due to interaction between the
junction and the environment. Provided the environment has
a nonzero impedance and both distribution functions fL(E)
and fR(E) are close to the Fermi function, Eq. (1) yields
the well known zero-bias anomaly on the I -V curve, i.e.,
the Coulomb blockade dip in the differential conductance
dI/dV in the limit of low voltages.15–17 Furthermore, should
at least one of the distribution functions deviate from the
equilibrium one, the I -V curve can receive further significant
modifications. For instance, if one distribution function takes
the double-step form,14 it follows immediately from Eq. (1)
that the Coulomb blockade dip in the conductance should
split into two separate dips. These dips can be—and have
been18—detected experimentally, thus offering a possibility
to investigate nonequilibrium effects with the aid of small
capacitance tunnel junctions as it was demonstrated, e.g., by
experimental analysis of the impact of magnetic impurities on
inelastic relaxation of electrons in normal metals.18,19
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FIG. 1. (a) Schematics of the system under consideration. It
consists of two metallic electrodes 1 and 2 coupled to a metallic wire
of length L connecting the electrodes 3 and 4 via the two junctions
with resistances R1,R2, Fano factors β1,β2, and capacitances C1,C2.
(b) Equivalent electric circuit of the system depicted in panel (a).

Despite clear advantages and simplicity of Eq. (1), it might
not always be convenient to employ in order to analyze
combined effects of nonequilibrium and Coulomb interaction
in metallic conductors. Indeed, the applicability of Eq. (1) is
restricted to junctions with very low barrier transmissions,
i.e., the effect of higher transmissions cannot be correctly
accounted for by means of this equation. The latter effect
might be important, in particular if one needs to evaluate
the nonlocal conductance. In addition, the function P (E) is
usually evaluated under the assumption of thermodynamic
equilibrium in electromagnetic environment, which effectively
implies equilibrium electron distributions in both leads. If,
however, the electron subsystem is driven out of equilibrium,
self-consistent evaluation of P (E) might become a nontrivial
problem. Furthermore, the function P (E) would, in general, be
difficult to evaluate for effectively nonlinear electromagnetic
environments.

The above complications are avoided within the kinetic
equation analysis presented below. This approach requires
only resistances of metallic leads to remain smaller than the
quantum resistance unit h/e2. Within the same theoretical
framework it allows us to evaluate both nonlocal shot noise
and the effect of electron-electron interactions on nonlocal
electron transport in normal metallic conductors as well as to
describe a nontrivial interplay between Coulomb effects and
inelastic processes in such structures.

The paper is organized as follows. In Sec. II we outline
our model and define the Hamiltonian of our system. In
Sec. III we analyze nonlocal correlated shot noise in the system
under consideration. In Sec. IV we extend this analysis taking
into account electron-electron interactions and demonstrating
direct relation between shot noise and interaction effects in
nonlocal electron transport. A brief summary of our key
observations is contained in Sec. V. Some technical details
are relegated to the appendices. In Appendix A we outline key

steps of our derivation of the kinetic equation employed in
our analysis. Necessary details of our solution of this kinetic
equation are discussed in Appendix B.

II. THE MODEL

In this paper we will consider the system depicted in Fig. 1.
It consists of a metallic wire of length L connected to two
leads 1 and 2 by two small area junctions located at x = xj =
(xj ,0,0), j = 1,2 and two bulk reservoirs 3 and 4 at x = 0 and
x = L (x is the coordinate along the wire).

The system depicted in Fig. 1 is described by the Hamilto-
nian

H = H1 + H2 + Hwire + HT,1 + HT,2, (2)

where

Hj =
∑

α=↑,↓

∫
dx ψ̂

†
j,α(x)

(
− ∇2

2m
− μ

)
ψ̂j,α(x), j = 1,2

are the Hamiltonians of the normal metals,

Hwire =
∑

α=↑,↓

∫
dx χ̂ †

α(x)

[
− ∇2

2m
− μ + U (x)

+ eV (t,x)

]
χ̂α(x) (3)

is the Hamiltonian of the wire, and

HT,j =
∑

α

∫
Aj

d2x[tj (x) eiφj (t) ψ̂
†
j,α(x)χ̂α(x) + c.c.] (4)

are tunneling Hamiltonians describing transfer of electrons
across the contacts with area Aj and tunneling amplitude
tj (r). Here and below m stands for the electron mass, μ is
the chemical potential, the index α labels the spin projection,
the potential U (x) accounts for disorder inside the wire, and
V (t,x) represents the scalar potential. The transmissions of
the conducting channels of the junctions are related to the
matrix elements of the tunnel amplitudes t

(j )
n between the states

belonging to the same conducting channel as follows:

T (j )
n = ∣∣τ (j )

n

∣∣2 = 4π2νjν0

∣∣t (j )
n

∣∣2
/
(
1 + π2νjν0

∣∣t (j )
n

∣∣2)2
, (5)

where νj (j = 1,2) is the density of states in the corresponding
terminal and ν0 is the density of states inside the wire. The
barrier resistances R1 and R2 and their Fano factors β1 and β2

are expressed in a standard way as

1

Rj

= 2e2

h

∑
n

T (j )
n , βj =

∑
n

T (j )
n

(
1 − T (j )

n

)/∑
n

T (j )
n .

(6)

A voltage bias, respectively, V1, V2, V3, and V4, can be applied
to all four metallic terminals 1, 2, 3, and 4.

In the setup of Fig. 1 one of the junctions, e.g., the junction 2,
may be viewed as an injector, which drives electron distribution
function in the wire out of equilibrium. The junction 1 may
then be used as a detector for experimental investigation of
nonequilibrium effects. One of the ways to observe such effects
is to study the nonlocal differential conductance ∂I1/∂V2 of
our system. Clearly, in such kind of experiments the distance
between the junctions should not exceed an effective electron

125406-2



COULOMB BLOCKADE OF NONLOCAL ELECTRON . . . PHYSICAL REVIEW B 85, 125406 (2012)

inelastic relaxation length Lin(T ) which sets the scale for
nonequilibrium effects in the wire at a given temperature. Thus,
the setup of Fig. 1 may be used to directly measure Lin.

Finally, we note that the above particular system geometry
is chosen merely for the sake of definiteness. The key steps
of our subsequent analysis and the results obtained from it
remain applicable to a much broader class of systems than that
depicted in Fig. 1; e.g., the wire may be replaced by a metallic
lead of any shape, and, ultimately, all geometry-specific details
can be absorbed in few elements of the conductance matrix.

