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Spin dynamics in a strongly driven system: Very slow Rabi oscillations
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We consider joint effects of tunneling and spin-orbit coupling on driven by electric field spin dynamics in a
double quantum dot with a multilevel resonance scenario. We demonstrate that tunneling plays the crucial role in
the formation of the Rabi-like spin-flip transitions. In contrast to the linear behavior for weak electric fields, the
spin-flip rate becomes much smaller than expected for the two-level model and shows oscillating dependence on
the driving field amplitude in stronger fields. In addition, the full spin flip is very difficult to achieve in a multilevel
resonant system. These two effects have a similarity with the Zeno effect of slowing down the dynamics of an
observable by its measurement. As a result, spin manipulation by electric field becomes much less efficient than
expected.
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I. INTRODUCTION

Fast reliable spin manipulation in quantum dots is one
of the challenges in spintronics and semiconductor-based
quantum information. The design of corresponding gates
can be based on electric dipole spin resonance, where the
spin-orbit coupling (SOC)1–4 allows on-chip spin manipulation
by external electric field as well as electric readout of spin
states.5 Without external driving, SOC effects on localized
in quantum dots electrons are very weak and lead to long
spin relaxation times.6,7 The important questions here are
how fast can the gate operate, what limits the manipulation
rate, and how efficient is the spin manipulation in terms of
the achievable spin configurations.8 It seems that a stronger
driving field allows for a faster spin manipulation, as pre-
dicted in a simple Rabi picture of the driven oscillations.
This picture is applicable for a single quantum dot with
a parabolic confinement, where the electron displacement
from the equilibrium is linear in the applied electric field.9

However, double quantum dots where tunneling plays the
crucial role for the orbital dynamics, and the corresponding
energy scales are different from a single quantum dot, are more
promising for observation of new physics and applications in
quantum information technologies.10 The tunneling makes the
description of the SOC puzzling since the electron momentum
is not a well-defined quantity at under-the-barrier motion, and
the tunneling rate can become strongly spin-dependent.11,12

In addition, the double dots provide a possibility to study
free and driven interacting qubits.13,14 Here we concentrate
on one-dimensional systems attractive for spintronics15–17 and
building quantum dots18–20 and consider spin manipulation in
single-electron double quantum dot21–26 by periodic electric
field.

We show that, even for a basic quantum system such a single
electron spin, the efficiency and time scale of the manipulation
strongly depend on the electron orbital motion and, as a
result, to an unexpected dependence on the external electric
field.27 The nonlinearity of the spin and charge dynamics is
expected to lead to unusual consequences on the driven spin
behavior.28 In a multilevel system, Rabi spin oscillations are
slowed down if the field is sufficiently strong, which challenges

efficient spin manipulation. We restrict ourselves to the single
electron dynamics to demonstrate in the most direct way the
nontrivial mutual effect of coordinate and spin motion on the
Rabi oscillations. The slowing of the oscillations down at
high electric fields is a truly unexpected general feature of
a multilevel system compared to the conventional two-level
model and thus can occur in a broad variety of structures.

This paper is organized as follows. In Sec. II, we introduce
a quantum mechanical description of electron in a double
quantum dot with spin-orbit coupling and magnetic field.
Section III presents the model of driven dynamics. In Sec. IV,
we apply the stroboscopic Floquet approach for the long-time
evolution and obtain the properties of Rabi oscillations under
various conditions. Conclusions of this work are given in
Sec. V.

II. MODEL, HAMILTONIAN, AND OBSERVABLES

The unperturbed Hamiltonian H0 = k2/2m + U (x) de-
scribes an electron in a double quantum dot with the potential
(see Fig. 1)29

U (x) = U0

[
− 2

(
x

d

)2

+
(

x

d

)4]
, (1)

where k = −i∂/∂x is the momentum operator and h̄ ≡ 1. The
minima at −d and d are separated by a barrier of the height
U0. In the absence of external fields and SOC, the ground
state is split into the doublet of even (ψg) and odd (ψu) states.
The tunneling energy �Eg � U0 determines the tunneling
time Ttun = 2π/�Eg . The Zeeman coupling to magnetic field
HZ = �Zσz/2, where |�Z| is the Zeeman splitting.

