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Strain and x-ray diffraction from axial nanowire heterostructures
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Lattice distortions in a cylindrical nanowire with nonuniform intrinsic strains arbitrarily varying along its axis
are analyzed, with a special emphasis on heterostructures. We find that, as a result of the elastic relaxation on the
side surface, the lateral mismatch does not change the average longitudinal lattice period of the whole cylinder, but
effects the average period of heterostructure. As a consequence, the positions of the x-ray diffraction peaks due to
a periodic axial heterostructure depend on the ratio of the total height of the whole heterostructure to the cylinder
diameter. The peaks attain the positions of the planar heterostructure peaks only when the diameter becomes
orders of magnitude larger than the heterostructure height. The typical nanowire heterostructure parameters
correspond to the opposite limit of full lateral relaxation.
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I. INTRODUCTION

Many applications of semiconductor nanowires in
nanophotonic devices (in particular for photovoltaics and
visible light emission) profit from the elastic strain relaxation
due to the free side surface of the nanowires. The strain
caused by the lattice mismatch in nanowire heterostructures re-
leases more effectively compared to planar heterostructures.1–3

However, the strain cannot release completely and a nonuni-
form three-dimensional distribution of strain remains in the
nanowire.

X-ray diffraction is a primary tool to reveal strain in
nanowires. The x-ray diffraction patterns are experimentally
observed from heterostructures in nanowires prepared by
different techniques: etching of the planar heterostructure,4,5

vapor-liquid-solid mechanism,6,7 and self-induced growth.8–11

An appropriate strain analysis is required to obtain the structure
parameters from these observations.

There are at least three different ways to evaluate strain
distribution in nanowire heterostructures. The problem can
be solved numerically in the framework of the continuum
elasticity theory, using the finite element method.4,6 An
alternative numerical approach is atomistic and consists in
minimization of a potential energy function, based on an
interatomic potential properly reproducing elastic properties,
for example, the Keating force field.7–9 An obvious advantage
of numerical methods is the possibility to consider arbitrary
nanowire shapes.

For a circular cylinder of infinite length the elasticity
problem can also be solved analytically. In general, the solution
is sought as a sum of two terms: One is the known solution
for a planar heterostructure and the other accounts for stress
relaxation at the side surface of the cylinder. For the elastically
isotropic cylinder with a layer undergoing uniform intrinsic
strains, this latter term coincides with the solution for the
cylinder with a part of the surface under external pressure12

(see also Ref. 13, p. 388). This solution has been used
to calculate the x-ray diffraction pattern from the nanowire
heterostructure.4 The corresponding extension of the result12

to an anisotropic cylinder with transverse isotropy of the

elastic constants (which includes, in particular, the hexagonal
crystals) was given in Ref. 14 for a periodic array of layers and
in Ref. 15 for a single layer.

X-ray diffraction is routinely used to determine the structure
of planar heteroepitaxial layers and multilayers. The lattice
mismatch determination from the diffraction peak positions is
well established.16–19 In particular the longitudinal (along the
normal to the layers) shift of the diffraction peak is caused
by both longitudinal and transverse mismatch. The peak shift
due to the longitudinal mismatch is just a stress-free vertical
expansion of the mismatched layer, while the peak shift due to
the transverse mismatch is a Poisson effect. This result is also
valid for a heterostructure in a cylinder of a sufficiently large
diameter. In the opposite limit of a small cylinder diameter,
each layer of the film freely expands laterally and the transverse
mismatch does not cause a longitudinal expansion of the
heterostructure.

We investigate the transition from one limit to the other, as
the nanowire diameter is increased, and find that the transition
depends not on the layer thickness but on the height of
the whole heteroepitaxial structure. In other words, when the
heterostructure period remains the same, the transition in the
diffraction pattern from the one of a free lateral expansion
of each layer to the planar heterostructure case depends
on the number of periods in the heterostructure. It starts
when the nanowire diameter exceeds the height of the whole
heterostructure and reaches the planar heterostructure limit at
about two orders of magnitude larger diameters.

We show that this behavior is a consequence of a quite
general property of the strain due to a mismatched layer
in a cylinder. Namely, the transverse mismatch gives rise,
due to stress relaxation at the side cylinder surface, to
an additional strain that decays along the cylinder on the
distances comparable with diameter. As a result, when only the
transverse mismatch is considered, the relative displacement of
the cylinder well above and well below the layer is identically
zero.

