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Coherent spin dynamics of electrons and holes in semiconductor quantum wells and quantum dots
under periodical optical excitation: Resonant spin amplification versus spin mode locking
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The coherent spin dynamics of resident carriers, electrons, and holes in semiconductor nanostructures is
studied theoretically under the conditions of periodical optical excitation using short laser pulses and in an
external magnetic field. The generation and dephasing of spin polarization in an ensemble of carrier spins, for
which the relaxation time of individual spins exceeds the repetition period of the laser pulses, are analyzed.
Accumulation of the spin polarization is manifested either as resonant spin amplification or as mode locking of
carrier spin coherences. It is shown that both regimes have the same origin, while their appearance is determined
by the optical pump power and the spread of spin precession frequencies in the ensemble.
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I. INTRODUCTION

The coherent spin dynamics of carriers in semiconductor
nanostructures attract considerable attention nowadays due to
future quantum information technologies based on spintronics
applications.1–3 With respect to fundamental studies, this
research field delivers exciting and unexpected results on the
properties of spin systems and the possibility to control them
by external fields or by structural parameters.

Optical pump-probe technique for time-resolved Faraday
and Kerr rotation is based on generation of spin polarization
by trains of laser pulses, where the pulse durations range from
hundreds of femtoseconds to a few picoseconds. It has been
proven to be among the most reliable tools for investigating
coherent spin dynamics in semiconductor nanostructures.1,4–16

The principle of this magneto-optical technique is the fol-
lowing: an intense laser pulse of circularly polarized light
(the pump) is used to orient spins and, therefore, to create a
macroscopic spin polarization.17 This polarization is probed
by the linearly polarized probe pulses, which rotate their
polarization plane after propagation through the spin-polarized
medium (Faraday rotation effect) or reflection at this medium
(Kerr rotation effect). The probe pulse is time delayed relative
to the pump pulse, and by tuning this delay, one can measure
the spin polarization dynamics. To study the coherent spin
dynamics, the sample is exposed to an external magnetic field,
typically oriented perpendicular to the light wave vector (Voigt
geometry), which allows one to detect the precession of the
optically induced spin polarization and monitor its decay.
Application of the pump-probe technique to single spins,
which is potentially possible,18,19 is demanding. Studying spin
ensembles that contain millions of carrier spins is much more
convenient.14,15,20

In pump-probe experiments, the spin dynamics evolution is
typically measured over times shorter than the repetition period
of the pump pulses, which is about 13 ns for commonly used
mode-locked Ti:sapphire lasers emitting pulses at a repetition
rate of 75–80 MHz. It has been shown experimentally that in
bulk semiconductors, quantum wells (QWs), and quantum dots
(QDs), the carrier spin relaxation time can substantially exceed
the repetition period.20,21 In this case, the spin polarization

induced by subsequent pump pulses can accumulate if a phase-
synchronization condition is fulfilled for the precessing carrier
spins. It results in two effects: resonant spin amplification
(RSA), observed in bulk and QW spin systems with a relatively
small dispersion of precession frequencies, and spin mode
locking (SML) found for an ensemble of singly charged
QDs with a large dispersion of Larmor frequencies (see, e.g.,
Refs. 20 and 21 and references therein).

For studying the RSA regime experimentally, scanning the
magnetic field has been suggested instead of the commonly
used scan of the pump-probe time delay.5 The probe pulse
arrival time in this case is fixed at a small negative delay prior
to the pump pulse arrival. The resulting RSA spectrum is a
periodic function of magnetic field from which information on
carrier g factor and dephasing time of the spin ensemble can
be obtained.

In this paper, we show that the RSA and SML are
two different manifestations of the same phenomenon: spin
accumulation caused by the periodic excitation with pump
pulse trains. We elaborate the fundamental differences in
conditions for appearance of these two regimes. The most
important parameters in this regard are the pump power and
the spin precession frequency spread causing spin dephasing.
Differences of the two parameters, in turn, lead to different
phenomenologies in experiment, providing significantly dif-
ferent capabilities for analyzing spin systems quantitatively.

The paper is organized as follows. In Sec. II, we recall the
basic concepts and equations for describing spin coherence
generation. We discuss the difference between the classical
and quantum mechanical approaches to describing carrier spin
coherence generation for resonant trion excitation. Then, we
consider generation of long-lived spin coherence during the
trion lifetime. We describe the spin dynamics of charged
carriers and trions in magnetic field and discuss the effects
of spin relaxation and spin precession of the trion spin on
the long-lived spin coherence of resident carriers. We also
consider here the long-lived spin dynamics after generation
and the spin accumulation caused by the train of pump pulses.
Section III is devoted to the RSA regime, for which we consider
different effects: trion spin relaxation, nuclear field fluctua-
tions, and spin relaxation anisotropy. The conditions, which are
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important for observing RSA, and the characteristics, which
one can extract from the analysis of RSA signals, are collected
at the end of Sec. III. Section IV describes the main features
of the mode locking of electron spin coherences. Then, in
Sec. V we compare the spin dynamics in the RSA and SML
regimes, obtain conditions for the SML regime, and discuss
the transition to the RSA regime. In the Conclusions, we give
a comparative description of the RSA and SML regimes and
their applicability to investigations of long-lived spin dynamics
in low-dimensional systems.

II. GENERATION OF SPIN COHERENCE

In the following, we analyze the long-lived spin coherence
of resident carriers (electrons and holes) generated by periodic
light excitation in semiconductor quantum wells and quantum
dots. We consider a situation with a low concentration of
resident carriers when the probability to have two charge
carriers with significantly overlapping wave functions is neg-
ligible. In this case, mainly few-particle complexes, excitons
(electron-hole pairs), and trions (three-particle complexes) can
be optically excited, while other many-body correlations are
negligible. For quantum wells, this corresponds to typical
carrier densities smaller than 1010 cm−2 for which, at liquid-
helium temperatures, carriers are localized on QW width
fluctuations with respect to their in-plane motion. Only one
carrier per localized site is typical for such concentrations,
and the distance between the localized carriers exceeds the
extensions of neutral and charged exciton wave functions. For
quantum dots, the low-concentration regime corresponds to
occupation of a dot with only one resident carrier, i.e., to a
regime of singly charged QDs.

Here, we consider the theoretical aspects of the problem.
We do not discuss the experimental aspects of the observations
(measurements) of long-lived spin coherences and features of
ellipticity and Faraday rotation signals. We limit ourselves
to the degenerate pump-probe regime, when the probe laser
has the same photon energy as the pump one, and to resonant
excitation of the trion states. We assume that the pulse duration
is significantly shorter than all characteristic relaxation times
of the considered spin system. These conditions are typical
for experiments with semiconductor nanostructures.1,4 Other
regimes are studied in detail elsewhere.22–25

For low concentrations of resident carriers, charged exci-
tons (trions) play an important role in the generation process
of carrier spin coherence.9,15 A negatively charged exciton (T−
trion) is a bound state of two electrons and one hole, while a
positively charged exciton (T+ trion) is a bound state of two
holes and one electron. The trion ground state at zero magnetic
field has a singlet spin configuration, such that the spins of the
two identical carriers are aligned opposite to each other and
the trion Zeeman splitting is controlled by the g factor of the
unpaired carrier, e.g., the hole in T−. Hereinafter, we assume
that only heavy holes with angular momentum projections
±3/2 onto the growth axis are involved.