III. CROSS-CORRELATED SHOT NOISE

We begin with the analysis of shot noise employing the so-
called Boltzmann-Langevin technique20,21 based on a kinetic
equation for the electron distribution function f (t,E,x).
Low-frequency cross-correlated shot noise in multiterminal
metallic structures has already been studied before; see, e.g.,
Ref. 20. Here we will briefly rederive and somewhat extend
the corresponding results in order to illustrate the basic idea
of the approach in a relatively simple case. In the next section
we will extend this approach in order to include electron-
electron interactions where more involved calculations will be
necessary.

The Boltzmann-Langevin kinetic equation accounts for
current noise produced by the junctions 1 and 2 and has the
form

∂f

∂t
− D∇2

xf = −f − fF [E − eV (t,x)]

τin

− f − fF (E − ew1)

2e2ν0R1
δ(x − x1)

− f − fF (E − ew2)

2e2ν0R2
δ(x − x2)

+ η1(t,E)δ(x − x1) + η2(t,E)δ(x − x2)

2eν0
.

(7)

Here D and ν0 are, respectively, the electron diffusion constant
and the electron density of states at the Fermi energy inside the
wire. We also introduced electrostatic potentials of the leads
w1 and w2 in the vicinity of the junctions 1 and 2,

wj =
(

1 − r̄j

Rj

)
Vj , r̄1,r̄2 � R1,R2, (8)

where the resistances of the leads r̄j are defined in Fig. 1(b)
and τin = D/L2

in in the inelastic relaxation time. Note that here
we are not going to discuss physical mechanisms dominating
the process of electron energy relaxation at low temperatures
and simply treat τin as a phenomenological parameter.

The potential V (t,x) should be determined self-consistently
from the equation∫

dE{f (t,E,x) − fF [E − eV (t,x)]} = 0, (9)

which directly follows from the charge neutrality condition
inside the normal metal. This charge neutrality condition in
metals is a direct consequence of strong Coulomb interaction

between electrons as well as between electrons and lattice ions.
Integrating Eq. (7) over energy we obtain(

∂

∂t
− D∇2

x

)
V (t,x)

= [w1 − V (t,x1)]

2e2ν0R1
δ(x − x1) + [w2 − V (t,x2)]

2e2ν0R2
δ(x − x2)

+
∫

dE
η1(t,E)δ(x − x1) + η2(t,E)δ(x − x2)

2e2ν0
. (10)

Note that inelastic relaxation time τin drops out from this
equation.

The stochastic variables η1(t,E) and η2(t,E) in Eqs. (7)
and (10) account for low-frequency fluctuations of the current
carried by electrons with energy E through the junctions 1 and
2, respectively. The corresponding correlators read21

〈ηi(t1,E1)ηj (t2,E2)〉
= 1

Rj

δij δ(t1 − t2)δ(E1 − E2)

×{βjf (t1,E1,xj )[1 − fF (E1 − ewj )]

+βj [1 − f (t1,E1,xj )]fF (E1 − ewj )

+ (1 − βj )f (t1,E1,xj )[1 − f (t1,E1,xj )]

+ (1 − βj )fF (E1 − ewj )[1 − fF (E1 − ewj )]}. (11)

Finally, no fluctuations occur at fully open contacts between
the wire and the terminals 3 and 4. These contacts are
accounted for by the boundary conditions

f (t,E,x = 0) = fF (E − eV3),
(12)

f (t,E,x = L) = fF (E − eV4).

Note that in Eq. (7) we have neglected the internal current noise
generated in the wire.20 In order to justify this approximation,
in what follows we will assume

r1,r2,r12,r̄1,r̄2 � R1,R2, (13)

i.e., we will assume the junction resistances to be much higher
than the resistances of the metallic leads and the wire [see
Fig. 1(b) for the definition of the resistances]. Thus, the task at
hand is to solve Eqs. (7) and (10) supplemented by Eqs. (11)
and (12) and to evaluate the current noise in our system.

As we already discussed above, the form of the distribution
function inside the wire may essentially depend on the relation
between its size L and the inelastic relaxation length Lin.
Yet another relevant parameter to be compared with Lin is
the distance between the two junctions |x2 − x1|. Provided
inelastic relaxation is very strong, Lin � |x2 − x1| < L, the
inelastic term in Eq. (7) plays the dominant role and the
electron distribution function f in the wire remains close to
the Fermi function fF [E − eV (x)] with the voltage V (x) to
be derived from Eq. (10). In the opposite weak relaxation
limit L � Lin the inelastic collision integral in Eq. (7) can be
neglected. Of interest is the intermediate limit of a long wire
L � Lin but relatively weak relaxation |x2 − x1| � Lin.

We begin our analysis by defining the currents I1 and I2

across junctions 1 and 2:

Ij (t) = 1

eRj

∫
dE[fF (E − ewj ) − f (t,E,xj )] + δĨj , (14)
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where δĨj = ∫
dE ηj (t,E) is the fluctuating current in the

j -th junction. In the limit of full inelastic relaxation, Lin �
|x2 − x1| < L, the distribution function in the wire has the
equilibrium form, and with the aid of Eq. (11) we derive the
zero frequency spectral noise power S̃j = ∫

dt〈δĨj (t)δĨj (0)〉,

S̃j = βj

evj

Rj

coth
evj

2T
+ (1 − βj )2T , (15)

where vj = wj − V (xj ) are voltage drops across the junc-
tions. Under the condition of Eq. (13) one finds

vj =
(

1 − r̄j

Rj

)
Vj − r2V3 + r1V4

r1 + r2
, j = 1,2. (16)

Naturally, Eq. (15) just coincides with the noise power for a
perfectly voltage-biased junction.21

Let us now consider the limit |x2 − x1| < Lin � L. In
this case, according to Eq. (7) the electron distribution
function f (t,E,xj ) deviates from the equilibrium form and
fluctuates. Hence, the total current noise should acquire an
additional contribution. In order to proceed let us establish the
relation between the distribution functions f (t,E,xj ) and the
stochastic variables ηj . This goal can be achieved with the aid
of the diffuson D(t,x,x′), which is defined as a solution of the
diffusion equation[

∂

∂t
− D∇2

x + δ(x − x1)

2e2ν0R1
+ δ(x − x2)

2e2ν0R2

]
D(t,x,x′)

= − 1

τin
D(t,x,x′) + δ(t)δ(x − x′) (17)

with boundary conditions

D(t,0,x) = D(t,x,0) = D(t,L,x) = D(t,x,L) = 0. (18)

The physical meaning of the diffusonD(t,x,x′) is well known:
It defines the probability for an electron injected into the wire
at the point x′ to reach the point x during the time t . We also
define the Fourier-transformed diffuson as follows:

D̃(ω,x,x′) =
∫

dt eiωtD(t,x,x′).