The x-ray diffraction peak positions from a heterostructure
correspond to the mean strain in it rather than in the entire
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nanowire. As long as the heterostructure height is larger
than the nanowire diameter, the relaxation described above
proceeds inside the heterostructure. Due to this relaxation,
diffraction peaks are at the same positions as in the case of a
free lateral expansion of each layer, despite the layers being
strained. The practical nanowire diameters and heterostructure
thicknesses correspond to this limit. When the height of the
whole layer stack becomes smaller than the diameter, the
relaxation only partially takes place inside the heterostructure
and the transverse mismatch provides some additional shift
of diffraction peaks. The limit of a planar heterostructures is
reached at much larger diameters.

II. ELASTICITY OF A CYLINDRICAL NANOWIRE WITH
INTRINSIC STRAINS

A. Plane-stress solution for an embedded layer

Let us consider first a mismatched layer embedded in a
laterally infinite matrix, which is also assumed to be of infinite
thickness. The solution of this problem is well known and
is a basis for the x-ray diffraction analysis of the planar
heterostructures.16–19 We use it as a reference in further
analysis of the corresponding elastic problem in a cylinder.
Hence the solution is given in cylindrical coordinates. We also
discuss its accuracy and limitations, paying attention to the
assumptions made in the derivation.

The strains can be found for a general case of a continuous
variation of the longitudinal c(z) and the lateral a(z) lattice
parameters in the layer, where z is the coordinate along its
normal. Throughout the paper both the matrix and the layer
are assumed to possess the hexagonal crystal lattice with the
sixfold axis in the z direction. Hence the system possesses the
transverse elastic isotropy. The relative difference of the layer
lattice parameters with respect to the matrix is characterized
by the strains e∗

⊥(z) = a(z)/a0 − 1 and e∗
‖(z) = c(z)/c0 − 1,

where a0 and c0 are the respective lattice parameters of the
matrix. If a layer with the constant strains e∗

⊥(z) = e0
⊥ and

e∗
‖(z) = e0

‖ is detached from the matrix and becomes free of
stress, the strains in it are the intrinsic strains e∗

rr = e∗
θθ = e0

⊥
and e∗

zz = e0
‖, where cylindrical coordinates are used. This

strain (also called self-strain, eigenstrain, or transformation
strain) itself does not cause stress. The stress arises due to the
requirement of coherency for the crystal lattices of the layer
and the matrix, which is referred to as the strain compatibility
condition. If the coherency is lost by formation of misfit
dislocations, the above expressions for the intrinsic strains
must be modified by taking into account the plastic strain
associated with misfit dislocations.

It is worth noting that, in general, the nonuniform transverse
intrinsic strain e∗

⊥(z) is not compatible and induces stress in the
layer, even if the compatibility condition at the matrix-layer
interface is fulfilled. The only exception is the strain varying
linearly with z: e∗

⊥(z) = e∗
⊥(0) + Cz, where C is a constant. In

this particular case the stress does not occur upon the layer
detachment from the matrix. In turn, the one-dimensional
longitudinal intrinsic strain e∗

‖(z) is compatible and does not
cause stress for any dependence on z. For the analysis of
the diffraction pattern, one has to take into account that the
change of the lattice spacings is described by the total strain ε̂,

which is the sum of the intrinsic strain and the elastic strain ê,
ε̂ = ê∗ + ê. The latter is due to bond stretching and is related
to the stress σ̂ by Hooke’s law.

Two boundary conditions determine strain in a planar
matrix-layer system. First, the layer can freely expand along its
normal and hence the stress in the vertical direction is absent,
σzz = 0, in the entire system, resulting in the plane-stress state.
Second, the matrix does not allow a lateral expansion of the
layer. Then the lateral components of the total strain are absent,
εrr = εθθ = 0. In addition, one has σrr = σθθ due to isotropy of
the intrinsic strains and the elastic constants in the lateral plane.
This approximation is commonly used for strain analysis in
planar heterostructures on an infinite substrate. It is valid only
for sufficiently thick systems and fails when the thickness of
the matrix becomes comparable with that of the layer. The
present analysis is restricted with a sufficiently thick matrix.