The theoretical analysis used in this paper can be equally
applied to structures with resident electrons or resident holes.
In order to do that, we introduce universal notations: the
resident carrier spin S, the trion spin ST , the Larmor frequency
of the resident carrier ω = gμBB/h̄, and the Larmor frequency

of the trion � = gT μBB/h̄. Here, B is the external magnetic
field, μB is the Bohr magneton, g and gT are the g factors of
the resident carrier and trion, respectively. Similarly, universal
notations are also used in what follows to denote characteristic
time scales.

In n-type doped structures with resident electrons, S is
the electron spin, ST is a (pseudo)spin of the T− trion
(ST = +1/2 for +3/2 hole and −1/2 for −3/2 hole), ω is the
electron Larmor frequency, and � is the T− Larmor frequency
determined by the hole g factor. Correspondingly, in p-type
doped structures with resident holes, S is the heavy-hole
pseudospin, ST is the spin of the T+ trion, which corresponds
to the electron spin in this trion, ω is the heavy-hole Larmor
frequency, and � is the T+ Larmor frequency determined by
the electron g factor.

Note that the quantities S and ST can refer either to a
single spin of resident electron (hole) and trion in, e.g., an in-
dividual quantum dot, or to the averaged values characterizing
ensembles of identical dots. The latter means that all spins in
such ensembles have the same g-factor value and, therefore,
precess in magnetic field in phase with each other with the
same Larmor frequency. In those cases, where ensemble
inhomogeneity is important, we will specify explicitly how
the averaging over the spin precession frequencies spread is
done.

For the sake of simplicity, we consider in most parts of
this paper n-type doped structures with resident electrons,
as there are more experimental data available for these
structures. Wherever we analyze p-type doped structures, this
will be noted. Before we proceed to the analysis of spin
precession in magnetic field and spin dephasing processes,
let us inspect briefly the models of optical generation of spin
coherence.

A. Resonant excitation of trion: Classical and quantum
mechanical approaches to carrier spin coherence generation

The singlet trion state, being excited resonantly by the
laser pulse, plays an important role in the spin coherence
generation. The trion generation probability for resonant
excitation depends on the light polarization and the spin
orientation of the resident carrier. For instance, in n-type
doped structures, a σ+ polarized pump generates a hole with
spin projection +3/2 onto the light propagation axis z and an
electron with spin projection −1/2. Therefore, trion formation
is possible only when the resident electron has spin projection
+1/2. As a result, the circularly polarized pump pulse selects
electrons with particular spin orientation from the ensemble
of resident electrons to form trions. This, in turn, leads to spin
polarization of the resident electrons.

There are two approaches for describing the spin coherence
generation by circularly polarized light pulses.25 The first one
is essentially quantum mechanical: a singly charged QD or
a QW with a localized resident electron is modeled as a
two-level system.8,15,23,26 The ground state corresponds to the
resident electron, while the excited state is the singlet trion
[see Fig. 1(a)].

The interaction of the two-level system with the resonant
pump pulse depends on the pulse parameters (polarization,
intensity, and pulse duration) and on the level occupations.
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FIG. 1. (Color online) (a) Scheme of transitions for a strongly
localized electron (e.g., in a singly charged quantum dot). The initial
state for the optical transition is a resident electron and the final state
is a singlet trion T−. This scheme is consistent with the quantum
mechanical approach. (b) Scheme of transitions for the case of
weakly localized resident carriers (e.g., in a quantum well with a
low-density electron gas); τ1 denotes the scattering time between
different trion states. This scheme is consistent with the classical
approach.

The pump pulse action time τp is assumed to be the shortest of
all time scales in the problem, namely, the trion dephasing and
scattering times, the electron Larmor precession period, the
trion radiative lifetime, the spin dephasing and decoherence
times, etc. Under typical experimental conditions, the trion
lifetime is much shorter than the pump pulse repetition
period and, consequently, trion spin polarization is absent
considerably before the next pump pulse, i.e., is not detectable
at small negative time delays. It follows then that the resident
carrier spin pseudovector S = (Sx,Sy,Sz) before the pump
pulse Sb and after the pump pulse Sa are related to each other
through23

Sa
z = ±Q2 − 1

4
+ Q2 + 1

2
Sb

z , (1a)

Sa
x = Q cos �Sb

x ± Q sin �Sb
y , (1b)

Sa
y = Q cos �Sb

y ∓ Q sin �Sb
x , (1c)

where the top (bottom) sign + (−) corresponds to σ+
(σ−) polarized pump pulses in n-type structures and to
σ− (σ+) pulses for p-type structures, respectively. Similar
sign definition (top sign corresponds to σ+ excitation of
n-type structure) is used hereinafter in Eqs. (2), (3), and (4).
The parameters 0 � |Q| � 1 and 0 � � < 2π characterize
the pump pulse area and the spectral detuning of the pulse
from the trion resonance. The explicit expressions for these
quantities are given in Ref. 23. For the resonant pump
pulse � = 0 and Q = cos (�/2), where � is the pump pulse
area: � = ∫

2|〈d〉E(t)|dt/h̄. Here, 〈d〉 is the dipole transition
matrix element and E(t) is the smooth envelope of the electric
field of the laser pulse. The z component of the trion spin
pseudovector after, e.g., a σ+ pump pulse in an n-type system
or a σ− pump pulse in a p-type system is given by23

ST,a
z = Sb

z − Sa
z = 1 − Q2

4

(
2Sb

z ± 1
)
. (2)

Such an approach has been proven to be appropriate
for the description of spin coherence generation in n-type
singly charged QDs.15 At low pump powers, where � � 1,
the additive contribution to the electron spin z component

equals to

Sa
z − Sb

z = ∓�2

16
∝ P, (3)

where P is the pump pulse power. One of the main predictions
of the considered quantum mechanical approach is that for
high pump powers, the electron spin z component depends
periodically on the pump area, i.e., shows Rabi oscillations
inherent to a two-level system (see, e.g., Refs. 14, 15, and 27).

Another approach to describe spin coherence generation is
based on the classical model, where the ensemble of electron
spins is considered. Optical pulse leads to the trion formation,
which involves participation of resident electrons with certain
spin orientations. The initially unpolarized ensemble of the
resident electrons becomes therefore spin polarized, at least at
times shorter than the trion lifetime. Under certain conditions,
which will be analyzed in detail below, e.g., efficient trion spin
relaxation or fast Larmor precession of the resident electron
spins, this induced spin polarization will present even after
trion recombination.

For low pump powers, the total spin of resident electrons
right after the pump pulse S tot

z is proportional to the number
of photogenerated trions and scales linearly with the pump
pulse power.9 In this limit, classical and quantum mechanical
models agree with each other. For higher pump pulse powers
in the classical model, the total electron spin saturates at the
value

S tot
z,max = ∓N/4, (4)

where N is the total number of resident electrons in the system.
The amount of trions formed for resonant excitation of the
initially unpolarized electron ensemble can not exceed N/2
since only half of the resident electrons have suitable spin
orientation to become excited to trion singlets. The other N/2
of the resident electrons, which are not captured to trions,
have become fully polarized. In the classical model, Rabi
oscillations inherent to two-level systems are absent.

The applicability of the classical model to the quantum-well
structures is related to the weaker localization of electrons
and trions on quantum-well imperfections. As a result, the
generated trions can scatter to another localized state or to
free trion states, as schematically illustrated in Fig. 1(b). The
optical coherence of the trion with the pump is lost due to this
scattering, while spin coherence is preserved. As a result, if the
scattering time between different trion states τ1 is considerably
shorter than τp, the Rabi oscillations at high pump powers
vanish28 because the population of the excited state of the
two-level system coupled to the optical pulse is small. At
the same time, the spin polarization generated by the pump
pulse can be substantial because spin does not relax during
scattering. It corresponds to the experimental situation studied
in Refs. 9 and 28.