The solution of Eq. (7) can be expressed in the form

f (t,E,x) =
∫

dt ′d3x′D(t − t ′,x,x′)
τin

fF [E − eV (t ′,x′)]

+ D̃(0,x,x1)

2e2ν0R1
fF (E − ew1) + D̃(0,x,x2)

2e2ν0R2
fF

× (E − ew2) + 1

2eν0

∫
dt ′[D(t − t ′,x,x1)

× η1(t ′,E) + D(t − t ′,x,x2)η2(t ′,E)]. (19)

This general expression gets simplified in the limit e|V3 −
V4| � T L/Lin and provided current fluctuations can be
neglected, i.e., η1,2 → 0. In this case the electric potential
V (x) does not depend on time and slowly varies in space.
One can then approximately replace fF [E − eV (t ′,x′)] by
fF [E − eV (x)]. Afterward, employing the properties of the
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FIG. 2. Electron distribution function in the wire in the vicinity
of the first junction, f (E,x1). The solid line shows f (E,x1) given
by Eq. (20) which is applicable at intermediate values of inelastic
relaxation. In this regime the distribution function has three steps.
The dashed line corresponds to elastic limit in which the distribution
function f (E,x1) is defined in Eq. (32). The system parameters
are T = 50 mK, D̃(0,x1,x1)/2e2ν0R1 = 0.3, D̃(0,x1,x2)/2e2ν0R2 =
0.1, w1 = 30 μV, w2 = −50 μV, V3 = 80 μV, V4 = −80 μV,
r1/r = r2/r = 0.5.

diffuson, one finds

f (E,x) =
[

1 − D̃(0,x,x1)

2e2ν0R1
− D̃(0,x,x2)

2e2ν0R2

]
fF [E − eV (x)]

+ D̃(0,x,x1)

2e2ν0R1
fF (E − ew1)

+ D̃(0,x,x2)

2e2ν0R2
fF (E − ew2). (20)

The nonequilibrium distribution function in this regime has
three steps, see also Fig. 2. The first one comes from the
distribution function of the isolated wire fF [E − eV (x)],
while the other two steps, ∝ fF (E − ewj ), originate from the
junctions. Since the diffuson D̃(0,x,x′) decays at distances
|x − x′| > Lin, the distribution function acquires its equilib-
rium form far away from the junctions.

The currents I1 and I2 can be evaluated with the aid of
Eqs. (9) and (10). They read

I1 = G11v1 − Gnlv2 + δI1,
(21)

I2 = −Gnlv1 + G22v2 + δI2.

Here Gjj and Gnl define, respectively, local and nonlocal
conductances of our structure:

Gjj = 1

Rj

− D̃0(0,xj ,xj )

2e2ν0R
2
j

, Gnl = D̃0(0,x1,x2)

2e2ν0R1R2
, (22)

where D̃0(ω,x,x′) is the solution of the diffusion equation
(17) with τin → ∞. One can, equivalently, write these con-
ductances in the form

Gjj = 1

Rj

− r1r2

r1 + r2
, Gnl = r1r2

(r1 + r2)R1R2
. (23)
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Here we again assumed that r12 � r1,r2, and r1,r2,r̄1,r̄2 �
R1,R2. Let us emphasize that the results [Eqs. (22) and (23)]
were derived from Eq. (10) and, hence, are not sensitive
to inelastic relaxation at all. In addition to that, the general
expressions of Eq. (22) are not restricted to the wire geometry
and remain valid for any shape of the leads.

Finally, the noise terms δIj appearing in Eq. (21) read

δI1 =
∫

dEdt ′
{[

δ(t − t ′) − D0(t − t ′,x1,x1)

2e2ν0R1

]
η1(t ′,E)

− D0(t − t ′,x1,x2)

2e2ν0R1
η2(t ′,E)

}
, (24)

δI2 =
∫

dEdt ′
{
−D0(t − t ′,x2,x1)

2e2ν0R2
η1(t ′,E)

+
[
δ(t − t ′) − D0(t − t ′,x2,x2)

2e2ν0R2

]
η2(t ′,E)

}
. (25)

Clearly, they differ from the bare noise terms δĨj since
the contributions coming from electrons diffusing from one
junction to the other or returning back to the same junction are
also taken into account.

We are now in a position to evaluate the zero-frequency
noise power matrix,

Sij =
∫

dt〈δIi(t)δIj (0)〉. (26)

With the aid of Eqs. (11), (24), and (25) we express the noise
power for the first junction as

S11 = R1G
2
11

∫
dE{β1f (E,x1)[1 − fF (E − ew1)]

+β1[1 − f (E,x1)]fF (E − ew1)

+ (1 − β1)f (E,x1)[1 − f (E,x1)]

+ (1 − β1)[1 − fF (E − ew1)]fF (E − ew1)}
+R2G

2
nl

∫
dE{β2f (E,x2)[1 − fF (E − ew2)]

+β2[1 − f (E,x2)]fF (E − ew2)

+ (1 − β2)f (E,x2)[1 − f (E,x2)]

+ (1 − β2)[1 − fF (E − ew2)]fF (E − ew2)}. (27)

Substituting the distribution function [Eq. (20)] into this
expression, assuming Gnl � G11,G22, defining the function

W (v) = ev coth
ev

2T
, (28)

and under the condition in Eq. (13), we arrive at the final result,

S11 = G11[β1W (v1) + (1 − β1)2T ]

+β1 G̃nl W (v1 − v2) + (1 − β1) GnlW (v2), (29)

S12 = −Gnl[β1W (v1) + β2W (v2) + (2 − β1 − β2)2T ]. (30)

Noise power for the second junction S22 is defined by Eq. (29)
with interchanged indices 1 ↔ 2. Here we have introduced the
effective nonlocal conductance

G̃nl = D̃(0,x1,x2)

2e2ν0R1R2
, (31)

which, in contrast to Gnl, is suppressed by inelastic relaxation.
One has G̃nl � Gnl if the distance between the junctions
exceeds Lin and G̃nl = Gnl if |x1 − x2| � Lin.

The first line of Eq. (29) just coincides with the standard
expression for the shot noise of a mesoscopic conductor with
the Fano factor β1, while the second and third lines provide
the corrections induced in the first junction by the second one.
The origin of these corrections is simple: voltage bias applied
to the second junction yields modifications in the electron
distribution function in the vicinity of the first junction [cf.
Eq. (19)], thus changing its current noise.

