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Topological insulators have surface states with unique spin-orbit coupling. With impurities on the surface,
the quasiparticle interference pattern is an effective way to reveal the topological nature of the surface states,
which can be probed by scanning tunneling microscopy. In this paper, we present a general analytic formulation
of the local density of states using the stationary phase approximation. The power laws of Friedel oscillations
are discussed for a constant energy contour with a generic shape. In particular, we predict unique signature of
magnetic impurities in comparison with nonmagnetic impurities for a surface state trapped in a “magnetic wall.”
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I. INTRODUCTION

Topological insulators in three dimensions (3D) are band
insulators which have a bulk insulating gap and gapless
surface states with an odd number of Dirac cones protected
by time-reversal symmetry (TRS).1–3 A family of 3D topo-
logical insulators (TI) with a large bulk gap and a single
Dirac cone on the surface includes the compounds Bi2Se3,
Bi2Te3, and Sb2Te3, which have been theoretically predicted
and experimentally observed.4–7 The surface state of these
materials can be described by the effective Dirac Hamiltonian
H0 = h̄vF ẑ · (σ × k) [with k = (kx,ky) the momentum] when
the Fermi level is close to the Dirac point, which behaves
like a massless relativistic Dirac fermion with the spin locked
to its momentum.8 However, compared to the familiar Dirac
fermions in particle physics, those emergent quasiparticles
exhibit richer behaviors. In Bi2Te3, an unconventional hexag-
onal warping effect appears due to the crystal symmetry,9

which means the constant energy contour (CEC) of the surface
band evolves from a convex circle to a concave hexagon as
the energy moves away from the Dirac point. Although the
topological property of the surface states is not affected, such
kinds of deformation of the CEC do affect the behavior of the
surface states in the presence of impurities.

Quasiparticle interference (QPI) caused by impurity scat-
tering on the surface of 3D TIs is an effective way to reveal
the topological nature of the surface states. The interference
between incoming and outgoing waves at momenta ki and
kf leads to an amplitude modulation of the local density
of state (LDOS) at wave vector q = kf − ki , known as
the Friedel oscillation.10 Nowadays, such modulation can
be studied by a powerful surface probe, scanning tunneling
microscopy (STM), which directly measures the LDOS. The
information in momentum space is obtained through Fourier
transform scanning tunneling spectroscopy (FT-STS). Several
STM measurements11–19 have been performed on the surface
of 3D TIs in the presence of nonmagnetic point and edge
impurities, and the following features are shared in common.
(i) The topological suppression of backward scattering from
nonmagnetic point and edge impurities is confirmed by
the observation of strongly damped oscillations in LDOS,
together with the invisibility of the corresponding scattering

wave vector q in FT-STS. (ii) Anomalous oscillations are
reported in Bi2Te3 for both point and edge impurities when
the CEC becomes concave. These experimental facts have
been interpreted theoretically by several groups.19–24 For
short-range point and edge impurities, the Friedel oscillation
in an ordinary two-dimensional electron gas (2DEG) has the
power law of R−1 and R−1/2, respectively.25 In comparison,
the Friedel oscillation in a helical liquid with a convex CEC
is dominated by the scattering between time-reversed points
(TRP) and is thus suppressed to R−2 and R−3/2 for point and
edge impurities separately. This result is the crucial reason of
the invisibility of the scattering wave vector q in FT-STS, and
is the direct consequence of the suppression of backscattering
protected by TRS in helical liquid. When the CEC becomes
concave, scattering between wave vectors, which are not
connected by TRP, can have a significant contribution and
leads to a slower decay of the Friedel oscillation.9,13

Motivated by these results, in this work we develop a
general theory of the QPI for a CEC of generic shape using
the stationary phase approximation approach.26 This approach
has been applied successfully to the Ruderman-Kittel-Kasuya-
Yosida interaction in 3D systems with nonspherical Fermi
surfaces.26 In the stationary phase approximation, the long-
distance behavior of the Friedel oscillations is dominated
by the so-called “stationary points” on the CEC. Using this
approach, a complete result of the power-expansion series of
the LDOS and spin LDOS is obtained for both point- and
edge-shaped nonmagnetic and magnetic impurities, which we
model by δ-function potentials. The spin LDOS is the local
spin density at a given energy, which can be measured by
a STM experiment with a magnetic tip. Our results depend
only on the TRS and the local geometry around the stationary
points on the CEC, which explain not only the usual R−1

and R−1/2 power laws in 2DEG, but also the R−2 and R−3/2

oscillations in the helical liquid. With a generic shape of CEC,
a different power law can be obtained due to the presence of
additional stationary points aside from the TRP, which can
be used to predict the result of STM and spin-resolved STM
experiments on the surface of other TI materials with more
complicated surface states. An important consequence of our
result is that an ordinary STM measurement can not distinguish
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magnetic and nonmagnetic impurities, although the former can
induce backscattering while the latter can not. To distinguish
the effect of magnetic and nonmagnetic impurities and observe
backscattering induced by magnetic impurities, it is necessary
to use a magnetic tip to measure the spin LDOS.