It will be shown in Sec. III A that the quantum mechanical
and classical approaches give the same results at low pump
powers. Subsequently, we will use the quantum mechanical
approach because it gives good descriptions for spin coherence
generation for QDs in any excitation power regime and for
QWs in the low power excitation regime.
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B. Generation of long-lived spin coherence during the trion
lifetime: Spin dynamics of charged carriers in magnetic field

1. Spin dynamics of resident carrier and trion

Right after the excitation pulse, the coupled dynamics of
resident carrier spin S and trion spin ST = (ST

x ,ST
y ,ST

z ) can be
described by the following system of equations9,15,23,26:

dST

dt
= μB

h̄
[gT B × ST ] − ST

τ T
s

− ST

τr

, (5a)

dS
dt

= μB

h̄
[gB × S] − S

τs

+ ST
z ez

τr

. (5b)

Here, ez is the unit vector along the z axis. The magnetic
field B is assumed to be parallel to the x axis. τT

s is the
trion spin relaxation time, τs is the phenomenological spin
relaxation time of the resident carrier,29 and τr is the trion
radiative lifetime. It is worth to mention that the carrier
returning after the trion recombination is polarized either
parallel or antiparallel to the z axis due to the optical selection
rules [see the last term ∝ST

z ez in Eq. (5b)]. Note, that Eqs. (5)
are equally applicable to the single quantum dot or to the
ensemble of identical quantum dots.

It follows from Eqs. (5) that the carrier spin projection
onto the magnetic field Sx is conserved. Introducing the trion
spin lifetime τT = τT

s τr/(τT
s + τr ), we arrive at the following

expression for the transverse carrier spin component S+ =
Sz + iSy (Ref. 15):

S+(t) = Sa
+e−iωt−t/τs + ST,a

z [−ξe−iωt−t/τs

+e−t/τT (ξ cos �t + χ sin �t)]. (6)

Here, the subscript a denotes the spin components at time
t = 0 when the pump pulse is finished, e.g., Sa

+ = Sa
z + iSa

y :

ξ = ξ1 + iξ2 = iω/γ − 1

γ τr [(1 − iω/γ )2 + (�/γ )2]
, (7)

χ = χ1 + iχ2 = �/γ

γ τr [(1 − iω/γ )2 + (�/γ )2]
, (8)

and γ = τ−1
T − τ−1

s > 0.
In order to have a closed equation system (5), we have to

relate the carrier and trion spins at t = 0. This can be done
through Eqs. (1) and (2). After a single pump pulse (Sb = 0),
one has

ST,a
z = −Sa

z .

The first term in the right-hand side of Eq. (6) describes the
carrier spin precession. The term proportional to ST,a

z e−iωt

describes the spin polarization of the carrier returning after
trion recombination. In the following, we consider the relation
of these two contributions as a function of spin system
parameters and external conditions.

2. Effect of trion spin relaxation on spin
coherence of resident carrier

In the absence of an external magnetic field, the efficiency of
resident carrier spin coherence generation is solely determined

by the trion spin relaxation.8,9,30 This becomes clear from
Eq. (6), which for B = 0 reduces to

Sz(t) = Sa
z e−t/τs + ST,a

z ξ (−e−t/τs + e−t/τT ). (9)

It follows from Eq. (7) that ξ = −(τrγ )−1 ≈ −(1 + τr/τ
T
s )−1,

provided that the carrier spin relaxation time exceeds by far
both trion recombination time and trion spin lifetime. These
conditions are readily fulfilled in experiment. Hence, the long-
lived carrier spin coherence is given by

Sz(t) = (Sa
z − ST,a

z ξ )e−t/τs , t � τT . (10)

If spin relaxation in the trion is suppressed, i.e., τT
s � τr ,

then ξ → −1. Therefore, since for a single pump pulse
ST,a

z = −Sa
z , the contribution of the carrier left behind the

trion recombination compensates exactly the induced spin
polarization of the resident carriers. As a result, no long-lived
spin coherence for resident carriers is generated. In general,
when the resident carrier has been polarized before pump
pulse arrival, this carrier polarization will not be affected by
the pump pulse and conserved after trion recombination. To
conclude, trion spin relaxation is required to give rise to a
nonzero long-lived spin coherence of the resident carriers in
absence of a magnetic field.

3. Spin precession of resident carrier

Here, we dwell on the Larmor precession of the resident
carriers, i.e., those which do not participate in trion formation.
Spin precession of these carriers results in an imbalance of
the spins of resident electrons and those returned from the
trions after their recombination. Hence, the long-lived spin
coherence can be excited even in the absence of trion spin
relaxation. Provided that the trion spin does not precess,31

� = 0, the long-lived carrier spin coherence is given by9

Sz(t) = sign
(
Sa

z

)∣∣Sa
z − ST,a

z ξ
∣∣e−t/τs cos (ωt − ϕ), t � τT

(11)

where ϕ is the initial phase, which can be related to the
parameter ξ (see Ref. 9 for details). Note that in Ref. 9 the
phase is shifted by π/2 with respect to our definition in Eq.
(11). The amplitude of the long-lived spin coherence As after
a single pump pulse can be recast as

As = ∣∣Sa
z − ST,a

z ξ
∣∣ = ∣∣Sa

z (1 + ξ )
∣∣ ≈ ∣∣Sa

z

∣∣ |ωτr |√
1 + (ωτr )2

,

(12)

wherethe latter approximate equality is valid for a long trion
spin relaxation time fulfilling the relation τT

s � τr . According
to Eq. (12), the long-lived spin amplitude first increases with
an increase of the magnetic field ∝ ωτr and then saturates in
strong fields.

The general case of arbitrary ωτr and τr/τ
T
s is illustrated

in Fig. 2. Figure 2(a) demonstrates the dependence of the
long-lived spin coherence amplitude As on magnetic field
(expressed as ω/γ ) for different values of the ratio τr/τ

T
s .

Depending on the parameter τr/τ
T
s , the change of amplitude

As as function of magnetic field (through ω ∼ B) occurs for
different field values since γ itself is determined by τr and τT

s .
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FIG. 2. (Color online) (a) Dependence of the long-lived spin
coherence amplitude As on the carrier Larmor precession frequency
for different values of τr/τ

T
s . (b), (c) Carrier spin coherence Sz(t)

normalized to Sz(0) for two different values of τr/τ
T
s . The spin

dynamics at zero magnetic field is shown by the dashed lines. The
solid lines show Sz(t) at finite magnetic field (ωτr = 2.4). The arrows
show the corresponding amplitudes As(ω/γ ) for these conditions.

Figures 2(b) and 2(c) show the carrier spin coherence
Sz(t) calculated for fast (τr/τ

T
s = 10) and slow (τr/τ

T
s = 0.01)

spin relaxation of the trion. The solid and dashed lines show
Sz(t) at zero and finite magnetic field, respectively. One can
see from Fig. 2(b) that at τr/τ

T
s = 10, the amplitude of the

long-lived spin coherence (t � τr ) in magnetic field coincides
with the one at B = 0. In the graph, this corresponds to the
coincidence of the dashed line (zero field) with the maxima
of the oscillating solid line (finite field, ω/γ = 0.24). In
other words, the application of magnetic field here does not
change the efficiency of spin coherence generation. This is,
however, not the case for the smaller ratio of τr/τ

T
s = 0.01

(ω/γ = 240). As one can see in Fig. 2(c), the dashed line
at longer delays has considerably smaller amplitude than the
maxima of the solid line As(0) � As(240). This means that
the amplitude of long-lived spin coherence As can be strongly
increased by external magnetic fields. To conclude, even in the
absence of spin relaxation in the trion, the application of an
external magnetic field leads to appearance of long-lived spin
polarization of the resident carriers.