The relations between stress and strain components for
hexagonal symmetry are collected in the Appendix. Using
Hooke’s law (A2), the condition σzz = 0 can be written as

2c13(εrr − e∗
⊥) + c33(εzz − e∗

‖) = 0. (1)

Since εrr = 0, the longitudinal total strain in the layer εzz can
be calculated as

εzz = e∗
‖ + 2c13

c33
e∗
⊥. (2)

Let us consider a more general case of a diffuse interface
between the matrix and the layer and introduce a dimensionless
profile, or shape, function g(z), describing the variation of the
intrinsic strain in the interface and characterizing its width.
The shape function is assumed to be symmetric, g(−z) = g(z).
The origin z = 0 is chosen in the middle plane of the layer.
Then one can represent the intrinsic strain components as

e∗
⊥(z) = e0

⊥g(z), e∗
‖(z) = e0

‖g(z), (3)

where e0
⊥ and e0

‖ are constants and g(z) → 0 as |z| → ∞.
Equal strains e0

⊥ = e0
‖ are frequently taken in the numerical

calculations, but it is advantageous to distinguish these
components in the analysis because they provide qualitatively
different contributions to the strain fields.

The normal displacement u0
z(z) can be obtained by the total

strain integration

u0
z(z) =

(
e0
‖ + 2c13

c33
e0
⊥

)∫ z

0
g(z)dz. (4)

Particularly for a uniform layer with thickness 2d and sharp
interfaces, we obtain

u0
z(z) =

(
2c13

c33
e0
⊥ + e0

‖

)
z for |z| � d,

(5)

u0
z(z) =

(
2c13

c33
e0
⊥ + e0

‖

)
d sgn(z) for |z| > d.

The stress in the layer can be found by using Hooke’s law
(A1),

εrr = εθθ = e∗
⊥ + (s11 + s12)σ 0

rr = 0, (6)

and therefore

σ 0
rr = σ 0

θθ = − e∗
⊥

s11 + s12
= −σ 0g(z), σ 0

zz = 0, (7)
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FIG. 1. (Color online) Geometry of a mismatched layer with
sharp interfaces in cylindrical nanowire.

where it is defined

σ 0 =
(

c11 + c12 − 2c2
13

c33

)
e0
⊥. (8)

B. Exact solution for a layer in the cylinder

Consider a cylindrical nanowire of diameter 2R with a
one-dimensional distribution of intrinsic strains given by
Eq. (3). Formulas below are derived for an arbitrary z-
dependent distribution of the intrinsic strains, continuous or
discontinuous. We do not restrict ourselves to the particular
case of a uniform mismatched layer of thickness 2d, as drawn
in Fig. 1.

The solution of the elastic problem for a planar layer
obtained above gives nonzero stress on the side cylinder
surface. The solution of the elastic problem for the cylinder is
sought as a sum of two terms: the strain field produced by the
intrinsic strain e∗

kl(z) in an infinite medium calculated above
and the image strain field required to satisfy the boundary
conditions on the side surface of the cylinder r = R,

σrr (R,z) = 0, σrz(R,z) = 0. (9)

The stress components are the sums

σij (r,z) = σ 0
ij (z) + σ im

ij (r,z), (10)

where the stresses σ 0
ij (z) are given by Eq. (7). The displace-

ments ui(r,z) in the cylinder are represented similarly as sums

ui(r,z) = u0
i (z) + uim

i (r,z), (11)

where u0
z(z) is given by Eq. (4) and the other components u0

r

and u0
θ are zero.

The boundary value problem for the image field is solved
by representing the shape function g(z) by its Fourier spectrum
g(q),

g(z) =
∫ ∞

0
g(q)cos(qz/R)dq. (12)

The solution is obtained for each Fourier component, using
the axially symmetric stress functions20,21 to represent the
displacement field. The solution is given in the Appendix.
Using dimensionless coordinates

x = r/R, ζ = z/R, (13)

the image displacements are written as

uim
r (x,ζ )

= −Rσ 0

c44

∫ ∞

0

[
1

1 + k1

I1(qx/ν1)

I1(q/ν1)
− 1

1 + k2

I1(qx/ν2)

I1(q/ν2)

]

× g(q)

D(q)
cosqζ dq, (14)

uim
z (x,ζ )

= Rσ 0

c44

∫ ∞

0

[
k1ν1

1 + k1

I0(qx/ν1)

I1(q/ν1)
− k2ν2

1 + k2

I0(qx/ν2)

I1(q/ν2)

]

× g(q)

D(q)
sinqζ dq. (15)

Here I0(x) and I1(x) are modified Bessel functions and

D(q) = c11 − c12

c44

k2 − k1

(1 + k1)(1 + k2)

− q

(
ν1

I0(q/ν1)

I1(q/ν1)
− ν2

I0(q/ν2)

I1(q/ν2)

)
. (16)

The parameters ν1, ν2, k1, and k2 are defined in the Appendix.
For the layer with a constant intrinsic strain and sharp

interfaces shown in Fig. 1, g(z) reduces to the step function
represented by the Fourier integral

g(z) = [sgn(z + d) − sgn(z − d)]/2

= 2

π

∫ ∞

0

sin(qd/R)

q
cos(qz/R)dq. (17)

Hence its spectrum is

g(q) = 2

π

sin(qd/R)

q
. (18)

In this case, Eqs. (14) and (15) are equivalent to the results of
Ref. 15 represented by means of an alternative stress function.
Strain is obtained by differentiation of the displacements (14)
and (15). Explicit expressions for strain components are given
in the Appendix.