The rest of this paper is organized as follows. In Sec. II,
we introduce an intuitive picture of the interference between
helical waves scattered by magnetic impurities. In Sec. III,
we present the general analytic formulation of LDOS for
point and edge impurities, respectively, by focusing first on
those CEC where the stationary points are extremal points.
We then generalize our results to the more generic CEC
where the stationary points are saddle points, with the first
nonzero expansion coefficient occurring at a higher power. A
conclusion and discussion are given in Sec. IV.

II. STANDING WAVE OF THE SPIN INTERFERENCE
BETWEEN TWO HELICAL WAVES

With the presence of TRS, the backscattering by nonmag-
netic impurities is known to be forbidden on the surface of
3D TIs due to the π Berry’s phase associated with the full
rotation of electron spin.27,28 In experiments, this manifests in
the invisibility of the scattering wave vector 2kF in FT-STS.18

It would then be interesting to ask how the surface states
respond differently to magnetic impurities, and what their
characteristic signatures in STM measurements are. With
magnetic impurities, naively one would expect to see a
nontrivial interference pattern since backscattering is allowed
due to the breaking of TRS. However, it turns out that the
Friedel oscillation in the charge LDOS, which is measured
in an ordinary STM experiment with a nonmagnetic tip, is
still suppressed in the same way as nonmagnetic impurities.
The broken TRS would only manifest itself in the spin LDOS
measured by a spin-polarized STM tip.29

To understand this result, we first present a simple picture
of the interference between two counterpropagating helical
waves on the surface of a 3D TI, and then give a complete
theoretical survey in the next section. Consider a magnetic
edge impurity placed along the x axis on the surface. For
the effective Hamiltonian H0 = h̄vF ẑ · (σ × k), the electron
state propagating along the y direction perpendicular to the
impurity line has spin polarized to the x direction, with the
wave function ψ1 = 1√

2
eikF y(1 1)T. Here, the superscript “T”

indicates the transpose. This wave is then backscattered by
the magnetic edge and counterpropagates in the −y direction.
For the same energy, the state with opposite k must have
opposite spin, with the wave function ψ2 = 1√

2
e−ikF y(−1 1)T.

This situation is illustrated in Fig. 1. A simple calculation
shows that the interference of the two counterpropagating
helical waves ψ(y) = 1√

2
[ψ1(y) + ψ2(y)] leads to a constant

charge LDOS on the surface 〈ρ〉ψ = |ψ†ψ(y)| = 1 since
ψ1 and ψ2 have orthogonal spin. However, the interference
leads to a spiral spin LDOS in the yz plane as 〈s〉ψ =
ψ†sψ = [0, − h̄

4 sin(2kF y), − h̄
4 cos(2kF y)], where s = h̄

2σ is
the electron spin operator. Therefore, a STM experiment with
a nonmagnetic tip will observe no interference pattern, while
one with a magnetic tip will observe the oscillation of the spin
density of states. Such a contrast between charge and spin

FIG. 1. (Color online) Illustration of charge and spin interference
patterns between two counterpropagating helical waves. The gray
block is a 3D TI with a magnetic edge impurity (green stripe with
thick arrows pointing up) lying along the x axis on the surface. An
incident helical wave along the y direction with spin polarized in the
x direction (the blue dashed line) is backscattered by the magnetic
edge and the spin is flipped (the red solid line). The interference of
the two orthogonal helical waves leads to a constant LDOS in the
charge channel, but a spiral LDOS in the spin channel (purple arrows
between the solid and dashed lines) in the yz plane.

density of states is a unique signature of the helical liquid,
which is a direct demonstration of the locking between spin
and momentum.

To observe such a spin interference pattern, a more
convenient setup is a closed “magnetic wall” as shown in
Fig. 2. Consider a magnetic layer deposited everywhere on
the 3D TI surface except a hole in the middle with the disk
shape. The magnetic layer can open a gap on the surface state
such that the low-energy surface states are trapped in the hole
region and form a standing wave. Similar to the straight-line
magnetic impurity discussed above, the standing wave trapped
by the magnetic barrier can be obtained by setting the boundary
condition of fixed spin at the boundary of the hole. For large
R (R � 1/kF ), the spin density of the standing wave has
the behavior of 〈sR〉 ∼ sin(2kF R)√

R
, 〈sz〉 ∼ cos(2kF R)√

R
, with R and

z standing for longitudinal and perpendicular directions in a
spherical coordinate. A unique property of the helical surface
states is the spin-charge locking.8 For the effective Hamilto-
nian H0 = h̄vF ẑ · (σ × k), the electric current operator in the
long-wavelength limit is j = ∇kH0 = h̄vF ẑ × σ . Therefore,
there is a loop charge current jφ = −2evF 〈sR〉 along the
azimuthal direction associated with the spin density.