Now we turn to the regime of a short wire, L � Lin,
where inelastic relaxation can be fully ignored. Accordingly,
in Eq. (7) we set τin = ∞ and repeat the above calculation
in this limit. As a result, the distribution function in the wire
acquires the four-step shape

f (E,x) =
[

1 − D̃0(0,x,x1)

2e2ν0R1
− D̃0(0,x,x2)

2e2ν0R2

]

×
[ r2

r
fF (E − eV3) + r1

r
fF (E − eV4)

]

+ D̃0(0,x,x1)

2e2ν0R1
fF (E − ew1)

+ D̃0(0,x,x2)

2e2ν0R2
fF (E − ew2). (32)

This function is also illustrated in Fig. 2. Here we introduced
the total resistance of the wire r = r1 + r2 + r12 and assumed
r12 � r1,r2. The noise in the limit of Eq. (13), r12 � r1,r2 and
β1 = β2 = 1, becomes

S11 = G11

[
r2

r
W (w1 − V3) + r1

r
W (w1 − V4)

]
+ G̃nlW (w1 − w2), (33)

S12 = −Gnl

[
r2

r
W (w1 − V3) + r1

r
W (w1 − V4)

+ r2

r
W (w2 − V3) + r1

r
W (w2 − V4)

]
. (34)

Comparing these expressions with Eqs. (29) and (30), we
observe that they coincide either provided V3 = V4 or in the
large bias limit wj − Vα � T . Otherwise, every function W

entering the result in the limit of strong relaxation splits up
into two functions in the limit L � Lin.

IV. NONLOCAL ELECTRON TRANSPORT IN THE
PRESENCE OF INTERACTIONS

Until now we have ignored interaction effects and restricted
our consideration to low-frequency current fluctuations. Below
we will account for electron-electron interactions and evaluate
the interaction correction to the conductance matrix of our
system. Extending the arguments,1,2 we will demonstrate a
close relation between Coulomb blockade of nonlocal electron
transport and shot noise in the system under consideration.
For this purpose it will be necessary to go beyond the
low-frequency limit and allow for arbitrary (not necessarily
slow) fluctuations of voltages vj (t) across the junctions. In this
regime the time- and energy-dependent electron distribution
function in the wire f (t,E,x) becomes ill defined due
to quantum-mechanical uncertainty principle. This problem
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can be cured by employing the Keldysh-Green function of
electrons,

G(t1,t2,x) =
∫

dE

2π
e−iE(t1−t2)

[
1 − 2f

(
t1 + t2

2
,E,x

)]
,

(35)

which fully describes electron dynamics at arbitrarily high
frequencies. Applying the Fourier transformation (35) to the
kinetic equation [Eq. (7)] we cast it to the form.23[

∂

∂t1
+ ∂

∂t2
− D∇2

x + 1

τin
+ i�̇(t1,x) − i�̇(t2,x)

]
G

= 1

τin

−iT e−i[�(t1,x)−�(t2,x)]

sinh πT (t1 − t2)

− δ(x − x1)

2e2ν0R1

[
G − −iT e−i[φ1(t1)−φ1(t2)]

sinh πT (t1 − t2)

]

− δ(x − x2)

2e2ν0R2

[
G − −iT e−i[φ2(t1)−φ2(t2)]

sinh πT (t1 − t2)

]

− δ(x − x1)

eν0
η1(t1,t2) − δ(x − x2)

eν0
η2(t1,t2). (36)

Here the stochastic variables ηj (t1,t2), which now also depend
on two times, are correlated as follows:.

〈ηi(t1,t2)ηj (t3,t4)〉

= δij

8πRj

{
2

π2
lim
ε→0

ε2

[(t1 − t2) + ε2][(t3 − t4) + ε2]

−βj

[
G(t1,t4)

−iT e−i[φj (t3)−φj (t2)]

sinh πT (t3 − t2)

+ −iT e−i[φj (t1)−φj (t4)]

sinh πT (t1 − t4)
G(t3,t2)

]

− (1 − βj )

[
G(t1,t4)G(t3,t2)

+ −iT e−i[φj (t1)−φj (t4)]

sinh πT (t1 − t4)

−iT e−i[φj (t3)−φj (t2)]

sinh πT (t3 − t2)

]}
. (37)

In Eqs. (36) and (37) we defined the fluctuating phases of
the leads φj = ∫ t

t0
dt ′ewj (t ′) as well as the phase �(t,x) =∫ t

t0
dt ′ eV (t ′,x), where V (t ′,x) is the electric potential inside

the wire that fluctuates both in time and in space and includes
interaction effects.

Note that a fully quantum-mechanical description of in-
teraction effects in metallic conductors generally involves
two (rather than one) quantum fluctuating phase fields �F

and �B (defined on the two branches of the Keldysh
contour) appearing after the standard Hubbard-Stratonovich
decoupling of the Coulomb term in the Hamiltonian.15,22

Provided interaction effects are sufficiently small (as is the
case here, see below), one can effectively eliminate one of these
fields, �− = �F − �B and retain only the “center-of-mass”
field �+ = (�F + �B)/2 → �. The derivation of the kinetic
equation [Eq. (36)] in the tunnel limit β1 = β2 = 1 is presented
in Appendix B. Rigorous derivation of the kinetic equation
[Eq. (36)] based on the nonlinear σ model as well as its
applicability conditions can be found in Ref. 23.

We now turn to the expression for the current through
the first junction, I1. In order to derive this expression it is

necessary to solve the kinetic equation [Eq. (36)]. Technical
details of this procedure are presented in Appendix B. Here
we directly proceed to the corresponding results.

Let us, first, consider the limit of strong inelastic relaxation,
L � Lin, and assume that the wire potential varies in space
slowly enough, e|V3 − V4| � T L/Lin. In this case, the current
through the first junction acquires the form

I1 = G11

{
v1 − β1

e

∫ ∞

0
dt

πT 2

sinh2 πT t
K11(t) sin[ev1t]

}

− G̃nl
β1

e

∫ ∞

0
dt

πT 2

sinh2 πT t
K11(t) sin[e(v1 − v2)t]

+ β1

e

∫
dt ′dt ′′K12(t ′′ − t ′)

D(t ′,x1,x2)

2e2ν0R1R2

× πT 2

sinh2 πT t ′′
sin[(v1 − v2)t ′′]

−Gnl

[
v2 − β2

e

∫ ∞

0
dt

πT 2

sinh2 πT t
K22(t) sin[ev2t]

]

+ 1 − β1

e

∫
dt ′dt ′′K12(t ′′ − t ′)

D(t ′,x1,x2)

2e2ν0R1R2

× πT 2

sinh2 πT t ′′
sin[ev2t

′′]. (38)

Here we have defined the response functions

Kij (t) = e2
∫

dω

2π

e−iωt

−iω + 0
Zij (ω), (39)

which characterize the response of voltage fluctuations in the
junction i on the current noise of the junction j . The corre-
sponding impedance matrix Zij (ω) is defined in Appendix B;
see Eq. (B10). As before, here the voltage drops v1 and v2 are
defined in Eq. (16).