4. Effect of spin precession in trion on spin
coherence of resident carrier

Spin precession of the trion, characterized by the frequency
�, also provides a mechanism for generating long-lived carrier
spin coherence. It plays an important role in the case of the
T+ trion excited in p-doped structures,36 where the trion
spin corresponds to the electron one. In n-doped structures,
although the in-plane hole g factor in quantum wells and
in self-assembled quantum dots is rather small,32–34 the spin

precession of the hole in the T− trion may become important
in tilted magnetic fields.35

Allowing for � �= 0 results in the following expression
for the amplitude of the long-lived spin coherence As [c.f.
Eqs. (11) and (12)]:

As = ∣∣Sa
z − ST,a

z ξ
∣∣ = ∣∣Sa

z (1 + ξ )
∣∣ ≈ |Sz,0| (�τr )2

1 + (�τr )2
,

(13)

where in the latter equality we assume a trion spin relaxation
time τT

s � τr and neglect the resident carrier spin precession
ω � �. It follows from Eq. (13) that the spin precession in the
trion acts similar to the trion spin relaxation. Here, it does not
matter whether the spin of the unpaired carrier in the trion was
rotated by the magnetic field or flipped due to spin relaxation:
in both cases, long-lived carrier spin polarization arises.

The situation becomes richer when spin precession of both
resident carrier and trion occurs. Figure 3 shows the spin
dynamics of T− trion and resident electron [Fig. 3(a), n-type]
and T+ trion and resident hole [Fig. 3(b), p-type]. The black
curves give the difference ST

z − Sz, which corresponds to
signals commonly measured in experiment [see also Eqs. (54)
and (57) in Ref. 23]. It is clearly seen that at short delay
times not exceeding the trion lifetime, the ST

z − Sz dynamics
is additionally modulated by the trion Larmor frequency. For
clarity, the spin dynamics of trions ST

z is shown separately by
the gray (red) lines. They decay relatively fast being limited by
the trion recombination. The trion radiative lifetimes as well
as spin relaxation times are taken the same in both Figs. 3(a)
and 3(b): TR/τr = 130, TR/τT

s = 13, and TR/τs = 2.6. The
carrier and trion Larmor precession frequencies are given in
these figures. Here, TR is the repetition period of excitation
pulses and ωR = 2π/TR . For commonly used mode-locked
lasers with a repetition frequency of 75 MHz, TR = 13.3 ns.
Note that Fig. 3 is calculated for a single pump pulse and TR

is introduced here solely as a unit of time.

C. Spin accumulation induced by a train of pump pulses

In experiments on coherent spin dynamics, periodic trains
of pump pulses are commonly used. When the spin relaxation
time of the resident carrier is comparable or longer than
the repetition period of the pump pulses, i.e., τs > TR , the
cumulative contribution of multiple pump pulses results in the
accumulation of the carrier spin polarization and its periodicity
with the period TR . In external magnetic fields applied in the
Voigt geometry, this accumulated periodical polarization is
reached for each precessing spin by relatively long trains
of pump pulses: the decay of the spin polarization is then
balanced by the pumping. As a result, the carrier spin after
each repetition period S(TR), given by Eq. (6), should be
equal to the carrier spin right before the pump pulse arrival,
which we denote by Sb (see Fig. 4). As before, instant pump
pulse action is assumed. Then, Sb corresponds to the limit of
carrier spin polarization at time delay approaching zero delay
from negative side t → 0−. Using the connection between
the carrier spins before and after the pump pulse [Eq. (1)],
and assuming that the pump pulse is resonant with the trion
transition, � = 0, one immediately comes to the following
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FIG. 3. (Color online) Spin dynamics of resident carriers and
trions for (a) negatively charged trions T−, n-type and (b) positively
charged trions T+, p-type. The black curves show the temporal
evolution of ST

z − Sz. The gray (red) curves give only the trion
contribution to the signal ST

z .

expression for the carrier spin z component before pump pulse
arrival:

Sb
z (ω) = ±1

2

K

1 + Qe−2TR/τs − e−TR/τs (1 + Q) cos(ωTR) − K
,

(14)

where the signs ± correspond to different polarizations of
optical pumping and different types of resident carriers [cf.
Eqs. (1)], and

K = (1 − Q2)e−TR/τs

2
{(1 + ξ1)[Qe−TR/τs − cos(ωTR)]

−ξ2 sin(ωTR)}.
Equation (14) shows that the spin z component before

the next pump pulse arrival Sb
z is a periodic function of

magnetic field (see Fig. 5) with maxima of |Sb
z | at frequencies

ω satisfying the phase synchronization condition5,14,37 (PSC)

ω = NωR = 2πN

TR

, N = 0,1,2, . . . . (15)

Here, ωR = 2π/TR is the repetition frequency of the pump
pulses. Indeed, as one can see from time-resolved signals
shown in Fig. 4, if the spin precession period of the resident
carrier is commensurable with the pump pulse repetition
period, then the spin coherence generated by the pump is
always in phase with that from the previous pulse [see signal
around zero time delay, Fig. 4(a)], and carrier spin polarization
is accumulated. Otherwise, if the spin precession and pump
repetition periods are not commensurable, the accumulation of
spin polarization is not efficient, as seen from the comparison
of the amplitudes in Figs. 4(a) and 4(b).

In general, the electron spin precession has a particular
phase [see Eq. (11)], which we determine here as the difference

FIG. 4. (Color online) Dependencies of resident carrier spin
polarization Sz on pump-probe delay for a carrier spin precession
frequency, which is (a) commensurable with the pump repetition
frequency ω = 2ωR and (b) not commensurable with this frequency
ω = 2.5ωR . Parameters of calculations are τs = 3TR , � = 0.1π ,
τ T
s � τr . Thick vertical arrows show the arrival times of the pump

pulses. Phase φ of the oscillating polarization −Sz is φ = 0 in panel
(a) and φ = π in panel (b).

(ωTR − 2πN ), where N is the largest integer satisfying the
condition (ωTR − 2πN ) � 0. The phase can be expressed as

cos(φ) = −Sb
z

/√(
Sb

z

)2 + (
Sb

y

)2
,

(16)
sin(φ) = Sb

y

/√(
Sb

z

)2 + (
Sb

y

)2
.

Note that in Fig. 4 and further on in this paper we show
for convenience the inverted signal −Sz (in order to have
positive signals at zero delay after pulse pump arrival t → 0+
for σ+ pumping). This sign change does not affect the obtained
results, but is more suitable for their graphic presentation.

It is worth to mention that Eq. (14) is valid both for a
single dot and for an ensemble of identical dots with the
same spin precession frequencies. For an ensemble of resident
carriers with different spin precession frequencies ω, Eq. (14)
should be averaged over their distribution38 [see Sec. III D and
Eq. (28)].