The SOC has the form

Hso = (αDσx + αRσy)k, (2)

where the bulk-originated Dresselhaus (αD) and structure-
related Rashba (αR) parameters determine the strength of SOC.
In the presence of SOC the spatial parity of the eigenstates is
approximate rather than exact, being the qualitative feature of
the coupling linear in the odd k-operator, eventually resulting
in the ability of spin manipulation by electric field.
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FIG. 1. (Color online) (a) Qualitative picture of the spin dynamics
induced by the interminima tunneling. (b), (c) Free evolution of
coordinate (solid line) and spin components 〈σx〉 (dashed line), 〈σy〉
(dashed-dot line) for B = 1.73 T (b) and B = 6.93 T (c). The initial
state is the even combination of the states corresponding to the
tunneling-split doublet with SOC taken into account.

The quantities we are interested in are the spin components:

〈σi(t)〉 =
∫ ∞

−∞
σi(x,t)dx, (3)

where σi(x,t) = ψ†(x,t)σiψ(x,t) is the spin density, and
expectation value of the coordinate

〈x(t)〉 =
∫ ∞

−∞
xρ(x,t)dx, (4)

where ρ(x,t) = ψ†(x,t)ψ(x,t), and ψ(x,t) is the two-
component electron wave function.

For numerical studies, we diagonalize exactly the time-
independent Hamiltonian H0 + Hso + HZ in the truncated
spinor basis ψn(x)|σ 〉, where ψn(x) are the eigenfunctions
of H0 in Eq. (1), and |σ 〉, where σ = ±1 corresponds to the
spin parallel (antiparallel) to the z axis, find corresponding
eigenvalues, and obtain the new basis set |ψn〉. We consider
below as an example a GaAs-based structure, where the
effective mass is 0.067 of the free electron mass, with d =
25

√
2 nm and U0 = 10 meV. In the absence of magnetic

field, the ground state energy is E1 = 3.938 meV, and the
tunneling splitting �Eg = 0.092 meV, corresponding to the

transition frequency close to 23 GHz. To illustrate the spin
dynamics, we consider a moderate external magnetic field with
�Z = �Eg/2 corresponding to B = 1.73 T, and a relatively
strong magnetic field with �Z = 2�Eg (B = 6.93 T) with the
Landé factor g = −0.45. The parameters of the SO coupling
are assumed to be αR = 1.0 × 10−9 eV cm and αD = 0.3 ×
10−9 eV cm; however, our results can be applied to various
double quantum dots with different SOC parameters and thus
have a quite general character. In particular, the change in
the interdot barrier shape and geometry would modify only
quantitatively the system parameters, including the energy
levels, spinor wave functions, and, as a result, the resonant
driving frequency. The increase in the interdot distance would
decrease the tunneling splitting, making such a system more
sensitive to external influence from phonons, fluctuations in
the driving field, etc.

III. DRIVEN DYNAMICS

To demonstrate a nontrivial interplay of the tunneling and
spin dynamics, we begin with the coordinate and spin evolution
of the electron initially localized near the −d minimum. Spin
evolution of the state (|ψg〉 + |ψu〉)|1〉/√2 can be described
approximately analytically taking into account four spin-split
lowest levels and a simpler SOC Hamiltonian αRσyk as

〈σx(t)〉 = αR

K�Eg

A+A−
sin(A+t) sin(A−t), (5)

where K = −i〈ψu|k|ψg〉, which in the �Eg � U0 limit
can be accurately approximated as K = md�Eg , and A± =√

E2±/4 + α2
RK2, where E± = �Eg ± �Z . Numerical results

for coordinate and spin are shown in Fig. 1. With the increase in
magnetic field, the effect of SOC decreases, leading to smaller
amplitudes of precession, as can be seen from comparison
of Figs. 1(b) and 1(c). In addition, both the initial state and
spin precession axis change leading to a different phase shift
between the observed spin components.