Let us now consider the asymptotic behavior of the image
displacements at ζ � 1. Taking into account the behavior of
cylindrical functions at small q, one can show that at ζ � 1
the longitudinal displacement is represented as

uim
z (x,ζ ) = Rσ 0

c44

2

D(0)

[
k1ν

2
1

1 + k1
− k2ν

2
2

1 + k2

]

×
∫ ∞

0
g(q)

sinqζ

q
dq. (19)

For further analysis of Eq. (19), we proceed to the real-space
integral of the shape function,∫ ∞

0
g(q)

sinqζ

q
dq = R−1

∫ z

0
g(z)dz. (20)
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Then, at ζ � 1,

uim
z (x,ζ ) = σ 0

c44

2

D(0)

[
k1ν

2
1

1 + k1
− k2ν

2
2

1 + k2

] ∫ z

0
g(z)dz. (21)

Correspondingly, the displacement in the cylinder in the limit
z → ∞ is

uz(x,ζ → ∞) = (Ae0
⊥ + e0

‖)
∫ ∞

0
g(z)dz, (22)

where

A = 2
(
c11 + c12 − 2c2

13

/
c33

)
c44D(0)

[
k1ν

2
1

1 + k1
− k2ν

2
2

1 + k2

]
+ 2c13

c33
.

(23)

A direct calculation of the coefficient A in Eq. (23) shows
that A = 0 and therefore the relative displacement of the
cylinder ends �L = uz(r,∞) − uz(r, − ∞) depends only on
the average longitudinal intrinsic strain

�L =
∫ ∞

−∞
e∗
‖(z)dz. (24)

Hence the lateral mismatch e0
⊥ does not change the average

longitudinal lattice spacing. This result contrasts with the
prediction based on the conventional solution, given in Eq. (4)
or (5), which ignores the stress relaxation at the side surface of
the cylinder. This result, as we show in Sec. III, essentially
effects the x-ray diffraction peak positions for nanowire
heterostructures. Equation (24), derived here from the exact
solution of the corresponding anisotropic elasticity problem,
has a clear physical origin and can be explained within the
framework of the average stress theorem22 for finite elastic
bodies with inhomogeneous intrinsic strains and a traction-free
surface.

C. Solution for planar heterostructures in free-standing films

In the analysis of embedded planar heterostructures in
Sec. II A, the stress boundary condition on the side surface
due to the elastic strain in the layer was ignored. In the case of
free-standing films we can take it into account approximately
by replacing the exact condition of stress relaxation with the
requirement of the corresponding average stress vanishing.

For a planar free-standing film of thickness L with a one-
dimensional distribution of intrinsic strains e∗

kl(z) the stresses
σiz vanish and the nonzero components of the stress tensor are
given by22

σij (z) = −c∗
ijkl(n)[e∗

kl(z) − e∗
kl], (25)

where

e∗
kl = 1

L

∫ L/2

−L/2
e∗
kl(z)dz (26)

is the average intrinsic strain in the film, n is a unit vector
along z axis, and the planar tensor of elastic constants for the
direction n is given by

c∗
ijkl(n) = cijkl − cijmpnm(nn)−1

pq nrcrqkl . (27)

Here (nn)pq = nicipqjnj and the tensor (nn)−1 is the inverse
to the tensor (nn). The relation (25) between stresses and

intrinsic strains in the film is derived under the assumption
that e∗

kl(−z) = e∗
kl(z) to exclude the film bending effects.

Equation (25) ensures that the average stress in the film
vanishes and therefore the boundary conditions for the stress
at the side surface (r = R,z) are satisfied approximately, in
the form σ rr = σ rθ = σ rz = 0.