Figure 5 shows Sb
z calculated after Eq. (14) for different

pump pulse areas � in the case of fast trion spin relaxation. As
the x axis scale in Fig. 5, we take the ratio of spin precession
frequency ω and ωR , which represents the magnetic field
dependence of Sb

z as ω ∝ B. Integer numbers on the x axis
correspond to magnetic fields, for which the spin precession
frequency satisfies the PSC of Eq. (15). At these magnetic
fields, the amplitude of the resident carrier spin polarization
−Sb

z increases resonantly, evidencing favorable conditions
for spin accumulation [see Fig. 5(a)]. It is obvious that the
accumulation efficiency is controlled by the factor τs/TR ,
as the accumulation occurs only when the spin relaxation
time of the resident carrier τs exceeds considerably the
repetition period of the pump pulses. This is confirmed by the
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FIG. 5. (Color online) Dependence of the resident carrier spin
polarization Sb

z and its phase on magnetic field expressed by ω/ωR =
gμBB/(h̄ωR). τ T

s � τr . Data are shown for zero time delay (right
before the pump pulse arrival, t → 0−), calculated for different ratios
τs/TR at � = 0.1π (a), (c) and for different pump pulse areas � at
τs/TR = 3 (b), (d).

calculations shown in Fig. 5(a). For a fixed value of τs/TR , an
increase of the pump pulse area results in a broadening of the
peaks [see Fig. 5(b)]. The phases of the signals from Figs. 5(a)
and 5(b) are shown in Figs. 5(c) and 5(d), respectively. One
clearly sees that the zeros of the phase correspond to maxima
of spin polarization −Sb

z , and the values φ = ±π correspond
to its minima.

One should note that the magnitude of the accumulated spin
polarization, as well as the width of the resonant peaks in the
magnetic field dependence of −Sb

z , are determined not only by
the pump pulse power and the carrier spin relaxation time, but
also by the mechanism of long-lived spin coherence generation
and the spin dephasing time. We present the analysis of these
effects in the following sections.

III. RESONANT SPIN AMPLIFICATION

We begin with the classical expression for carrier spin
polarization under RSA conditions.5,37 The underlying as-
sumptions are the following: (i) only resident carrier spin
polarization is considered, and (ii) it is supposed that each
pump pulse generates only a z component of spin polarization,
the magnitude of which is S0. All nonadditive effects of
the pump pulse28 are disregarded. After single pump pulse
excitation, the carrier spin dynamics are described by a
decaying cosine function periodic with the Larmor precession
frequency ω and decay with time τs . The effect of a long
train of pump pulses on the carrier spin polarization can be
calculated as

Sz(ω,t) =
∞∑

k=0

S0e
−(t+kTR )/τs cos[ω(t + kTR)], (17)

FIG. 6. (Color online) Carrier spin polarization Sz as function of
magnetic field (ω ∝ B) at two different pump-probe delays denoted
in each panel. t → 0− means that the signal is calculated for very
small negative delay, just before the pump pulse arrival. Parameters
of calculations: τs = 3TR , � = 0.1π , τ T

s � τr .

where t is the pump-probe delay and k = 0,1,2, . . . . This
equation can be rewritten37,38 as

Sz(ω,t) = S0

2
e−t/τs

×e−TR/τs cos(ωt) − cos[ω(t + TR)]

cosh(TR/τs) − cos(ωTR)
. (18)

It follows from Eq. (18) that for sufficiently long decay
times τs � TR , the carrier spin has sharp resonances as a
function of magnetic field. This corresponds to the solid line
in Fig. 5(a) and gives the RSA signals presented in Fig. 6.
The peak positions at zero pump-probe delay correspond to
spin precession frequencies, which are commensurable with
the pump repetition frequency ωR = 2π/TR . The expression
(18) near commensurable frequency (|ωTR − 2πN | � 1) and
at a zero time delay can be written as

Sb
z ∼ 1

(ωTR − 2πN )2 + (TR/τs)2
. (19)

Here, we assume that TR/τs � 1. The peak width is deter-
mined by the relaxation time of the electron spin polarization.
Note that for the spin ensemble, the time τs should be
changed to the dephasing time T ∗

2 provided that T ∗
2 � TR

(see Sec. III D).39 This allows one to measure spin relaxation
and spin dephasing times exceeding TR , i.e., for conditions
where direct determination by time-resolved methods becomes
inapplicable. Equations (18) and (19) describe a number of
experiments well (see, e.g., Refs. 5, 37, 40, and 41), and
facilitate evaluation of carrier g factors and spin dephasing
times.39

However, one sees that the spin polarization in Eqs. (18)
and (19) increases to infinity if τs becomes larger and larger.
Moreover, such an approach disregards completely the spin
dynamics of trions and the specifics of carrier spin dephasing in
external magnetic fields. This case requires a special treatment.
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There are also experiments that reveal a complicated shape of
RSA spectra or a complete absence of RSA despite very long
spin relaxation times, which can not be described by this simple
model.36,42,43 The general analysis required for such cases is
presented below.

A. Fast spin relaxation in trion

If the spin relaxation of the unpaired carrier in the trion is
fast, τT

s � τr , the trion spin dynamics does not affect the spin
polarization of the resident carriers (see Sec. II B 2). In this
case, the carrier polarization induced by the pump pulse is not
compensated by the carriers left after trion recombination, as
these carriers are unpolarized. Then, ξ = 0 and the parameter
K in Eq. (14) has the simple form14,23

K = (1 − Q2)e−TR/τs

2
[Qe−TR/τs − cos(ωTR)]. (20)

The detailed analysis of Eqs. (14) and (20) for this case is
given in Refs. 14 and 23. If, moreover, the pump pulse area �

is small, so that 1 − Q � 1, Eq. (14) together with Eq. (20)
go over into the classical expression of Eq. (18) for the carrier
spin polarization under RSA conditions.

It follows that for frequencies near the phase-
synchronization condition of Eq. (15), the spin z component
of the resident carrier can be recast as23

Sb
z ∼ 1

(ωTR − 2πN )2 + [TR/τs + (1 − Q)]2
, (21)

where we assume that TR/τs � 1, 1 − Q � 1, and |ωTR −
2πN | � 1. One sees from Eq. (21) that the RSA peak width
is determined by TR/τs or 1 − Q, whichever is larger.

Figure 6 shows RSA signals calculated for a small pump
power � = 0.1π at two different delays. The shape of the RSA
signal at large negative delay (t = −0.1TR) differs from the
one at very small negative delay due to the different phases of
the spin precession.

An increase of the pump pulse area results in broadening
of the RSA peaks, as was already shown in Fig. 5(b). For
increasing pump pulse area, the RSA peaks are no longer
Lorentzians and, therefore, Sb

z can not be described by
Eq. (21). The spin polarization for � = π and τs/TR = 3
shown in Fig. 5(b) looks similar to the one for � = 0.1π

and τs/TR = 0.5 in Fig. 5(a). Hence, under strong excitation,
the dependence of carrier spin polarization on magnetic field
becomes cosinelike due to saturation effects. In this case, it
is not possible to extract the carrier spin relaxation or the
dephasing times from the width of RSA peaks.