Next we consider a periodic perturbation by electric field
at t > 0:

E(t) = E0 sin(ω̃Zt). (6)

Here ω̃Z is the exact, taking into account SOC, frequency of the
spin-flip transition. For the chosen set of parameters ω̃Z is very
close to �Z. The field strength is characterized by parameter
f defined as eE0 ≡ f × U0/2d, where e is the fundamental
charge. For the chosen system parameters, f = 1 corresponds
to the electric field of approximately 1.5 × 103 V/cm, similar
to Ref. [ 2]. Here we consider different regimes of the strength
and see how the change in the shape of the quartic potential
produced by the field becomes crucially important for the spin
dynamics in two sets of energy levels produced by magnetic
field. We build in the obtained |ψn〉 basis the matrix of the
Hamiltonian Ṽ = exE0 sin(ω̃Zt) and study the full dynamics
with the wave functions:

ψ(x,t) =
∑

n

ξn(t)e−iEnt |ψn〉 . (7)
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The time dependence of ξn(t) is given by

dξn(t)

dt
= ieE(t)

∑
l

ξl(t)xlne
−i(El−En)t , (8)

where xln ≡ 〈ψl| x̂ |ψn〉. There are two different types of xln:
(1) matrix elements of the order of d due to the different parity
of the wave functions in the absence of SOC, and (2) those
determined by the SOC strength. In the weak SOC limit
|�Z − �Eg| � αR|K|, the SO-determined matrix element of
coordinate in the lowest spin-split doublet can be evaluated
as

xso = 2dKαR

�Z

�2
Z − (�Eg)2

. (9)

In our calculations we assume that the initial state is the
ground state of the full Hamiltonian, that is ξ1(0) = 1 and
ξn>1(0) = 0. The entire driven motion of the system can
be approximately characterized as a superposition of two
types of transitions: resonant “spin-flip”transitions with the
matrix element of coordinate determined by the SOC and
off-resonant “spin-conserving”transitions with a larger matrix
element of coordinate.30 Both types are crucially important
for the understanding of the spin dynamics. With the estimate
K ≈ m�Egd, in both cases considered by us (�Z = Eg/2
and �Z = 2Eg), we obtain d ≈ 10xso. As a result, the off-
resonant transitions are not weak compared to the required
ones. Throughout the calculation we neglect orbital and
spin relaxation processes assuming that the driving force is
sufficiently strong to prevent the decoherence on the time scale
of the spin spin-flip transition. It is known that the periodic field
forms a well-established driven dynamics even in the presence
of damping as long as the level structure is not deeply disturbed
by the broadening. For our parameters it means that one can
expect the observation of the predicted results in the currently
available semiconductor structures at temperatures moderately
below 1 K.18

We begin with presentation of the short-time dynamics
of coordinate 〈x〉/d and spin 〈σx〉 for four initial periods of
the driving field (Fig. 2). These results were obtained by the
explicit numerical integration of Eq. (8) with a time step on
the order of 10−4TZ . The other component 〈σz〉 changes much
slower and will be treated later on a long time scale, which is
the primary topic of our interest. It can be seen in Fig. 2 that the
fast oscillations are accompanying mainly the local variations
of observables, especially of the spin. Considerable changes,
such as Rabi oscillations of spin, can be achieved only after
many periods of the driving field. We will focus on this slow
dynamics below.

IV. FLOQUET STROBOSCOPIC APPROACH

To consider the long-term time dependence of the peri-
odically driven system, we apply the Floquet approach9,31–34

in the stroboscopic form. Here we remind the reader main
features of this approach developed in Ref. [ 35]. As the first
step, the one-period propagator matrix Uln(TZ) is obtained
by a high-precision numerical integration of the system (8)
at one period of the driving TZ = 2π/ω̃Z in the basis of
all unperturbed states. For numerically accurate Uln(TZ), we
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FIG. 2. (Color online) (a) Scheme of the levels and spin com-
ponents involved in the Zeeman resonance, B = 1.73 T (left) and
B = 6.93 T (right), (b) short-term time-dependent 〈x〉/d and 〈σx〉,
as marked near the plots, induced by external field with f = 0.1,
B = 1.73 T, and TZ = 88 ps, (c) same as in (b) for B = 6.93 T and
TZ = 22 ps.

obtain its eigenvalues EQ, which are the quasienergies of the
driven system, and the corresponding orthogonal eigenvectors
A