For hexagonal crystal symmetry and a transversely isotropic
tensor of intrinsic strains with the components e∗

rr (z) =
e∗
θθ (z) = e∗

⊥(z) and e∗
zz(z) = e∗

‖(z), the nonzero stress compo-
nents given by Eq. (25) reduce to

σrr = σθθ = −
(

c11 + c12 − 2c2
13

c33

)
[e∗

⊥(z) − e∗
⊥]. (28)

Using Hooke’s law, the in-plane elastic strain related to the
stress (28) can be written as

err = eθθ = −[e∗
⊥(z) − e∗

⊥]. (29)

Since the film has the freedom to expand in the z direction,
the normal elastic strain can be calculated from the condition
σzz = 0 as

ezz = 2c13

c33
[e∗

⊥(z) − e∗
⊥]. (30)

The total strain εkl(z) is the sum of the intrinsic strain e∗
kl(z)

and the elastic strain ekl(z). Since the lateral expansion of the
film is controlled by the compatibility condition, the in-plane
components of the total strain remain constant

εrr = εθθ = e∗
⊥. (31)

However, in contrast to Sec. II A, they vanish only as the
average intrinsic strain e∗

⊥ vanishes. In turn, the total strain εzz

can now be calculated as

εzz = e∗
‖(z) + 2c13

c33
[e∗

⊥(z) − e∗
⊥]. (32)

The corresponding displacements ui become

ur (r) = e∗
⊥r,

(33)

uz(z) =
∫ z

0

{
e∗
‖(z) + 2c13

c33
[e∗

⊥(z) − e∗
⊥]

}
dz.

It follows from Eq. (33) that the change in the film thickness
�L = uz(r,L/2) − uz(r, − L/2) is independent of the stress
distribution in it and results only from the average longitudinal
intrinsic strain

�L =
∫ L/2

−L/2
e∗
‖(z)dz, (34)

in accordance with Eq. (24).
For a layer of thickness 2d with the uniform intrinsic strain

and sharp interfaces, we have e∗
⊥ = (2d/L)e0

⊥. The total strain
εzz inside the layer (|z| < d) can now be calculated as

εzz = e0
‖ + 2c13

c33
e0
⊥

(
1 − 2d

L

)
, (35)

whereas the stress components become

σrr = σθθ = −σ 0[1 − (2d/L)], σzz = 0. (36)
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The longitudinal displacement uz is

uz(z) = u0
z(z) − 2d

L

2c13

c33
e0
⊥z, (37)

where u0
z(z) is given by Eq. (5). Equations (35)–(37) enable

us to estimate the accuracy of the results obtained in Sec. II A
in the limit L � d. Thus one can see that the second term in
Eq. (37) can be neglected when the displacement is calculated
in the vicinity of the layer, z/d ∼ 1, and the equations of
Sec. II A can be used. However, the terms of the order of d/L

cannot be neglected when the displacement is calculated at
distances z ≈ L, particularly in the calculation of the change
in the thickness of the whole system �L = 2e0

‖d.

D. Displacement distributions

We use the formulas derived above to calculate the distribu-
tions of the displacements. Figure 2 shows the z component of
the displacements. The ratio of the disk height 2d to the disk
diameter 2R is taken to be d/R = 0.1. We set ε0

‖ = ε0
⊥ = ε0

and scale the displacements by Rε0. The displacement in the
infinite medium (5) is shown in Fig. 2(a). It is just the linear
function inside the layer.

The image displacement (15) is shown in Fig. 2(b). Near the
surface, the displacement uim

z inverts the sign. The longitudinal
displacement caused by only transverse lattice mismatch
(ε0

‖ = 0,ε0
⊥ 
= 0) is of special interest. It is denoted by u⊥

z (r,z)
and is shown in Fig. 2(c): The displacement tends to zero
for |z| � R, as found in the preceding sections. We recall
that the stress-free boundary conditions are applied at the
ends of cylinder and the cylinder is free to extend along
its axis. However, the displacement occurs localized in the
region with the height comparable with the cylinder diameter.
The displacements uz(r,z) given by Eq. (11) are shown in
Fig. 2(d).

The radial displacement is presented in Fig. 3. The
displacement ur (r,z) coincides with the image displacement
uim

r (r,z). The radial displacement is zero at the cylinder axis,

(a)

(c) (d)

(b)

FIG. 2. (Color online) Components of the longitudinal displace-
ment uz: (a) displacement in a planar film, (b) an additional
contribution due to the boundary conditions in cylinder, (c) dis-
placements due to the in-plane mismatch ε0

⊥, and (d) the complete
displacement.

FIG. 3. (Color online) Radial displacement ur for a mismatched
layer in the cylinder. Dashed lines show the layer borders.

as it follows from the symmetry of the problem, and increases
toward the surface. The vertical dashed lines denote the layer
borders. The displacements extend to a distance comparable
with the cylinder radius R rather than the layer thickness d.