Repeating now the same calculation in the elastic limit
L � Lin, we obtain

I1 = G11

(
v1 − β1

e

∫ ∞

0
dt

πT 2

sinh2 πT t
K11(t)

×
{ r2

r
sin[e(w1 − V3)t] + r1

r
sin[e(w1 − V4)t]

})

−Gnl

(
v2 − β2

e

∫ ∞

0
dt

πT 2

sinh2 πT t
K22(t)

×
{ r2

r
sin[e(w2 − V3)t] + r1

r
sin[e(w2 − V4)t]

})

− G̃nl
β1

e

∫ ∞

0
dt

πT 2

sinh2 πT t
K11(t) sin[e(w1 − w2)t]

+ β1

e

∫
dt ′dt ′′K12(t ′′ − t ′)

πT 2

sinh2 πT t ′′
D(t ′,x1,x2)

2e2ν0R1R2

× sin[(w1 − w2)t ′′]

+ 1 − β1

e

∫
dt ′dt ′′K12(t ′′ − t ′)

πT 2

sinh2 πT t ′′
D(t ′,x1,x2)

2e2ν0R1R2

×
{ r2

r
sin[e(w2 − V3)t ′′] + r1

r
sin[e(w2 − V4)t ′′]

}
,

(40)

where the lead potentials w1,w2 are defined in Eq. (8).
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Equations (38) and (40) represent the central results of this
paper, which fully determines the leading Coulomb corrections
to the conductance matrix of our structure in both relevant
limits of strong and weak inelastic relaxation. These results
also allow us to demonstrate a close relation between shot
noise and interaction effects, which is now extended to include
nonlocal electron transport. For example, the first line of
Eq. (38) describes the standard (“local”) Coulomb anomaly
caused by charging effects and related to local shot noise.1,2

The next three lines in Eq. (38) contain terms depending on
the voltage difference v1 − v2 and describing nonlocal effects.
Their origin can be traced to the corresponding contribution
to the shot noise in the first junction, cf. the second line in
Eq. (29). Finally, the contribution in the last three lines in
Eq. (38) depends only on the voltage v2 and emerges from the
last term of Eq. (B4) ∝ 〈η2〉. In the same way, one can establish
the correspondence between various terms in the expressions
for the current [Eq. (40)] and noise [Eqs. (33) and (34)] in the
elastic limit. Perhaps we should also add that the above results
remain applicable to a much broader class of systems than that
depicted in Fig. 1; e.g., the wire may be replaced by a metallic
lead of any shape, and, ultimately, all geometry-specific details
can be absorbed in few elements of the conductance matrix.

It is interesting to compare the results [Eqs. (38) and (40)]
with the predictions of the P (E) theory [Eq. (1)]. Employing
the usual definition of the P (E) function,16

P (E) =
∫

dt

2π
eiEt+J11(t),

J11(t) = e2
∫

dω

2π
Re [Z11(ω)]

× [cos ωt − 1] coth ω
2T

+ i sin ωt

ω
, (41)

and combining it with the solution of the kinetic equation
[Eq. (7)], one can evaluate the current [Eq. (1)] in the limit of
low resistances of the leads h/e2rj � 1. Comparing the result
with Eqs. (38) and (40) in the tunnel limit β1 = β2 = 1, one
observes that the P (E) approach reproduces the contributions
containing the local response functions K11(t),K22(t), while
the corrections ∝K12(t) are missing. One can further verify
that the latter corrections originate from the cross-correlation
of the junction shot noises that are ignored in the formula of
Eq. (41).

In order to further specify our results, it is necessary to make
certain assumptions about the form of the kernels Kij (t). For
typical experimental setups and at sufficiently low voltages
and temperature, it is reasonable to adopt the following
approximation for the elements of the admittance matrix of the
environment Yij (ω) [see Eq. (B7) for their precise definition]:
Y11(ω) = 1/RS1, Y22 = 1/RS2, Y12 = Y21 = 0, where RS1 and
RS2 are effective shunt resistances. These resistances can
roughly be estimated as

RS1 = r̄1 + r1r2/(r1 + r2), RS2 = r̄2 + r1r2/(r1 + r2). (42)

In practice, the shunt resistances may deviate from these simple
estimates due to impedance dispersion in metallic wires at high

frequencies.24 Further assuming that Gnl is small as compared
to Y11,Y22 one finds K12(t) = K21(t) = 0 and

K11(t) = e2RS1(1 − e−t/τ0 ), K22(t) = e2RS2(1 − e−t/τ0 ),

where τ0 ∼ RS1C1 ∼ RS2C2 is the charge relaxation time,
which, for simplicity, is taken to be equal for both junctions.
This simplification is by no means restrictive since in our
final result τ0 appears only under the logarithm as an effective
cutoff parameter. Under these conditions the current in the
limit L � Lin (38) can be evaluated analytically and takes the
form

I1 = G11

[
v1 − 4πβ1T

eg1
FI (v1)

]
− Gnl

[
v2 − 4πβ2T

eg2
FI (v2)

]

− G̃nl
4πβ1T

eg1
FI (v1 − v2), (43)

where we defined the dimensionless conductances of the
environment g1 = 2π/e2RS1, g2 = 2π/e2RS2 and the dimen-
sionless function

FI (v) = Im

[(
1

2πT τ0
+ i

ev

2πT

)
�

(
1 + 1

2πT τ0
+ i

ev

2πT

)

− i
ev

2πT
�

(
1 + i

ev

2πT

) ]
. (44)

Here �(x) stands for the digamma function. Both local and
nonlocal differential conductances read

∂I1

∂v1
= G11

[
1 − 2β1

g1
F (v1)

]
− G̃nl

2β1

g1
F (v1 − v2), (45)

∂I1

∂v2
= −Gnl

[
1 − 2β2

g2
F (v2)

]
+ G̃nl

2β1

g1
F (v1 − v2), (46)

where we introduced another function,

F (v) = Re

[
�

(
1 + 1

2πT τ0
+ i

ev

2πT

)
− �

(
1 + i

ev

2πT

)

+
(

1

2πT τ0
+ i

ev

2πT

)
� ′

(
1 + 1

2πT τ0
+ i

ev

2πT

)

− i
ev

2πT
� ′

(
1 + i

ev

2πT

) ]
. (47)

In the elastic limit L � Lin we find

I1 = G11

{
v1 − 4πβ1T

eg1

[ r2

r
FI (w1 − V3) + r1

r
FI (w1 − V4)

] }

−Gnl

{
v2 − 4πβ2T

eg2

[ r2

r
FI (w2 − V3) + r1

r
FI (w2 − V4)

] }

− G̃nl
4πβ1T

eg1
FI (w1 − w2).