FIG. 2. (Color online) Standing wave of spin interference be-
tween two helical waves inside a closed “magnetic wall” on top of a
3D TI surface. The magnetic wall is surrounded by a magnetic layer
deposited on top of the 3D TI surface, which opens a gap in the helical
surface states and plays the role of a barrier. The out-of-plane spin
LDOS is exhibited by the colored (dark and bright) rings, and the
in-plane spin LDOS is indicated by the black arrows.
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III. GENERAL FORMULATION OF STATIONARY PHASE
APPROXIMATION APPROACH TO QPI ON

THE SURFACE OF 3D TI

In this section, we obtain the general long-distance features
of charge and spin LDOS on the surface of a generic 3D
TI induced by nonmagnetic and magnetic impurities using
the stationary phase approximation method.26 We study both
pointlike and edgelike impurities. We shall focus first on the
behavior of a special kind of CEC where the stationary points
are extremal points, and then generalize our results to generic
CEC with higher-order nesting points.

A. Point impurity

We start by considering a point defect on the surface of a
3D TI. The Hamiltonian with a single impurity is

H =
∫

d2r ψ†(r)[h0(k) + V σμδ(r)]ψ(r), (1)

where σμ = 1 for μ = 0 and σa = σx,y,z are the Pauli matrices
for a = 1,2,3. k = −i∇ is the momentum operator. For such
a potential, the LDOS can be expressed exactly. Using the σμ

matrices, the charge and spin LDOS are combined to the form

ρν(ω,R) = − 1

π
Im{tr[Gr (ω,R,R)σ ν]}, (2)

with Gr (ω,R,R′) being the retarded Green’s function in real
space. Let ρν0(ω) be the LDOS of the unperturbed system with
V = 0; the deviation of the LDOS from the background value
ρν0(ω) is then given by

δρμν(ω,R) ≡ ρν(ω,R) − ρν0(ω)

= − 1

π
Im

∫
d2k d2k′

(2π )4
ei(k−k′)·R

× tr
[
Gr

0(ω,k)T μ(ω,k,k′)Gr
0(ω,k′)σ ν

]
. (3)

Here, Gr
0(ω,k) is the free retarded Green’s function gov-

erning the CEC under consideration. For the topological
surface states, Gr

0(ω,k) = [ω + iδ − h0(k)]−1. The T matrix
T μ(ω,k,k′) is defined by

T μ(ω) = V σμ
[
1 − V σμGr

0(ω)
]−1

, (4)

which is momentum independent when the impurity has a δ-
function potential, and we have denoted the real-space Green’s
function Gr

0(ω) = ∫
d2k

(2π)2 G
r
0(ω,k). As is required by the TRS,

Gr
0(ω) is always proportional to the identity matrix.
We first note that the spin LDOS induced by a nonmagnetic

impurity vanishes uniformly, i.e., δρ0a ≡ 0 for a = 1,2,3.
This is a direct consequence of TRS because, under time-
reversal transformation 
 = iσ y , we have 
−1σa
 = −σaT

and 
−1Gr
0,k
 = GrT

0,−k; then, the trace in Eq. (3) satisfies
tr[Gr

0,kT
0Gr

0,k′σ
a] = −tr[Gr

0,−k′T
0Gr

0,−kσ
a], where we have

abbreviated Gr
0(ω,k) ≡ Gr

0,k . By interchanging k and −k′ in
the integral in Eq. (3), one is led to the result δρ0a(ω,R) = 0.
To obtain other components of the T matrix, we expand

the T matrix into spin-dependent and spin-independent
parts as

T a = T a
a σ a + T a

0 , T a
a = V

1 − V 2Gr2
0 (ω)

,

(5)

T a
0 = V 2Gr

0(ω)

1 − V 2Gr2
0 (ω)

, T 0 = V

1 − V Gr
0(ω)

,

where the fact that Gr
0(ω) is proportional to identity has been

used, and no summation over repeated indices is implied
throughout the paper. Similar to the argument in the δρ0a

case, we see that the contribution of T a
a to the charge LDOS

of a magnetic impurity δρa0 vanishes. Hence, we have
δρa0/δρ00 = T a

0 /T 0. Therefore, in the following, we shall
focus only on δρ00 and δρab.

To proceed, the measured LDOS in Eq. (3) is then
rewritten in the diagonal basis of the topological surface
bands. We define the unitary matrices Uk such that U

†
kh0(k)Uk

diagonalizes h0(k), and Eq. (3) becomes

δρμν(ω,R) = − 1

π
Im

∫
d2k d2k′

(2π )4
ei(k−k′)·R tr

[(
U

†
k G

r
0,kUk

)
× (U †

k T
μUk′)(U †

k′G
r
0,k′Uk′)(U †

k′σ
νUk)

]
(6)

= − 1

π
Im

∫
d2k d2k′

(2π )4
ei(k−k′)·R

×
∑
nm

γ
μν
nm (k,k′)�ν∗

nm(k,k′)
(ω + iδ − εn)(ω + iδ − ε′

m)
, (7)

where εn(m)(k) are the energy eigenvalues of the bands |n(m)k〉,
and we have defined �

μ
nm(k,k′) = 〈nk|σμ|mk′〉, as well as

γ μν
nm (k,k′) =

{
T 0�0

nm, μ = ν = 0

T a
a �a

nm + T a
0 �0

nm, μ = a,ν = b.
(8)

Following the standard process of density of states
calculations,26 the integrations over k and k′ are then converted
into coordinates dk = (dk⊥,dkφ) as

δρμν(ω,R) = − 1

π
Im

∮
dkφdk′

φei(k−k′)·R

(2π )4

∫
dεndε′

m

|∇⊥εn∇′
⊥ε′

m|

×
∑
nm

γ
μν
nm (k,k′)�ν∗

nm(k,k′)
(ω + iδ − εn)(ω + iδ − ε′

m)
, (9)

where k⊥ and kφ are components of k normal and tangential
to the CEC, respectively.