III. X-RAY DIFFRACTION FROM NANOWIRE
HETEROSTRUCTURES

X-ray diffraction is a standard tool used to determine the
structure of planar heteroepitaxial films and x-ray diffrac-
tion patterns are well understood.16–19 Periodic layers give
rise to satellite reflections. The distance between satellites
directly provides the period of the heterostructure and the
position of the zeroth-order reflection gives the average
mismatch in the heterostructure. The x-ray diffraction from
a nanowire heterostructure suffers from the inhomogeneous
strain distribution in the nanowire. In comparison with the
planar heterostructures, one more parameter, the ratio of
the heterostructure height to the nanowire diameter, comes
into consideration. In the limit of a very large diameter, the
strain state of the heterostructure tends to that of a planar
heterostructure. The thinner the nanowire, the better strain
relaxation is on the side surface, which influences x-ray
diffraction peaks.

X-ray diffraction is sensitive to the total displacements of
atoms with respect to their positions in a reference crystal, the
base of the nanowire. These displacements ui(r,z) are given
by Eq. (11). The longitudinal displacement uz is the sum of
two contributions, the displacement u0

z(z) for a planar film (5)
and the image displacement uim

z (r,z) given by Eq. (15), which
provides stress relaxation on the side cylinder surface. The
displacement due to a set of such disks is just the sum of the
displacements from individual disks due to linear elasticity.

Figure 4(a) presents the longitudinal displacements uz(r,z)
for a periodic structure with five layers. They model (In,Ga)N
quantum wells in GaN nanowires. The well thickness is 6 nm,
the spacing between the wells is 14 nm, and the nanowire
diameter is 100 nm. Two curves show the displacement
along the nanowire axis (r = 0) and along its surface (r =
R). A corresponding planar heterostructure would possess
an r-independent linear increase of the displacement u0

z(z)
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FIG. 4. (Color online) (a) Displacements uz(r,z) along the nanowire axis [r = 0, thick (red) line] and at the nanowire surface [r = R, thin
(blue) line] for a periodic sequence of five mismatched layers. The disk thickness is 6 nm, the distance between disks is 14 nm, and the nanowire
diameter is 100 nm. (b) Calculated x-ray diffraction pattern for a periodic sequence of ten such disks [thick (black) line] and diffraction
pattern for a planar heterostructure with the same parameters [thin (red) line]. (c) Nanowire diameter dependence of the relaxation factor f

[Eq. (39)].

inside the wells with horizontal plateaus in the spacing layers
between the wells. The difference in displacements causes the
difference between diffraction patterns of the nanowire and
the planar heterostructure.

Figure 4(b) shows the x-ray diffraction pattern calculated
as

I (q) =
∣∣∣∣
∫ ∞

−∞

∫ R

0
exp[iQ0uz(r,z) + iqz]r dr dz

∣∣∣∣
2

. (38)

Here a longitudinal scan in symmetric Bragg reflection is
considered, so only the z displacement is of interest. The
reciprocal lattice vector Q0 is taken for the GaN(0002)
reflection, Q0 = 24.1 nm−1. We take ten periodic quantum
wells with the same parameters as above to have sharper
diffraction peaks. The integral (38) is taken over the volume of
the nanowire. Practical calculations are performed in a finite
z range, which causes artificial high-frequency fringes due
to sharp ends of the nanowire. They can be smoothed by an
appropriate resolution function.

The calculation for a nanowire heterostructure [thick black
line in Fig. 4(b)] is compared with the calculation for a planar
heterostructure with the same parameters (thin red line). Both
curves show the same intensities of the satellite reflections and
the same distances between reflections, but the reflections are
shifted with respect to each other. The shift �q0 of the zeroth-
order diffraction peak of the heterostructure with respect to the
reference peak of the substrate (for a planar heterostructure)
or the base (for a nanowire) can be written as

�q0/Q0 = (2d/p)f ε0. (39)

In the x-ray diffraction calculations, we take equal values of
misfits in the basal plane ε0

⊥ = �a/a and along the nanowire
axis ε0

‖ = �c/c. The thickness of the mismatched layers is 2d

and the period of the heterostructure is denoted by p. The ratio
2d/p is the fraction of the period occupied by the layer and
(2d/p) ε0 is the average misfit.

The factor f describes relaxation of the heterostructure. For
planar films, the relaxation factor is given by Eq. (5),

fplanar = 2c13/c33 + 1. (40)

For the elastic moduli of GaN given in the Appendix, one
has fGaN = 1.53. In the limit of elastic isotropy, this factor
becomes fplanar = (1 + ν)/(1 − ν), where ν is the Poisson
ratio.