Accordingly, local and nonlocal differential conductances
acquire the form

∂I1

∂w1
= G11

{
1 − 2β1

g1

[ r2

r
F (w1 − V3) + r1

r
F (w1 − V4)

]}

− G̃nl
2β1

g1
F (v1 − v2), (48)
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∂I1

∂w2
= −Gnl

{
1 − 2β2

g2

[ r2

r
F (w2 − V3) + r1

r
F (w2 − V4)

]}

+ G̃nl
2β1

g1
F (w1 − w2). (49)

Local differential conductance [Eq. (45)] of a long wire with
L � Lin is plotted in Fig. 3(a). For a chosen set of parameters
it is weakly affected by the second junction, although a small
dip at v1 = v2 is observed. In contrast, the nonlocal differential
conductance ∂I1/∂v2 is very sensitive to v1 and has two peaks
centered, respectively, at v2 = 0 and v2 = v1; see Fig. 3(b).
Figure 4(a) shows local differential conductance of a short
wire, L � Lin, in which the electron distribution function does
not relax. We observe that the conductance ∂I1/∂w1 given
by Eq. (48) has three dips centered, respectively, at w1 =
w2,V3,V4. Likewise, nonlocal conductance ∂I1/∂w2 defined
in Eq. (49) shows peaks at w2 = w1,V3,V4; see Fig. 4(b).
Comparing Figs. 3 and 4, we observe that the dip in ∂I1/∂v1

(the peak in ∂I1/∂v2) occurring for strong inelastic electron

(a)

(b)
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FIG. 3. Local (a) and nonlocal (b) differential conductances
evaluated in the limit |x1 − x2| � Lin � L, Eqs. (45) and (46),
respectively. The system parameters are T = 50 mK, τ0 = 1 ns,
RS1 = 3�, RS2 = 5�, β1 = β2 = 1, G11 = 1 mS, Gnl = 0.1 mS.
The curves at V2 = 0 in the top panel and at V1 = 0 in the bottom
panel are shown in real scale; other curves are shifted vertically
for clarity. Local differential conductance ∂I1/∂v1 exhibits a small
dip at v1 = v2. Nonlocal conductance ∂I1/∂v2 shows a much more
pronounced peak at v2 = v1.
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FIG. 4. Local (a) and nonlocal (b) differential conductances
evaluated in the elastic limit L � Lin, Eqs. (48) and (49), respectively.
The system parameters are the same as in Fig. 2. The voltage values
are V3 = −100 μV, V4 = 100 μV, V2 = 300 μV in panel (a) and
V1 = 300 μV in panel (b).

relaxation splits into two dips (peaks) in the weak relaxation
limit.

V. SUMMARY

Let us briefly summarize our key observations. We have
demonstrated that Coulomb blockade corrections to both local
and nonlocal conductances in metallic conductors may change
significantly, provided the electron distribution function in at
least one of the leads is driven out of equilibrium. Provided
the conductor length L is shorter than the inelastic relaxation
length Lin, at low temperatures and under nonzero voltage
bias the electron distribution function acquires a characteristic
double-step form and the Coulomb dip in the differential
conductance splits into two dips. This effect disappears
provided inelastic relaxation becomes strong Lin � L.

If two leads are attached to a metallic wire as it is
shown in Fig. 1, the electron distribution function in the
vicinity of one junction may also be driven out of equilibrium
provided electrons are injected through the second junction
and do not relax their energies at distances shorter than
the distance between these two junctions. In this situation,
an additional Coulomb dip in the differential conductance
appears.
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The latter configuration with two junctions also allows us
to study Coulomb blockade of nonlocal electron transport in
the presence of nonequilibrium. It turns out that, in this case,
an interplay between Coulomb and nonequilibrium effects
yields more pronounced peaks in the nonlocal differential
conductance; see Figs. 3(b) and 4(b). This observation in-
dicates that experiments on nonlocal electron transport in
the presence of Coulomb effects can be conveniently used
to test inelastic electron relaxation in metallic conductors at
low temperatures, as has already been demonstrated, e.g., in
experiments.18,19

The analysis developed here applies in the weak Coulomb
blockade regime, implying that either the resistances of metal-
lic leads should be much smaller than the quantum resistance
unit h/e2 or the temperature should exceed charging energies
of the barriers. In this regime there exists a transparent relation
between shot noise and interaction effects in the electron
transport.1,2 Here we extended this fundamental relation to the
nonlocal case, demonstrating that negative cross-correlations
in shot noise are directly linked to Coulomb suppression of
nonlocal conductance. This is in contrast to NSN structures
where Coulomb antiblockade of nonlocal conductance may
occur being related to positive cross-correlations in shot noise
induced by crossed Andreev reflection.

APPENDIX A: KINETIC EQUATION IN THE
TUNNEL LIMIT

Let us briefly discuss the main steps of our derivation of the
kinetic equation of Eq. (36).

We start by defining the electron Keldysh-Green function,

GK = 〈χ̂↑(t1,x1)χ̂ †
↑(t2,x2) − χ̂

†
↑(t2,x2)χ̂↑(t1,x1)〉

2πν0
. (A1)

This function obeys the equation

[
∂

∂t1
+ ∂

∂t2
+ i

∇2
x2

− ∇2
x1

2m
+ iU (x1) − iU (x2)

+ i�̇(t1,x) − i�̇(t2,x2)

]
GK

= − i
t∗1 (x)e−iφ1(t1)

2πν0
〈ψ̂1,↑(X1)χ̂ †

↑(X2) − χ̂
†
↑(X2)ψ̂1,↑(X1)〉

+ i
t1(x)eiφ1(t2)

2πν0
〈χ̂↑(X1)ψ̂†

1,↑(X2) − ψ̂
†
1,↑(X2)χ̂↑(X1)〉

− i
t∗2 (x)e−iφ2(t1)

2πν0
〈ψ̂2,↑(X1)χ̂ †

↑(X2) − χ̂
†
↑(X2)ψ̂2,↑(X1)〉

+ i
t2(x)eiφ2(t2)

2πν0
〈χ̂↑(X1)ψ̂†

2,↑(X2) − ψ̂
†
2,↑(X2)χ̂↑(X1)〉.