B. Slow spin relaxation in trion: Effect of trion spin dynamics

Let us now turn to the general case in which the trion spin
relaxation time can be comparable or even longer than its
recombination time. It is instructive to start from the situation
in which τT

s � τr and long-lived spin coherence appears only
due to carrier or trion spin precession about the magnetic field.
Clearly, the peaks in the Sb

z (ω) dependence are suppressed
for ωτr,�τr � 1 due to inefficient spin generation, and they
increase significantly with an increase of magnetic field. This
is illustrated in Fig. 7, where the calculated RSA signals are
shown for τT

s = 30τr . Note that such unusual RSA spectra
with suppression of the peak amplitudes in weak magnetic

FIG. 7. (Color online) Impact of slow spin relaxation of the
unpaired spin in the trion: RSA signals at zero delay (t → 0−) without
(� = 0) and with (� = 4ω) trion spin precession [panels (a) and (b),
respectively]. Parameters of calculations: τ T

s = 30τr , τr = 0.01TR ,
τs = 3TR , and ωτr = 4.4 at B = 1 T and � = 0.1π .

fields have been observed experimentally in both n-type and
p-type QWs.22,36,42,44

Figure 7(a) shows the signal calculated in absence of trion
spin precession (� = 0) shortly before the pump pulse arrival.
The peak amplitude at zero magnetic field (ω = 0) is given by
the ratio τr and τT

s and goes to zero for infinite τT
s . The increase

of peak amplitudes with increasing magnetic field depends on
ξ and, therefore, on the ratio ω/γ , similar to the amplitude
dependencies in Fig. 2. The peak shapes at small negative delay
differ from being Lorentzian [see for comparison Eq. (21)
and Figs. 5(a), 5(b), and 6(a)] because the spin left behind
after trion recombination changes the phase of the carrier spin
precession.9

It is worth to stress that we can use the same system of
Equations (5) to describe the spin dynamics in n-type (resident
electron and T− trion) and p-type (resident hole and T+ trion)
structures. Figure 7(a) illustrates the situation that can be
realized for n-type QWs,31,42 in which trion spin precession
is absent. Figure 7(b) shows the RSA signal with a trion spin
precession frequency � = 4ω, which may correspond to the
T+ trion case in p-type QWs.36,44 The analysis shows that
small �, i.e., � � ω, leads to no significant changes of the
RSA signal shape as compared with one in Fig. 7(b). A fast
precession of the trion spin results in a faster appearance
of long-lived spin coherence with increasing magnetic field
[compare Figs. 7(a) and 7(b)].

C. Effect of spin relaxation anisotropy

To make our analysis of RSA complete, we briefly discuss
here another effect, which is relevant for weak magnetic fields.
It addresses the situation in which the carrier spin relaxation or
the dephasing times are anisotropic. spin relaxation anisotropy
is an inherent feature of semiconductor quantum wells.45–49

For simplicity, we consider the case in which the z and y

spin components of the resident carriers relax at different time
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FIG. 8. (Color online) Effect of an anisotropy of the carrier spin
relaxation times. The electron spin z component right before pump
pulse arrival t → 0− is calculated as function of magnetic field after
Eq. (22). τs,z = 4TR . τ T

s � τr .

constants τs,z and τs,y , respectively. Provided that the long-
lived carrier spin coherence is excited by the train of weak
pump pulses, the dependence of the carrier spin z component
on the precession frequency is given by38

Sb
z (ω) ∼ C(ω̃TR) − e−TR/τs

cosh (TR/τs) − cos (ω̃TR)
, (22)

where

1

τs

= 1

2

(
1

τs,z

+ 1

τs,y

)
, ω̃ =

√
ω2 − 1

4

(
1

τs,z

− 1

τs,y

)2

(23)

and

C(ω̃TR) = cos (ω̃TR) − 1

2ω̃

(
1

τs,z

− 1

τs,y

)
sin (ω̃TR).

The dependence of carrier spin polarization −Sb
z on

magnetic field is shown in Fig. 8 for two cases of anisotropic
carrier spin relaxation: (a) τs,y = 4τs,z and (b) τs,y = 0.25τs,z.
The amplitudes of all maxima except the one at zero field are
the same because they are determined by the effective spin
relaxation time τs defined by Eq. (23). The amplitude of the
zero-field peak is different from the other peaks. If τs,y > τs,z,
it is smaller as compared with the others. The carrier spin
relaxation in absence of a magnetic field is governed solely
by τs,z and is faster than at finite magnetic fields, so that
accumulation of carrier spin polarization is weaker at B = 0.
In the opposite case of τs,y < τs,z the zero-field peak is higher
because the lifetime of the spin z component is longer in
absence of magnetic field so that spin accumulation is more
efficient.50

D. Spin decoherence and dephasing

The spin relaxation time of localized carriers can be
extremely long reaching up to microseconds for electrons in
QDs, for example.51 This is related with quenching of the

orbital motion and the corresponding suppression of spin relax-
ation mechanisms contributed by spin-orbit coupling.52,53 The
coherence time of an individual spin is typically much longer
compared with the spin dephasing time of an inhomogeneous
spin ensemble. The inhomogeneity, which leads to a spread of
carrier spin precession frequencies, results in spin dephasing
characterized by the T ∗

2 dephasing time. This time measured,
e.g., from the decay of spin beats in external magnetic field
is in the few nanoseconds range for QD ensembles14,15,54 and
in the tens of nanoseconds range for QWs containing diluted
carrier gases.9,22,30,40

One of the main origins for the inhomogeneity of a spin
ensemble is related to the g-factor spread of localized carriers.
For electrons, the g-factor variation can arise from changes of
the effective band gap for different localization sites.14,55,56 For
localized holes, the variations are mainly related to changes
in the mixing of heavy- and light-hole states.57 The spread of
g factors in a spin ensemble �g is translated into a spread of
spin precession frequencies �ωg and, therefore, results in a
spin dephasing rate38,40

1

T ∗
2,�g

∼ �gμBB

h̄
≡ �ωg, (24)

which is accelerated with increasing magnetic field.
Another origin of spin dephasing typical for electrons is

related to random nuclear fields in the quantum dots.58 Each
localized electron is subject to a hyperfine field of a particular
nuclear spin fluctuation Bn and, therefore, precesses about
this field at a frequency ωn. These fluctuations are different for
different localization sites, causing dephasing of the electron
spin ensemble. The dephasing rate can be estimated by the
root mean square of the electron spin precession frequency in
the field of frozen nuclear fluctuations58:

1

T ∗
2,n

∼
√〈

ω2
n

〉
. (25)

Assuming a normal distribution of Bn, Eq. (25) can be
rewritten as

1

T ∗
2,n

∼ gμB�B

h̄
≡ �ωn, (26)

where �B is the dispersion of the nuclear spin fluctuation
distribution.58

Estimates show that T ∗
2,n is on the order of several nanosec-

onds for GaAs quantum dots.58,59 Hence, in weak magnetic
fields [e.g., B � 0.3 T for g = 0.5 and �g = 0.005 (Ref. 43)],
the spin beat decay for resident electrons is determined by the
hyperfine interaction, and in higher fields the dephasing is
caused by the spread of g factors.60

In quantum wells with a diluted electron gas, the electron
localization on well width fluctuations is considerably weaker
compared to the QD case. As a result, �g is smaller and the
hyperfine interaction is weaker. Therefore, the spin dephasing
times can reach ∼ 30–50 ns in weak magnetic fields and at
low temperatures.9,22 In the following, the effect of a spin
precession frequency spread on RSA signals is analyzed.
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FIG. 9. (Color online) Dependencies of carrier spin polarization
Sz on magnetic field at two different pump-probe delays t given in
each panel and short trion spin relaxation time τ T

s � τr . A frequency
spread �ωg = 0.02ω0, corresponding to 2% dispersion of the carrier
g factor, is assumed in the calculations. The dependence on magnetic
field is given by ω0/ωR = g0μBB/(h̄ωR).

1. Spread of g factors

For a more realistic approach, we need to take into account
the precession frequency spread �ω in the spin ensemble.
Here, for distinctness, we consider only the frequency spread
caused by �g (the spread related with the nuclear spin
fluctuations is considered below). For ensemble of carrier spins
with a spread of g factors �g, the spread of Larmor precession
frequencies �ωg is proportional to the magnetic field:

�ωg(B) = �gμBB/h̄. (27)

To model the ensemble RSA signal, one has to sum the
contributions of the individual spins38 over the g-factor
distribution function:

ρ(g) = 1√
2π�g

exp

[−(g − g0)2

2(�g)2

]
, (28)

where g0 is the average g-factor value in the spin ensemble,
resulting in an average Larmor frequency: ω0 = g0μBB/h̄.