To evaluate the loop integrals along the CEC, it is essential
to introduce the stationary phase approximation. For example,
consider the LDOS at a point R = Rŷ (here and hereafter we
shall always take the y direction for example), the phase factor
ei(k−k′)·R = ei(ky−k′

y )R . Locally, one can write ky = ky(ε,kx) as
a function of energy ε and kx . For large distance R from
the impurity, the phase factors eiky (ε,kx )R and e−ik′

y (ε′,k′
x )R vary

rapidly with respect to kx and k′
x for almost every point on the

CEC, so that most of the integrations cancel out exactly except
for the stationary points ki ,26 which satisfy the condition

∂ky(ε,kx)

∂kx

= ∂k′
y(ε′,k′

x)

∂k′
x

= 0. (10)
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FIG. 3. (Color online) Schematic picture of CEC and stationary
points for point and edge impurities. (a) Convex CEC where there
is only one pair of stationary points connected by wavevector q1

(the red solid arrow) along any given direction for both point and
line impurities. (b) Concave CEC for point impurity where there are
multiple pairs of stationary points. Examples of nonstationary points
are shown by q2 and q3 (blue thick solid arrows). (c) The concave
CEC for edge impurities (brown shaded line) where the slopes (green
dashed lines) at the pair of stationary points are the same.

The stationary points defined above include (i) extremal points
such as the pairs connected by q1 in Figs. 3(a) and 3(b), where
the second derivative ∂2ky/∂k2

x is nonvanished; (ii) the turning
points such as the pair connected by q′

2 in Fig. 3(b), where
the second derivative also vanishes. In the following, we first
focus only on the extremal points, and leave the more general
discussions to Sec. III C.

Having identified the pairs of stationary points on the CEC
in direction R, the loop integrals in Eq. (9) at large distances
are then approximated by the summation of integrals in the
neighborhood of all the stationary-point pairs, which is the
essence of the method of the stationary phase approximation.
To start with, we first change the integral variables as d2k =
dε dkx/h̄|vyi |, where vyi = ∂ε(k)/h̄∂kyi , and then expand the
CEC at the extremal points as ky = kyi − (kx − kxi)2/2ρxi ,
where ρxi = −[∂2kyi(ε,kx)/∂2kxi]−1 are the principal radii
of curvature of the CEC at the extremal points, which are
positive for maxima while negative for minima. Under this
approximation, Eq. (9) becomes

δρμν(ω,R) � − 1

π
Im

∑
mn

∑
ij

∫
dεn

(2π )2

1

ω + iδ − εn

eikyiR

h̄|vyi |

×
∫

dε′
m

(2π )2

1

ω + iδ − ε′
m

e−ik′
yj R

h̄|v′
yj |

×
∫ ∞

−∞
dx e

−i x2

2ρxi
R

∫ ∞

−∞
dx ′ e

i x′2
2ρ′

xj

R

× γ μν
nm (k,k′)�ν∗

nm(k,k′), (11)

where we have denoted x = kx − kxi , x ′ = k′
x − k′

xj , and all
the quantities at the extremal points (ij ) still depend on
the energies ε and ε′. Now, the matrix element �

μ
nm(k,k′)

at the extremal points is in general some nonzero constant
C

μ

ni,mj (ε,ε′), except that it vanishes when μ = 0 and the pair of

stationary points are time-reversal partners |nki〉 = 
K̂|mk′
j 〉.

Here, K̂ is the complex-conjugation operator. Examples are
shown as the pairs of stationary points connected by q1’s in
Figs. 3(a) and 3(b) for convex and concave CEC, respectively.
To obtain the generic behavior of the interference pattern,
the matrix element is expanded in the distance x,x ′ to
the stationary points as �

μ
nm(x,x ′) = C

μ

ni,mj + ax + a′x ′ +

o(x) + o(x ′), where C
μ

ni,mj = 0 for μ = 0 at TRP, and a nonva-
nishing but energy-dependent constant otherwise. Inserting the
series into Eq. (11), one can integrate first over x and x ′

by using the relations
∫ ∞
−∞ dx eiCx2 = √

π/|C|ei π
4 sgn(C) and∫ ∞

−∞ dx x2eiCx2 = √
π/(2|C|3/2)e−i π

4 sgn(C), and then integrate
over the energies using the residue theorem by summation over
the integrand at the poles ε = ε′ = ω + iδ. Finally, by taking
the limit ω = εF , δ → 0+, we get