(A2)

Here we have defined the four-dimensional vectors Xj =
(tj ,xj ).

Below we will stick to the diffusive limit in which case
the electron distribution function remains isotropic. Applying

the standard quasiclassical technique,25 we then equalize the
coordinates, x1 = x2 = x, and make the replacement,

i
∇2

x2
− ∇2

x1

2m
+ iU (x1) − iU (x2) → −D∇2

x . (A3)

We further note that the operators ψ̂j,↑ and χ̂↑ in the vicinity
of the barriers are not independent. They are related to each
other via the scattering matrices of the barrier. Consider, for
simplicity, the tunneling limit T

(j )
n � 1, in which case the

corresponding transmission amplitudes in Eq. (5) read

τ (j )
n = −2πi

√
νjν0t

(j )
n . (A4)

We then obtain

χ̂↑(Xn) = χ̂ in
↑ (Xn) +

∑
n

∑
j=1,2

τ (j )
n e−iφj (tn)ψ̂ in

j,↑(Xn),

ψ̂j,↑(Xn) = ψ̂ in
j,↑(Xn) +

∑
n

τ (j )
n eiφj (tn)χ̂ in

↑ (Xn),

(A5)
χ̂
†
↑(Xn) = χ̂

in†
↑ (Xn) +

∑
n

∑
j=1,2

(
τ (j )
n

)∗
eiφj (tn)ψ̂

in†
j,↑(Xn),

ψ̂
†
j,↑(Xn) = ψ̂

in†
j,↑(Xn) +

∑
n

(
τ (j )
n

)∗
e−iφj (tn)χ̂

in†
↑ (Xn).

Here the superscript “in” denotes incoming waves unaffected
by the barriers. In the tunneling limit considered here it
suffices to identify the “incoming” operators with the full
ones. Substituting the above expressions into Eq. (A2),
performing the replacement (A3), and setting |tj (x)|2 ∝
δ(x − xj ), after adding the phenomenological term describing
inelastic relaxation, we arrive at Eq. (36) for the function
G(t1,t2,x) = G(t1,t2,x,x) without noise terms. The prefactors
in front of the terms on the right-hand side of Eq. (36) are
fixed by the requirement that in the absence of interactions
the currents across the barriers have the standard ohmic
form Ij = vj/Rj .

The noise terms may be derived if one employs Eq. (A2)
for the nonaveraged operator Green function,

ĜK = χ̂↑(t1,x1)χ̂ †
↑(t2,x2) − χ̂

†
↑(t2,x2)χ̂↑(t1,x1)

2πν0
. (A6)

The noise operator η̂1 is then defined as follows:

η̂1(t1,t2)

∝ − i
et∗1 (x)e−iφ1(t1)

2π
[ψ̂1,↑(X1)χ̂ †

↑(X2) − χ̂
†
↑(X2)ψ̂1,↑(X1)]

+ i
et1(x)eiφ1(t2)

2π
[χ̂↑(X1)ψ̂†

1,↑(X2) − ψ̂
†
1,↑(X2)χ̂↑(X1)]

+ i
et∗1 (x)e−iφ1(t1)

2π
〈ψ̂1,↑(X1)χ̂ †

↑(X2) − χ̂
†
↑(X2)ψ̂1,↑(X1)〉

− i
et1(x)eiφ1(t2)

2π
〈χ̂↑(X1)ψ̂†

1,↑(X2) − ψ̂
†
1,↑(X2)χ̂↑(X1)〉.

Evaluating the symmetrized correlator of two such operators,
1
2 〈η̂1(t1,t2)η̂1(t3,t4) + η̂1(t3,t4)η̂1(t1,t2)〉,

one can verify that it coincides with the correlator [Eq. (37)]
in the tunneling limit β1 = 1. The prefactors in front of the
noise terms in Eq. (36) are again determined by comparison
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with the noises of the junctions in the known noninteracting
limit. The noise variable η2 is defined analogously. The
operators ĜK,η̂1,η̂2 may be treated as classical fluctuating
functions in the spirit of the σ model and path-integral
formulation.26

We note, finally, that the kinetic equation (36) can also be
derived beyond the tunneling limit, i.e., for T

(j )
n ∼ 1. However,

in this general case the corresponding analysis turns rather
complicated since the full scattering matrices of the barriers
should be employed in Eq. (A5). Without going into such
complicated algebra here we refer the reader to Ref. 23, where
a general and rigorous derivation of the kinetic equation (36)
has been carried out.

APPENDIX B: DETAILS OF THE SOLUTION OF THE
KINETIC EQUATION

In order to solve Eq. (36) we make use of the same
procedure as in Sec. III. With the aid of Eq. (35) the expression
for the current (14) can be rewritten as

Ij (t) = π

eRj

lim
t ′→t

[
G(t,t ′,xj ) − −iT e−i[φ1(t)−φ1(t ′)]

sinh πT (t − t ′)

]

+Cj v̇j + 2πηj (t,t), (B1)

where we added displacement currents recharging the capaci-
tors Cj . The solution of Eq. (36) takes the form

G(t1,t2,x)

= −iT e−i[�(t1,x)−�(t2,x)]

sinh πT (t1 − t2)

∫
dt ′d3x′ D

(
t1+t2

2 − t ′,x,x′)
τin

+ −iT e−i[�(t1,x)−�(t2,x)]

sinh πT (t1 − t2)

∫
dt ′

×
{
D( t1+t2

2 − t ′,x,x1)

2e2ν0R1
e−i[ϕ1(t ′+ t1−t2

2 )−ϕ1(t ′− t1−t2
2 )]

+ D
(

t1+t2
2 − t ′,x,x2

)
2e2ν0R2

e−i[ϕ2(t ′+ t1−t2
2 )−ϕ2(t ′− t1−t2

2 )]

}

− e−i[�(t1,x)−�(t2,x)]
∫

dt ′

×
{D

(
t1+t2

2 − t ′,x,x1
)

eν0
ei[�(t ′+ t1−t2

2 ,x1)−�(t ′− t1−t2
2 ,x1)]

× η1

(
t ′ + t1 − t2

2
,t ′ − t1 − t2

2

)

+ D
(

t1+t2
2 − t ′,x,x2

)
eν0

ei[�(t ′+ t1−t2
2 ,x2)−�(t ′− t1−t2

2 ,x2)]

× η2

(
t ′ + t1 − t2

2
,t ′ − t1 − t2

2

)}
, (B2)

where we defined ϕj (t) = φj (t) − �(t,xj ) = ∫ t

t0
dt ′ evj (t ′).