In the opposite limit of the nanowire diameter small
compared to the mismatched layer thickness, the layer is free
to relax laterally, which gives f = 1. The layer in a nanowire
relaxes partially, depending on the ratio of its thickness
to the nanowire diameter, and the relaxation factor varies
between 1 and fplanar. This range of relaxation factors has
been already discussed11 in the x-ray diffraction analysis of
the (In,Ga)N/GaN nanowire heterostructures.

Using the solution of the elastic problem for a mismatched
layer, we are able now to determine the dependence of the
factor f on the nanowire diameter. We have calculated the
x-ray diffraction patterns, similar to the one in Fig. 4(b), for
the same heterostructure period described above, but different
numbers of periods and different nanowire diameters. The
relaxation parameter f obtained from the diffraction peak
positions calculated by Eq. (39) is plotted in Fig. 4(c). We
have used the first positive and negative reflection orders
to obtain f . For the 25-period heterostructure, the use of
the zeroth-order satellite gives the same result. For shorter
superlattices and with ε0 = 0.01 used in the calculations, there
are deviations caused by the interference of the heterostructure
signal with that of the nanowire base. When the misfit ε0 is
increased and the peaks become well separated, the use of
the zeroth or first positive and negative orders gives the same
result.

The transition from f = 1 for small cylinder diameters to
f = fplanar for very large cylinder diameters is clearly seen
for all heterostructures. However, the diameters where this
transition takes place depend on the number of heterostructure
periods or, equivalently, on the total thickness of the whole
heterostructure. The deviation from f = 1 begins when the
diameter exceeds the heterostructure thickness and reaches
fplanar at diameters about two orders of magnitude larger.

The features of the strain field caused by a mismatched
layer, described in Sec. II, explain this behavior. The lon-
gitudinal displacement caused by the transverse mismatch
tends to zero for distances exceeding the cylinder diameter
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FIG. 5. (Color online) Transformation of the diffraction pattern
with increasing number of periods in the heterostructure. The cylinder
diameter is 700 nm.

[see Fig. 2(c)]. Diffraction peaks of a periodic heterostructure
reveal the mean strain in the region occupied by the het-
erostructure. As long as its thickness exceeds the diameter,
the strain is averaged over the whole essential region. As a
result, the transverse mismatch does not contribute to the peak
shift and f remains close to 1. With a further increase of
diameter, only part of the image strain field occurs inside the
heterostructure and the effect of the side surface relaxation
decreases. The factor f continuously increases and at very
large diameters reaches the limit of a planar heterostructure.

The factor f for the 25-period heterostructure shows a
minimum f < 1 for diameters comparable with the het-
erostructure height [see Fig. 4(c)]. This minimum is not simply
a shift of diffraction peaks but a result of a more complicated
transformation of the diffraction pattern, as shown in Fig. 5.
Here the heterostructure period was kept the same as above
(p = 20 nm) and the diameter was taken to be constant
2R = 700 nm. As the number of periods in the heterostructure
is increased, the shape of the diffraction peaks becomes more
complicated. This is caused by nonuniformity of the image
displacement: Different heterostructure parts occur under
different strain conditions. The diffraction peak position and
width do not completely characterize the diffraction pattern in
this case.

IV. CONCLUSION

The lateral mismatch in a heteroepitaxial film causes, as
the Poisson effect, longitudinal strain and longitudinal film
expansion. We show that, as a result of the elastic relaxation
at the side surface of the cylinder, a long cylinder containing
a layer with the lateral mismatch does not change the length,
so the average longitudinal strain is zero. Since the relaxation
occurs at distances comparable with the cylinder diameter, the
x-ray diffraction peak positions from the axial heterostructures
depend on the length of the whole heterostructure. As long
as the heterostructure is shorter than the diameter, the peak

position corresponds to full lateral relaxation of each layer. The
practical nanowire heterostructures correspond to this limit.
The opposite limit of a planar heterostructure is reached at two
orders of magnitude larger diameters. These results provide a
firm background for the x-ray diffraction analysis of nanowire
heterostructures.
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APPENDIX: ELASTIC CYLINDER WITH
INHOMOGENEOUS INTRINSIC STRAINS

For a crystal with a hexagonal lattice (for example,
GaN with the point group 6mm) and the sixfold axis in
the z direction, Hooke’s law in a cylindrical coordinate
system (r,θ,z) retains the same form as it has in Cartesian
coordinates:

err = s11σrr + s12σθθ + s13σzz,

eθθ = s12σrr + s11σθθ + s13σzz,
(A1)

ezz = s13(σrr + σθθ ) + s33σzz,

2eθz = s44σθz, 2erz = s44σrz, 2erθ = s66σrθ

and

σrr = c11err + c12eθθ + c13ezz,

σθθ = c12err + c11eθθ + c13ezz,
(A2)

σzz = c13(err + eθθ ) + c33ezz,

σθz = 2c44eθz, σrz = 2c44erz, σrθ = 2c66erθ .