δρμν(ω,R) � 1

2π2h̄2R
Im

∑
mn

∑
ij

ei(kyi−k′
yj )R

|ρxiρ
′
xj |

1
2

|vyiv
′
yj |

×
[
ei(φi−φ′

j )
∑

s

T μ
s Cs

ni,mjC
ν∗
ni,mj + 1

R

× (a′2ei(φi+φ′
j )

∣∣ρ ′
xj

∣∣ + a2e−i(φi+φ′
j )|ρxi |)

]
εF

,

(12)

where φi = −π
4 sgn(ρxi). This is the long-wavelength behavior

of LDOS induced by a point impurity. In the above result, we
have s = 0 and T 0

0 ≡ T 0 = V/[1 − V Gr
0(ω)] for the charge

LDOS of a nonmagnetic impurity δρ00. While for the spin
LDOS of a magnetic impurity δρab, the summation is over s =
a,0, where T a

a and T a
0 are, respectively, the spin-dependent

and spin-independent coefficients in the T -matrix expansion
introduced above.

There are several comments regarding this result. First, for
a pair of non-TRS stationary points such as q2 in Fig. 3(b),
the leading power is given by the first term in Eq. (12), which
is of R−1. While for a pair of TRS stationary points as q1

in Figs. 3(a) and 3(b), the first nonvanishing contribution to
the power law is dominated by the second term in Eq. (12)
as R−2 for nonmagnetic impurity, and for magnetic impurity
with ordinary tip. Such suppression of LDOS is a direct
consequence of the absence of backscattering of helical waves
due to TRS. Correspondingly, in the Fourier transform of
LDOS, there is a sharp peak at k = 2kF for the R−1 power
law, which is absent for the R−2 power law, as shown in Fig. 4.
For magnetic impurities with spin-polarized tip, the first term
in Eq. (12) dominates no matter whether the pair of stationary
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FIG. 4. (Color online) Fourier transformation of the LDOS with
R−1 and R−2 power laws.
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TABLE I. Power laws of Friedel oscillations for point impurity.

Charge LDOS Spin LDOS

Nonmagnetic TRP R−2

Non-TRP R−1

Magnetic TRP R−2 R−1

Non-TRP R−1 R−1

points is TRS or not (due to the contribution of the s = a

term), which gives the visibility of the TRS scattering wave
vector q1. This distinct response of surface states to magnetic
impurities from that of nonmagnetic impurities provides a
crucial criteria for the breaking of TRS on the surface of
TIs.11 Second, in the discussion above, we have assumed the
matrix element �

μ
nm to be nonzero if it is not forbidden by

time-reversal symmetry. There may be some other reasons for
the matrix element to vanish. For example, the states at two
TRS stationary points have opposite spin. If the impurity spin
happens to be parallel (or antiparallel) to their spin, the matrix
element �

μ
nm can vanish. For non-TRS stationary points, this

may occur accidentally, but generically the spin of the two
states n and m is not parallel, so that the matrix element
is nonvanished for any impurity spin. Since such zeros of
matrix elements are at most only realized for some particular
directions of the impurity spin, in the following we will focus
on the generic cases with nonzero matrix element as long as
it is not forbidden by time-reversal symmetry. Third, in the
integral over energy, we have assumed vyi,v

′
yj �= 0 so that the

only poles in the complex energy plane are ε = ε′ = ω + iδ.
However, in general, it is possible that there are other poles
from vyi = 0 or v′

yj = 0, which means the stationary points
in CEC are also saddle points in the energy-momentum
dispersion. In that case, we shall further expand vyi (or
v′

yj ) around ω as vyi(ε) = vyi(ω) + (∂vyi/∂ε)(ε − ω) + · · ·,
and keep the first nonzero term. This will not modify the
power laws in spatial dependence.30 Finally, note that when
summation over the stationary-point pairs (ij ), we always
choose the pair such that one point has positive velocity vyi

and the other has negative velocity v′
yj . As a summary of the

discussion above, the power laws of LDOS for point impurity
are concluded in Table I.

To provide further intuition on the result (12), we consider
some simple examples. The first example is a 2DES without
spin-orbit coupling described by the familiar Hamiltonian
HQ = h̄2k2/2m, which has two degenerate and isotropic Fermi
surfaces, as shown in Fig. 5(a). According to our theory,
the main contribution to the LDOS in this example comes
from the intraband scattering of the same spin orientation
between two extremal points, which we denote as “1” and
“2.” At these points, we have ky2 = ρx2 = kε, k′

y1 = ρ ′
x1 =

−kε′ , kε = (2mε/h̄2)1/2, vy2 = h̄ky2/m, v′
y1 = h̄k′

y1/m, and
C0

11 = C0
22 = 1. By inserting these quantities into Eq. (12) and

keeping only to the first-order expansion of the T matrix,
we get δρ

(1)
00 (ω,Rŷ) � −(V m2/π2h̄4q) cos(2qR)/R, which

has R−1 power law. Note that the interband contribution to
the LDOS in this example is from a pair of TRS extremal
points, which has a R−2 power law. In contrast, in the