RSA spectra calculated by means of Eqs. (14) and (28)
for short trion spin relaxation are presented in Fig. 9 for two
negative time delays. Here, the magnetic field is shown in terms
of ω0/ωR . An increase of magnetic field leads to broadening
of the RSA resonances and decrease of their amplitudes. This
reflects the acceleration of the spin dephasing rate 1/T ∗

2 ∼ B,
in accordance with Eq. (24).

Figures 10(a) and 10(b) show RSA signals for long trion
spin relaxation τT

s = 30τr with and without spin precession
in the trion. An ensemble spread of �ωg = 0.02ω0 results
in a broadening of the RSA peaks and a decrease of their
amplitudes with increasing magnetic field, similar to Fig. 9.
This results in the characteristic batlike shape of the RSA
signal22,36,42,44 (compare with Fig. 7) where the spin dephasing

FIG. 10. (Color online) Effect of slow trion spin relaxation.
RSA signals at zero delay (t → 0−) without [(a) � = 0] and with
[(b) � = 4ω0] trion spin precession are shown. The signals are
calculated assuming a spin precession frequency spread �ω =
0.02ω0 of the resident carrier. The parameters in the calculations
are τ T

s = 30τr , τr = 0.01TR , τs = 3TR , and ω0τr = 4.4 at B = 1 T
and � = 0.1π .

was absent, �ωg = 0. Accounting for the spread of � does not
change the signals significantly.

Figure 10(a) corresponds to a situation that is obtained
for resident electrons oriented by excitation of the T− trion
in n-type (In,Ga)As/GaAs QWs.22,42 In such structures, the
in-plane hole g factor is small compared with the electron g

factor and, consequently, � � ω, so that the spin precession
of the T− trion can be neglected.

Figure 10(b) corresponds to the long-lived hole spin orien-
tation for excitation of the T+ trion in p-type GaAs/(Al,Ga)As
QWs.36 For the T+ trion, the ratio � and ω is opposite, i.e.,
� � ω. In Ref. 36, � = 4.5ω and the spin precession in trion
affects the RSA signal.

The results of the calculations shown in Figs. 10(a)
and 10(b) are in good agreement with available experimental
data for quantum well structures.22,36,42 All calculations were
done for a small pulse area � = 0.1π . The analysis of the case
of high pump power, which results in saturation effects, shows
that an increase of the pump power results in an increase of
the signal amplitude and broadening of all peaks, similar to
the case discussed in Sec. III A (see also Fig. 5). The batlike
shape of the RSA signal envelope is conserved even for � = π

pump pulses.

2. Nuclear field fluctuations and resonant spin amplification in
weak magnetic fields

Interaction of the nuclear spins with hole spins is weak
and in many cases can be neglected. At the same time, for
localized electrons, the hyperfine interaction with the nuclei
can considerably contribute to the spin dynamics. Therefore,
in this section, we will focus on n-type structures containing
resident electrons.
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In weak magnetic fields, the electron spin dephasing time
related to the spread of g-factor values [Eq. (24)], proportional
to 1/B, becomes very long, and nuclear field fluctuations play
an important role. The hyperfine fields acting on the electrons
due to these nuclear fluctuations can be as large as Bn ∼ 0.5 mT
for GaAs QWs (Ref. 30) and an order of magnitude larger in
(In,Ga)As QDs.61

For B � Bn, the only important component of the nuclear
field fluctuation is the one parallel to the external field B. It
results in a spread of Larmor precession frequencies, damping
of the spin beats, and broadening of the RSA peaks, provided
Bn > |�g/g|B.

The situation becomes different in weak magnetic fields
B < Bn. In this case, all components of the nuclear fluctua-
tion field become important. For illustration, we consider a
homogeneous electron spin ensemble (�g = 0) in a magnetic
field, which is the sum of the external magnetic field B and the
fluctuation field Bn. For simplicity, we consider the regime
of fast spin relaxation in the trion (τT

s � τr ). To model the
dynamics of the electron spin ensemble, one can assume a
normal distribution of Bn:

ρn(Bn) = 1

(
√

2π�B)3
exp

(
− Bn

2

2(�B)2

)
, (29)

where �B is the isotropic dispersion of the nuclear fluctuation
field distribution (�B,x = �B,y = �B,z). The spread of the
Larmor precession frequencies �ωn does not depend on the
external magnetic field:

�ωn = gμB�B/h̄. (30)

The average Larmor frequency of the spin ensemble in this
case is equal to the spin precession frequency in an external
magnetic field without nuclear fluctuations: ω0 = gμBB/h̄.

Figure 11 shows RSA signals at zero time delay (t → 0−)
averaged over Bn for different �B values. One sees that,
indeed, an increase of the frequency spread �ωn leads to
an increase of the dephasing rate evidenced via broadening
of the RSA peaks. For weak magnetic fields B < �B , the
y component of the nuclear fluctuation field Bn,y , which is
perpendicular to Sz and to the external field, can addition-
ally destroy the long-lived carrier spin polarization. This is
manifested in an additional broadening and a decrease of the
amplitude of the zeroth RSA peak (compared to the ±1 peaks),
as is clearly seen in Figs. 11(a) and 11(b). The enhancement
of Sz in the vicinity of zero field for large fluctuations [see
Fig. 11(c)] is due to the fact that the z component of the spin
polarization can not be destroyed by a parallel component of
the nuclear fluctuation field Bn,z.

E. Analysis of RSA signals and evaluation of spin dephasing
times and g factors

To conclude our analysis of RSA, we emphasize that in
spite of the possibly complex shape of RSA signals, especially
in case of a long spin relaxation in the trion, the analysis
allows one to obtain various parameters with high accuracy.
This is due to the fact that these parameters are responsible for
different features in the RSA spectrum:

(i) The g factor of the resident carriers gives the magnetic
field positions of the RSA peaks.
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FIG. 11. (Color online) RSA signals at zero pump-probe delay
t → 0−, calculated for different spreads of the nuclei fluctuation field
�B . The frequency spreads (�ωn ∼ �B ) are given in each panel.
� = 0.1π , �g = 0, and τ T

s � τr .

(ii) The g-factor spread �g determines the amplitude de-
crease of the RSA peaks with increasing magnetic field.
(iii) The spin relaxation and dephasing time τs is related to
the RSA peak widths.62

(iv) The ratio of spin relaxation time τT
s and radiative

lifetime τr of the trion determines the possible increase
of RSA peak amplitudes with increasing magnetic field.
If τr is obtained from an independent time-resolved mea-
surement, then τT

s can be extracted from fitting the RSA
spectrum.

(v) For long spin relaxation in the trion (when the RSA signal
has a bat-like shape), the symmetry of the RSA peaks at small
negative pump-probe delay can indicate the fact that the trion
g factor is larger than that of the resident carrier (|gT | � |g|).
However, the value of the trion g factor should be obtained
from another experiment.
(vi) Finally, the amplitude and the width of the zero-field

RSA peak can contain information on the anisotropy of the
spin relaxation of delocalized carriers and the nuclear effects
for localized carriers.

The spin dynamics parameters considered above can be
extracted only for sufficiently homogeneous ensembles and at
weak excitation powers (small pump pulse areas), which is
typical for semiconductor QWs.

It is worth to mention that there are other generation
mechanisms of long-lived spin coherence for nonresonant
optical excitation.9,22,44 In this case, the RSA signal can change
its shape dramatically. However, a detailed analysis allows one
to identify the generation and relaxation mechanisms of carrier
spin polarization and obtain the corresponding quantitative
information about relaxation processes.