One has, in addition, 2c66 = c11 − c12 and s66 = 2(s11 − s12).
We use the following values for the elastic constants of wurtzite
GaN at room temperature (in GPa):23 c11 = 390, c12 = 145,
c13 = 106, c33 = 398, and c44 = 105.

According to Ref. 21, for hexagonal crystals with axially
symmetric strain distributions the image fields necessary to
obey the boundary conditions can be derived from two quasi-
harmonic stress functions20 φ1(x,ζ ) and φ2(x,ζ ) satisfying the
following equations:

[
∂2

∂x2
+ 1

x

∂

∂x
+ 1

ν2
j

∂2

∂ζ 2

]
φj (x,ζ ) = 0 (j = 1,2),

(A3)

where ν1 and ν2 are the positive real part roots of the
characteristic equation

c33c44ν
4 + [c13(c13 + 2c44) − c11c33]ν2 + c11c44 = 0. (A4)

For the elastic constants of GaN given above, its roots
are purely real and have the values ν1 = 1.589 and ν2 =
0.623.
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The image displacements are expressed through the stress functions as20

Ruim
r (x,ζ ) = ∂

∂x
(φ1 + φ2), Ruim

z (x,ζ ) = ∂

∂ζ
(k1φ1 + k2φ2), (A5)

where the parameters kj are given by

kj =
(
c11/ν

2
j

) − c44

c13 + c44
(j = 1,2). (A6)

The image stress components entering the boundary conditions (6) at the side surface have the form

R2σ im
rr (x,ζ ) = −(c11 − c12)

1

x

∂

∂x
(φ1 + φ2) − c44

∂2

∂ζ 2
[(1 + k1)φ1 + (1 + k2)φ2],

(A7)

R2σ im
rz (x,ζ ) = c44

∂2

∂x∂ζ
[(1 + k1)φ1 + (1 + k2)φ2].

The solution of the corresponding boundary-value problem for the image fields in an infinite elastic cylinder with a one-
dimensional distribution of the intrinsic strains described by a shape function g(z) is the following. The stress functions are

φ1(x,ζ ) = −R2σ 0

c44

ν1

1 + k1

∫ ∞

0

I0(qx/ν1)

I1(q/ν1)

g(q)

qD(q)
cosqζ dq,

(A8)

φ2(x,ζ ) = R2σ 0

c44

ν2

1 + k2

∫ ∞

0

I0(qx/ν2)

I1(q/ν2)

g(q)

qD(q)
cosqζ dq.

The image displacements obtained from Eq. (A8) are given in Eqs. (14) and (15). The corresponding elastic strains can be
calculated using the relations

eim
rr = ∂uim

r

∂r
, eim

θθ = uim
r

r
, eim

zz = ∂uim
z

∂z
, eim

rz = 1

2

(
∂uim

r

∂z
+ ∂uim

z

∂r

)
. (A9)

The explicit expressions for the strain components are

eim
rr (x,ζ ) = − σ 0

c44

∫ ∞

0

[
1

1 + k1

I0(qx/ν1) − I1(qx/ν1)
(qx/ν1)

ν1I1(q/ν1)
− 1

1 + k2

I0(qx/ν2) − I1(qx/ν2)
(qx/ν2)

ν2I1(q/ν2)

]
g(q)

D(q)
q cosqζ dq, (A10)

eim
zz (x,ζ ) = σ 0

c44

∫ ∞

0

[
k1ν1

1 + k1

I0(qx/ν1)

I1(q/ν1)
− k2ν2

1 + k2

I0(qx/ν2)

I1(q/ν2)

]
g(q)

D(q)
q cosqζ dq, (A11)

eim
θθ (x,ζ ) = − σ 0

c44x

∫ ∞

0

[
1

1 + k1

I1(qx/ν1)

I1(q/ν1)
− 1

1 + k2

I1(qx/ν2)

I1(q/ν2)

]
g(q)

D(q)
cosqζ dq, (A12)

eim
rz (x,ζ ) = σ 0

2c44

∫ ∞

0

[
I1(qx/ν1)

I1(q/ν1)
− I1(qx/ν2)

I1(q/ν2)

]
g(q)

D(q)
q sinqζ dq. (A13)
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