Here we have already assumed that inelastic relaxation is
strong, L � Lin, and that the the wire potential varies in space
slowly enough, e|V3 − V4| � T L/Lin.

Combining Eqs. (B1) and (B2) we evaluate the instanta-
neous current value in the first junction

I1(t) =
∫

dt ′
{[

δ(t − t ′)
R1

− D0(t − t ′,x1,x1)

2e2ν0R
2
1

]
v1(t ′)

− D0(t − t ′,x1,x2)

2e2ν0R1R2
v2(t ′)

}
+ C1v̇1 + δI1(t), (B3)

where the noise term δI1 is defined in Eq. (24) with the follow-
ing replacement

∫
dEηj (t ′,E) → 2πηj (t ′,t ′). Averaging the

expression for the current [Eqs. (B3) and (24)] over time we
arrive at the following current-voltage characteristics,

I1 = G11v1 − Gnlv2 + 2πR1G11〈η1(t,t)〉
− 2πR2Gnl〈η2(t,t)〉. (B4)

It is important to emphasize that here the average values
〈ηj (t,t)〉 differ from zero due to the presence of fluctuating
phases that account for interaction effects.

In order to evaluate these averages it is convenient to
split the time-dependent phases into regular and fluctuating
parts,

ϕj (t) = evj t + δϕj (t), j = 1,2, (B5)

where the potentials vj are defined in Eq. (16). In what follows
we will assume that interaction effects remain sufficiently
weak, which is the case provided either the resistances of
metallic wires are much smaller than the quantum resistance
unit, rα � h/e2, or the temperature is sufficiently high,
T > e2/2Cj . In either case phase fluctuations remain small,
δϕj � 1, and the average 〈η1(t,t)〉 can be expressed in the
form

〈η1(t,t)〉 =
∫

dt ′
〈
δη1(t,t)

δϕ1(t ′)
δϕ1(t ′) + δη1(t,t)

δϕ2(t ′)
δϕ2(t ′)

〉
.

(B6)

Note that fluctuating phases δϕj (t), in turn, depend on the
stochastic variables ηj (t). In order to establish this dependence
we will make use of Fourier-transformed Eq. (B1), which
yields

i1,ω = [−C1ω
2 − iωG11(ω)]

δϕ1,ω

e
+ iωGnl(ω)

δϕ2,ω

e

+ 2π [−C1ω
2 − iωG11(ω)]η1,ω + 2πiωGnl(ω)η2,ω,

i2,ω = iωGnl(ω)
δϕ1,ω

e
+ [−C2ω

2 − iωG22(ω)]
δϕ2,ω

e

+ 2πiωGnl(ω)η1,ω + 2π [−C2ω
2 − iωG22(ω)]η2,ω.

Here we introduced the Fourier transform of the fluctuating
currents ij,ω = ∫

dteiωt (Ij (t) − 〈Ij 〉) and used the relation
δvj,ω = −iωδϕj,ω/e. The conductances G11(ω), G22(ω), and
Gnl(ω) are again defined in Eqs. (22), where one should now
substitute D̃0(0,x,x′) → D̃0(ω,x,x′), i.e., these conductances
are expressed via Fourier-transformed diffusons at a frequency
ω. From the equivalent circuit of Fig. 1(b) we can also define
the fluctuating currents,

ii,ω =
∑
j=1,2

iωYij (ω)
δϕj,ω

e
, (B7)
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where Yij (ω) is the admittance matrix of our structure.
The off-diagonal elements Y12(ω) = Y21(ω) are responsible
for cross-correlations between the junctions, which may be
caused, e.g., by capacitive coupling between the leads 1 and
2. Excluding the currents iω,j from the above equations we
obtain

δϕi(t) = −2π

e

∑
j=1,2

∫
dt ′Kij (t − t ′)ηj (t ′), (B8)

where the kernels Kij (t) read

Kij (t) = e2
∫

dω

2π

e−iωt

−iω + 0
Zij (ω), (B9)

with Zij (ω) being an effective impedance matrix,

Zij (ω) =
[−iωC2+G22(ω)+Y22(ω)

A(ω)
Gnl(ω)+Y12(ω)

A(ω)
Gnl(ω)+Y21(ω)

A(ω)
−iωC1+G11(ω)+Y11(ω)

A(ω)

]
,

(B10)

and

A(ω) = [−iωC1ω
2 + G11(ω) + Y11(ω)]

× [−iωC2 + G22(ω) + Y22(ω)]

−[Gnl(ω) + Y12(ω)]2.

Combining Eqs. (B6) and (B8), we obtain

〈η1(t,t)〉 = −2π

e

∑
j,k=1,2

∫
dt ′dt ′′ Kjk(t ′ − t ′′)

×
〈
δη1(t,t)

δϕj (t ′)
ηk(t ′′,t ′′)

〉
. (B11)

Due to causality the variable η1(t) can only depend on the
phases ϕj (t ′) taken at earlier times (i.e., at t ′ < t), while the
function Kij (t ′ − t ′′) differs from zero only for t ′ > t ′′. Hence,
the variable ηk(t ′′) is independent of ϕj (t ′), and Eq. (B11) can
be rewritten in the form

〈η1(t,t)〉 = −2π

e

∑
j=1,2

∫
dt ′dt ′′ Kj1(t ′ − t ′′)

× δ

δϕj (t ′)
〈η1(t,t)η1(t ′′,t ′′)〉

∣∣∣∣
ϕj =eVj t

. (B12)

Here the correlator 〈η1(t,t)η1(t ′′,t ′′)〉 is defined in Eq. (37)
with the function G(t,t ′′,x1) set by Eq. (B2) with omitted noise
terms, i.e., with η1,2 = 0. The average value 〈η2〉 is derived in
exactly the same manner.

We are now in a position to evaluate the functional
derivative δ〈η1(t,t)η1(t ′′,t ′′)〉/δϕj (t ′) from Eq. (37). After a
straightforward but rather tedious calculation, one arrives at
the result [Eq. (38)].
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