FIG. 5. (Color online) Schematic CEC of (a) quadratic, (b) Dirac,
and (c) Rashba dispersions. The spin orientations for each degenerate
band are indicated respectively by the green (solid) and purple
(dotted) arrows. The stationary points are represented by red dots
and blue triangles respectively, which are connected by the scattering
vector q shown as dashed arrows. The intraband scattering occurs
between the stationary points with the same color (shape), while
the interband scattering occurs between those with different colors
(shapes).

example of a 2D Dirac CEC, HD = γ ẑ · (σ × k), there is
only one nondegenerate band at a given energy due to the
spin splitting, as shown in Fig. 5(b). Thus, only intraband
scattering between a pair of extremal TRP contributes to
the LDOS, and C0

ni,mj = 0. By inserting the quantities ky2 =
ρx2 = ε/γ , k′

y1 = ρ ′
x1 = −ε/γ , and vy1(2) = γ sgn[ky1(2)]/h̄

into Eq. (12), we get δρ(1)
00 (ω,Rŷ) � (V/4π2γ 2) sin(2qR)/R2,

which is consistent with our expectation.
In a recent STM measurement of the TI Bi2Te3 doped

with Ag,11 clear standing waves and scattering wave vectors
are imaged through FT-STS when the Fermi surface is of
hexagram shape. It is observed that the high-intensity regions
are always along the �̄-M̄ direction, but the intensity in
the �̄-K̄ direction vanishes. This observation can be well
understood using our stationary phase approximation theory.
Among the wave vectors q1, q2, q′

2, and q3 shown in Fig. 3(b),
q1 and q′

2 correspond to scattering between stationary points,
while q3 and q2 do not. This explains why no standing waves
corresponding to q3 are observed in FT-STS. Within the other
two, stationary points connected by q1 are also TRP, which
shall contribute the power law of R−2 according to our result.
Therefore, its intensity in FT-STS is too weak to be observed.
For wave vectors q2 and q′

2 along the �̄-M̄ direction, q′
2 is

stationary but non-TRS. Our result shows that this wave vector
contributes an R−1 power law, which is responsible for the high
intensity reported in Ref. 11.

B. Edge impurity

Aside from point impurities, a one-dimensional line defect
in the form of step edge has also been observed on the surface
of 3D TI.13,17 Magnetic edge defects can possibly be realized
by depositing a magnetic layer on top of a 3D TI. In this
section, we discuss the interference patterns of electronic
waves induced by magnetic and nonmagnetic edge defects.

We consider an edge defect along the the x direction on top
of a 3D TI surface with the Hamiltonian V (r) = V δ(y)σμ. A
magnetic edge defect has been illustrated in Fig. 1. The main
difference between an edge defect and a point defect is the
momentum conservation along the edge impurity orientation,
which means one of the loop integrations in Eq. (9) should be
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removed. Following similar calculations as performed in the
case of a point impurity, the LDOS for the edge impurity is
given by

δρμν(ω,R) = − 1

π
Im

∫
d2k d2k′

(2π )4
δkx,k′

x
ei(k−k′)·R

× tr
[
Gr

0(ω,k)T μ(ω,kx)Gr
0(ω,k′)σ ν

]
, (13)

where T μ(ω,kx) = V σμ/[1 − V σμGr
0(ω,kx)] with

Gr
0(ω,kx) = ∫ dky

2π
Gr

0(ω,k). Similar to the case of a
magnetic point impurity, the T matrix for a magnetic edge
impurity can again be separated into a spin-dependent and a
spin-independent term. However, in the following discussion,
we shall keep only to the first-order expansion of the T

matrix V σμ, which is spin dependent. This simplification is
appropriate for the weak impurity potential, and it will not
affect the qualitative conclusion of the Friedel oscillation
power laws, as we have learned from the case of point
impurities.

In the presence of edge impurity, we are usually interested
in the LDOS in the direction perpendicular to the edge
orientation. Similar to the case of point impurity, the LDOS
in Eq. (13) is first transformed into the diagonal basis of the
topological surface bands, and then converted into integrations
over normal and tangential components as in Eq. (9). By using
the stationary phase approximation, now the main contribution
to the loop integrals comes from such stationary points where
their momentum transfer q is normal to the edge orientation,
and the “slopes” of CEC at the two stationary points are the
same:

∂

∂kx

[ky(ε,kx) − k′
y(ε′,kx)] = 0. (14)

Compared with the stationary-point condition for point impu-
rity, the condition for edge impurity allows more possibilities.
One such example is shown schematically as q1 in Fig. 3(c)
where the pair of stationary points has the same nonvanished
slope. Such a pair of scattering end points is not considered
as stationary points in the case of point impurities, but are
stationary for edge impurities. Following the same logic as the
discussion of point impurity in the last section, the CEC is then
expanded around the stationary points as ky = kyi + αi(kx −
kxi) − (kx − kxi)2/2ρxi , and the LDOS is approximated by

δρ(1)
μν (ω,R) � −V

π
Im

∑
mn

∑
ij

∫
dεn

(2π )2

1

ω + iδ − εn

eikyiR

h̄|vyi |

×
∫

dε′
m

(2π )2

1

ω + iδ − ε′
m

e−ik′
yj R

h̄|v′
yj |

×
∫ ∞

−∞
dx e

−i x2

2ρxi
R

∫ ∞

−∞
dx ′e

i x′2
2ρ′

xj

R

eiαi (x−x ′)δx,x ′

× [
C

μ

ni,mjC
ν∗
ni,mj + (ax + a′x ′)2

]
. (15)

Although Eq. (15) looks similar to Eq. (11) in the point
impurity case, the definition of stationary points for the
edge impurity in Eq. (14) is quite different from that of the
point impurity. Therefore, a lot more terms should be included
in the summation of stationary-point pairs (ij ) here compared
with the point impurity case. By integrating out x(x ′) and

TABLE II. Power laws of Friedel oscillations for edge impurity.