Q
l . As a result, the one-period propagator Uln(TZ) can be

presented as

Uln(TZ) =
∑
Q

A
Q
l

(
AQ

n

)∗
e−iEQTZ . (10)

Its N th power obtained by taking into account the orthogonal-
ity of the eigenvectors A

Q
l gives the stroboscopic propagator

Uln(NTZ) for N periods as

Uln(NTZ) =
∑
Q

A
Q
l

(
AQ

n

)∗
e−iEQNTZ . (11)

For any integer N , the system state is given by |�(NTZ)〉 =
Uln(NTZ) |�(0)〉. The similarity of Eq. (10) for a single-period
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FIG. 3. (Color online) Stroboscopic time dependence of 〈x〉/d
for field f = 0.35 in a given time window: (a) B = 1.73 T and
(b) B = 6.93 T. Solid lines serve only as a guide for the eye.

propagator and Eq. (11) for any N � 1 is a highly nontrivial
fact demonstrating that Uln(NTZ) = UN

ln (TZ) can be simply
expressed by the right-hand side in Eq. (11). The stroboscopic
approach allows us to study very accurately the long-time
evolution, since the N -period propagator (11) is constructed
explicitly in a finite algebraic form. Although this propagator
describes the dynamics exactly, it allows one to watch only the
stroboscopic evolution rather than the entire continuous one.
However, if we are interested in slowly evolving phenomena
such as chaos development35 and Rabi oscillations which occur
here on many periods of the driving field, the stroboscopic
approach is fully justified and highly efficient. The experiment2

uses stroboscopic approach with the intervals on the order of
100 ns to measure the slow dynamics of the driven electron
spin.

The results of calculations of electron displacement at
discrete times NTZ are presented in Fig. 3. As one can
see in Fig. 3, the time dependence of the displacement
becomes strongly nonperiodic with the typical values being
considerably less than d. That is, in a strong electric field the
electron probability density redistribution between the dots
is not complete. The motion can be qualitatively analyzed
in the pseudospin model of the charge dynamics,28 where
the tunneling splitting is described by the σz matrix, and the
driving field is coupled to the σx matrix. The decrease in the
electron displacement with the increase in the electric field
can be viewed as a suppressed spin precession in a strong
periodic field or as a coherent destruction of tunneling.32

This nonperiodic behavior and decrease in the displacement
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FIG. 4. (Color online) Stroboscopic time dependence of
〈σz(NTZ)〉 for different external driving fields f marked near the plots
for two different magnetic fields: (a) B = 1.73 T, vertical dashed line
marks the operational definition of the spin-flip period, and (b) same
as in (a) for B = 6.93 T.

eventually result in a less efficient spin driving. It should be
mentioned that the fast oscillations in Fig. 2, which are in
general absent in Fig. 3, reflect the difference between the
continuous time scale in the former figure and the stroboscopic
Floquet times NTZ in the latter one. Figure 3 clearly illustrates
the role of the spin in the orbital dynamics: the curves in
Figs. 3(a) and 3(b) are very different. Tracking of the system
at stroboscopic times NTZ may not allow seeing the complete
fast orbital dynamics, thus masking some details. As a result,
there is no simple way to describe this stroboscopic picture
directly in terms of the Hamiltonian parameters.

The slow long-term spin dynamics is presented in Fig. 4.
Here the “unit of time” TZ is short enough and the time
dependence of 〈σz〉 is accurately described by the stroboscopic
approach. Since the spin dynamics is not strictly periodical
and full spin flips do not always appear in this system, we use
the operational definition of the “spin-flip” time Tsf: spin flip
occurs when spin component shows a broad minimum albeit
accompanied by fast oscillations [see in Fig. 4(a)]. The fast
dynamics in the spin-flip doublet shown in Fig. 4 becomes
slow with the field increase as a result of a weaker effective
coupling of the states with different parity. The resulting spin
behavior, arising solely due to the SOC, is shown in Fig. 4.
The Rabi frequency for the spin flip is smaller for some higher
values of f (which we vary through Figs. 3 and 4) than for
some weaker values of f in contrast to what can be expected
for the weak fields employed, e.g., in the experiments,2 being
a manifestation of the generally nonmonotonous behavior
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FIG. 5. (Color online) Nonlinear dependence of the Rabi spin-flip
frequency on the electric field amplitude in a multilevel system for two
different magnetic fields (a) B = 1.73 T, the characteristic spin-flip
rate of the order of 50 MHz, and (b) B = 6.93 T, the characteristic
spin-flip rate of the order of 400 MHz.