Ordinary Spin polarized

Nonmagnetic TRP R−3/2

Non-TRP R−1/2

Magnetic TRP R−3/2 R−1/2

Non-TRP R−1/2 R−1/2

energy variables, we get

δρ(1)
μν (ω,R) � V

(2π )2h̄2

√
2

πR
Im

∑
mn

∑
ij

|Pij |1/2

|vyiv
′
yj |

× ei(kyi−k′
yj )R[

C
μ

ni,mjC
ν∗
ni,mj e

i�ij

+ e−i�ij (a + a′)2Pij /R
]
εF

, (16)

where Pij = ρxiρ
′
xj /(ρ ′

xj − ρxi) and �ij = −π
4 sgn(Pij ). In the

equation above, we have assumed vyi,v
′
yj �= 0 and ρxi �= ρ ′

xj .
In other words, this result is not applicable to the case where
the CEC near the pair of stationary points is nested to the
second-order expansion. If such nesting happens, the quadratic
terms in the expansion of CEC near the stationary points cancel
out exactly, and higher-order expansion should be employed.
The power laws of Friedel oscillations for edge impurity are
summarized in Table II, which shall be used to explain the
STM measurements about edge impurities.13,17

To have a feeling of how Eq. (16) works explicitly, again
we apply it to the examples of the 2DEG Hamiltonian
HQ and 2D Dirac Hamiltonian HD discussed previously. A
few lines of calculations yield that for 2D quadratic disper-
sion, δρ

(1)
00 (ω,Rŷ) = (V m2/2π2h̄4q3/2) sin(2qR − π

4 )/
√

πR,
which is consistent with the experimental observation
in 2DEG.25 For the 2D Dirac fermion, δρ

(1)
00 (ω,Rŷ) =

(V/8π2γ 2√πq) sin(2qR + π
4 )/R3/2, which is a consequence

of the absence of backscattering in the helical liquid. Informa-
tion in reciprocal space can be extracted via FT-STS similarly
to the point-impurity case exhibited in Fig. 4, where a notable
sharp peak is present at k = 2kF for a 2DEG, but is absent for
the helical liquid.

In an experiment by Gomes et al., a nonmagnetic step is
imaged by STM topography in the Sb (111) surface.17 The
Fermi surface consists of one electron pocket at �̄ surrounded
by six hole pockets in the �̄-M̄ direction, where the surface
dispersion has a Rashba spin splitting. The measured LDOS
in the �̄-M̄ direction is fitted by a single q parameter using
the zeroth order of Bessel function of the first kind [see
Fig. 2(c) in Ref. 17], which agrees exactly with our result
in Table II. Along the �̄-M̄ direction, the surface band can
be modeled by a Rashba Hamiltonian where the LDOS is
dominated by interband scattering between a pair of non-TRS
stationary points, as shown in Fig. 5(c). According to our
analysis, the Friedel oscillation has R−1/2 power law, which
is the asymptotic expansion of J0(qR) at large distances.
Another STM experiment studying the edge impurity by
Alpichshev et al.13 is in Bi2Te3 where hexagonal warping
effect exists, and a nonmagnetic step defect is observed on a
crystal surface. A strongly damped oscillation is reported when
the bias voltage is at the energy with a convex Fermi surface
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as shown in Fig. 3(a). Although no fitting of the experimental
data is estimated in this region, our results predict a R−3/2

power law. Pronounced oscillations at higher bias voltages
where the hexagon warping effect emerges are observed with
R−1 fitting. Despite the quantitative difference with our result
of R−1/2, this R−1 oscillation has been explained in several
other works20,21 beyond our simple model.

The results summarized in Tables I and II provide a quanti-
tative description of the QPI by magnetic impurities in general,
which include the interference between two orthogonal helical
waves discussed in Sec. II as a particular case. The interference
of helical waves corresponds to the scattering between two
TRS stationary points, such as the q1’s in Figs. 3(a)–3(c). The
interesting thing is that the LDOS in charge and spin channels
from the very same pair of TRS stationary points have quite
distinct behavior. With magnetic impurities, the power laws of
charge LDOS are R−2 and R−3/2 for point and edge impurities,
respectively. As a result of TRS, the charge LDOS has higher
power indices than the R−1 and R−1/2 modulations of the
corresponding spin-polarized LDOS, which manifests the TRS
breaking. To distinguish the response of topological surface
states to magnetic impurities from that of the nonmagnetic
impurities,11 spin-resolved STM experiments are essential.

C. Friedel oscillations for CEC with generic shape

In this section, we generalize the results obtained above and
obtain the most general formulation of the QPI on the surface
of a 3D TI. In the discussion of point impurity in Sec. III A, we
have focused on the case of extremal points, around which the
expansion of the CEC has nonvanishing second derivatives.
However, it is in general also possible that the principal radii
of the curvature of the CEC at the stationary points ρxi diverge
so that the third- or even higher-order expansions of the CEC at
the stationary points should be employed. For example, when
the stationary points are also turning points on the CEC [see
q′

2 in Fig. 3(b)], the expansion of the CEC should be kept
to the third order. In the case of edge impurity presented in
Sec. III B, it is possible that ρxi,ρ

′
xj �= 0, but ρxi = ρ ′

xj so that
Pij diverges. This happens when the CEC near the stationary
points is highly nested, and we need to go beyond the quadratic
expansion of the CEC until the first power at which the two
segments of the CEC are not nested.

To understand the LDOS behavior in ordinary and spin-
resolved STM experiments in these most general situations,
we assume in general that the first nonvanishing coefficients
in the expansion of the CEC around the stationary points
have the order l and h, respectively, where l,h ∈ N are
generically different. Then, ky(ε,kx) and k′

y(ε′,k′
x) on the

CEC are expanded around the stationary points separately
as ky = kyi + β

(l)
i (kx − kxi)l and k′

y = k′
yj + β

′(h)
j (k′

x − k′
xj )h,

where the β’s are the first nonzero expansion coefficients
with β

(l)
i = (∂lky/∂kl

xi)/l! and similarly for β
′(h)
j . Notice that

in the case of edge impurity, if l = h, one more constraint
β

(l)
i �= β

′(h)
j should be further imposed on the expansion to

obtain a meaningful LDOS. Having analyzed the properties
of the stationary points on the CEC, the same calculation
procedures as performed in Secs. III A and III B for point and
edge impurities can be carried out in a straightforward way,
which leads to the following most general results for point

TABLE III. General power laws of Friedel oscillations for point
impurity.

Ordinary Spin polarized

Nonmagnetic TRP R
−( 1

l
+ 1

h
)− 2

min(l,h)

Non-TRP R−( 1
l
+ 1

h
)

Magnetic TRP R
−( 1

l
+ 1

h
)− 2

min(l,h) R−( 1
l
+ 1

h
)

Non-TRP R−( 1
l
+ 1

h
) R−( 1

l
+ 1

h
)

impurity

ρ(1)
μν (ω,R) ∝ V

R
1
l
+ 1

h

Im
∑
mn

∑
ij

{
ei(kyi−k′

yj )R

|vyiv
′
yj |

∣∣β(l)
xi

∣∣ 1
l
∣∣β ′(h)

xj

∣∣ 1
h

×
[
C

μ

ni,mjC
ν∗
ni,mj + a2∣∣β(l)

xi

∣∣ 2
l R

2
l

+ a′2∣∣β ′(h)
xj

∣∣ 2
h R

2
h

]}
εF

,

(17)

and for edge impurity

ρ(1)
μν (ω,R) ∝ V

R
1

max(l,h)

Im
∑
mn

∑
ij

{
ei(kyi−k′

yj )R

|vyiv
′
yj |

× ∣∣β(l)
xi − β

′(h)
xj

∣∣ −1
max(l,h)

[
C

μ

ni,mjC
ν∗
ni,mj

+ (a + a′)2
(
R

∣∣β(l)
xi − β

′(h)
xj

∣∣) −2
max(l,h)

]}
εF

. (18)

These two equations complete the key results in this work. In
the above, we have used the notation min(l,h) and max(l,h) to
represent taking the minimum or the maximum one between
l and h. The corresponding power laws of the Friedel
oscillations in these most general cases are summarized in
Tables III and IV. We see that by taking l = h = 2, these
results recover those exhibited in Tables I and II obtained in
the last two sections.

IV. CONCLUSIONS

In conclusion, long-distance asymptotic behavior of the
LDOS for nonmagnetic and magnetic, point, and edge impu-
rities on a generic shape CEC are derived in Eqs. (12) and
(16)–(18) using the stationary phase approximation approach.
The corresponding power laws of Friedel oscillations are
summarized in Tables I–IV. The QPI induced by surface
magnetic impurities is studied, in particular, to illustrate
the fact that the interference patterns of charge intensities

TABLE IV. General power laws of Friedel oscillations for edge
impurity.

Ordinary Spin polarized

Nonmagnetic TRP R
− 3

max(l,h)

Non-TRP R
− 1

max(l,h)

Magnetic TRP R
− 3

max(l,h) R
− 1

max(l,h)

Non-TRP R
− 1

max(l,h) R
− 1

max(l,h)
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are indistinguishable from those of nonmagnetic impurities,
while the spin LDOS shows distinct behavior from those of
nonmagnetic impurities. We propose a closed “magnetic wall”
geometry, which manifests such a unique interference property
of helical liquids. These results depend only on the TRS as
well as the local geometry around the stationary points on the
CEC, which provide a systematic tool for the analysis of STM
experiments for generic surface states.
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