of the Rabi frequency on the electric field amplitude. In
addition, in contrast to the simple Rabi oscillations, the flips
become incomplete, with 〈σz(t)〉 = −1 never reached. These
two qualitative effects are the results of the enhanced electron
tunneling between the potential minima: the spin precession
in the driven interminima motion establishes corresponding
spin dynamics and prevents the electric field to flip the spin
efficiently. This effect makes a qualitative difference to the
model of Ref. 2, where the electron is assumed to be always
located in the orbital ground state near the minimum of
the potential formed by the parabolic confinement and weak
external electric field.

To present a broader outlook onto the dependence of the
spin-flip rate on the driving field, we plot in Fig. 5 the
spin-flip rate for B = 1.73 T and B = 6.93 T. In contrast
to the linear dependence for a conventional two-level Rabi
resonance formula, one can see a strongly different much
more complicated nonmonotonous dependence in a multilevel
structure, especially at high fields. The regime in Fig. 5(a)
shows more irregularities since all four lowest levels are
equidistant [Fig. 2(a)] and involved in the resonance, while
in Fig. 5(b) more regular dependence is observed, reflecting a
simpler nature of the resonances here.

We would like to mention here that the observed slowing
down of spin dynamics can be seen on a more general

ground, not restricted to the exact form of Eq. (8), as the
Zeno effect of freezing evolution of a measured quantity.36–38

Indeed, the operator −iσi∂/∂x makes the orbital dynamics
spin-dependent, and, as a result, performs the measurement of
the σi component39,40 in the sense of von Neumann procedure.
This can be seen in the evolution of a two-component wave
function:39

e−αtσz∂/∂xφ(x)(ζ1|1〉 + ζ−1| − 1〉)
= φ(x − αt)ζ1|1〉 + φ(x + αt)ζ−1| − 1〉, (12)

where we took i = z as an example, ζ1 and ζ−1 correspond
to ±1 eigenvalues of σz, respectively, and α is the coupling
constant. The SOC thus entangles the orbital and spin motion,
destroys the coherent superposition of spin-up and spin-down
states, and performs the von Neumann–like spin measurement
by mapping the spin state on the electron position. This
von Neumann measurement, is, however, different from the
experimental measurement procedure applied, e.g., in Ref. 2.
The spin-orbit coupling drives the coherent superposition
of different spin components and, at the same time, by
constant strong measurement, destroys it leading to a slow
spin dynamics.

V. CONCLUSIONS

We have considered the interplay between the tunneling
and spin-orbit coupling in a driven by an external electric
field one-dimensional single-electron double quantum dot. In
the regime of the electric dipole spin resonance, where the
electric field frequency exactly matches the Zeeman transition,
the complex interplay of these mechanisms results in two
unexpected effects. The first effect is the nonmonotonous
change in the Rabi spin oscillations frequency with the electric
field amplitude. The Rabi oscillations become much slower
than expected for a two-level system. The second effect is
the incomplete Rabi spin flips. This behavior results from the
fact that the interminima motion establishes a competing spin
dynamics, leading to the physics somewhat similar to the Zeno
effect, preventing a fast change in a measured quantity. These
results indicating the slowdown and nonlinearity of the spin
resonance in multilevel systems can be useful for pointing out
certain fundamental challenges for the future experimental and
spintronics device applications of phenomena based on spins
in double quantum dots.
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León and G. Platero, Phys. Rev. B 84, 121310(R) (2011).

9J. H. Jiang, M. Q. Weng, and M. W. Wu, J. Appl. Phys. 100, 063709
(2006).

10J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby,
M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Science 309, 2180 (2005).

11S. Amasha, K. MacLean, I. P. Radu, D. M. Zumbühl, M. A. Kastner,
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