IV. MODE LOCKING OF CARRIER SPIN COHERENCES

Now, we turn to strongly inhomogeneous spin systems, for
which the spread of the spin precession frequencies is so large
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FIG. 12. (Color online) Carrier spin polarization as a function of
pump-probe delay for precession frequencies which (a) satisfy the
PSC of Eq. (15) and (b) do not satisfy it. The frequency spread is
�ω = ωR , � = π , and τ T

s � τr . Thick vertical arrows indicate the
arrival times of the pump pulses.

that

T ∗
2 < TR. (31)

Still, the spin relaxation time of the resident carrier is assumed
to exceed by far the repetition period τs � TR . In this case, the
ensemble spin polarization generated by a pump pulse decays
within the time T ∗

2 , i.e., disappears before the next pump pulse
arrival. Figure 12 presents model calculations, which show the
dynamics of the carrier spin polarization excited by a train of
the pump pulses. Indeed, the polarization decays quite rapidly
after the pump pulses, but thereafter reemerges at negative
delays −T ∗

2 � t < 0. Such a behavior has been explained as
a synchronization of the electron spin precession frequencies
by the periodic train of pump pulses.14,20

If the condition (31) is fulfilled, the pump pulse excites
a broad distribution of spin precession frequencies, among
which there are several frequencies satisfying the phase
synchronization condition of Eq. (15). The carrier spins with
such precession frequencies are excited much more efficiently,
i.e., accumulate more spin polarization than the other ones.
As a result, the main contribution to the signal is given by
the commensurable spin beat frequencies. In other words,
the spins satisfying the PSC become resonantly amplified,
while others are not, and the synchronized spins contribute
mostly to the experimentally measured signal of carrier spin
polarization.

This phenomenon was termed “mode locking” by analogy
with laser physics, where the generation is only possible
for certain modes, the frequencies of which are equal to
the cavity mode frequencies. By contrast with the lasers,
where special techniques are employed to make synchronized
modes coherent, for the spin mode locking, the modes with
commensurable Larmor frequencies are always excited in

FIG. 13. (Color online) Larmor frequency distribution function
(multiplied for convenience by

√
2π�ω) of a spin ensemble for

RSA (a) and SML (b) conditions. (c) Parameter diagram showing
schematically the regimes where RSA and SML occur, see text for
details.

phase by the pump pulses. Corresponding behavior of the
spin signals has been observed in ensemble of n-type singly
charged (In,Ga)As QDs.14,20,21

The calculations shown in Fig. 12 are carried out by means
of averaging single electron spin dynamics Eq. (14) taking into
account Eq. (30) for the spread of spin precession frequencies.
We assume, for simplicity, that the trion spin relaxation is
fast, τT

s � τr , and the spread of the carrier spin precession
frequencies �ω = ωR does not depend on the magnetic field
strength.

Let us have a closer look on the signals in Fig. 12. It is
remarkable that the phase of the spin beats before the next
pump pulse arrival is fixed for any magnetic field. The average
precession frequency of spin ensemble ω0 satisfies the PSC in
Fig. 12(a), while it does not in Fig. 12(b). The phase, however,
in both cases is exactly the same and it also coincides with
the one after the pump pulse φ = 0. This is in strong contrast
with the regime of weak dephasing (T ∗

2 � TR) [see Fig. 5(c)]
and can be considered as the principal difference of the SML
and RSA regimes of carrier spin accumulation. Note that the
regime of weak dephasing is similar to the dynamics of a single
spin presented in Figs. 4 and 5. It is worth to mention that the
ratio of the signal amplitudes at negative and positive delays
depends strongly on the generation efficiency and conservation
of spin polarization, i.e., on the pump pulse area, the trion spin
relaxation, and the ratio of carrier spin relaxation time τs to
TR .14,20

V. RSA VERSUS MODE LOCKING

In this section, we discuss how one can distinguish the
RSA and SML regimes and what parameters are responsible
for separating these regimes. This separation is based on the
common basic mechanism of the RSA and SML effects, which
is the accumulation of carrier spin polarization under periodic
pump pulse excitation. The key difference between the regimes
is the ratio of the Larmor frequency broadening to the repetition
frequency of the pump pulses: �ω/ωR . This is schematically
illustrated in Figs. 13(a) and 13(b) by the frequency spectrum
of the spin ensemble in a finite magnetic field. Here, few PSC
modes satisfying Eq. (15) from (N − 2)ωR to (N + 2)ωR are
indicated by the dashed vertical lines.
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FIG. 14. (Color online) Magnetic field dependencies [in terms of
ω0(B)/ωR] of (a) the carrier spin polarization amplitude −Sb

z and
(b) the signal phase at zero delay (t → 0−) calculated for three
different Larmor frequency spreads. Dependencies of the spin
polarization amplitude for PSC modes, i.e., for integer values of
ω0(B)/ωR (c) on the frequency spread for different pump pulse areas,
at τs/TR = 300, and (d) on the pump pulse area for various τs/TR for
a precession frequency spread �ω = 0.5ωR . τ T

s � τr .

In the RSA regime, �ω � ωR and only one PSC mode (or
even none) can fall into the distribution of Larmor frequencies.
When the PSC mode coincides with the distribution maximum,
as it is shown in Fig. 13(a), one obtains a peak in the RSA
spectrum. And, when the overlap between the mode and the
distribution is absent, the RSA spectrum has minimum.

For the SML regime, involvement of at least two PSC
modes is necessary. Therefore, the condition for this regime
is �ω � ωR [see Fig. 13(b)]. The calculations given in this
section show that in fact the transition to the SML regime
happens already for �ω � 0.5ωR , when the tails of the Larmor
frequency distribution overlap with more than one PSC mode.

Deeper insight in the separation between the RSA and SML
regimes is collected below in Figs. 14, 15, and 16. Here, the
carrier spin polarization amplitude Sb

z and the signal phase at
zero delay (t → 0−) are analyzed as functions of magnetic
field, time delay, Larmor frequency spread, and pump pulse
area. We also consider the effect of resident carrier spin
relaxation taking it into account via the parameter τs/TR . For
most figures, a pump pulse area � = π is chosen as it provides
efficient spin accumulation. Let us go step by step through this
data set.

First, for demonstration purposes, we assume again that a
spread of the carrier spin precession frequencies is �ω = ωR ,
and it does not depend on magnetic field. For n-type structures,
this corresponds to the case when the �ω of the resident
electrons is dominated by the random fields of the nuclear
spin fluctuations: �ωn ∝ Bn,x. For B > Bn, only the Bn,x

component parallel to the external magnetic field should be
considered (see Sec. III D 2). Similar to the previous sections,
the nuclear spin fluctuation is considered to be frozen.

Magnetic field dependencies of the carrier spin polarization
−Sb

z and the signal phase are shown in Figs. 14(a) and 14(b) for
different �ω and τs/TR = 300. For a small frequency spread
of �ω = 0 and 0.2ωR , the polarization amplitude and phase
are periodic functions of magnetic field, which is characteristic
for the RSA regime [for comparison, see Figs. 5(b) and 5(d)].
An increase of �ω to 0.5ωR drastically changes the character
of these functions: both of them become independent of
magnetic field. The spin polarization amplitude has a finite
value (in this case it is equal 0.08), while φ = 0. These are
characteristics of the SML regime.

Details of separating the RSA from the SML regime with
increasing frequency spread are presented in Fig. 14(c). The
peak amplitudes of the spin polarization at the PSC frequencies
are plotted for different pump pulse areas there. The amplitude
initially decreases with an increasing spread and approaches
a saturation level for larger spreads. Independence of the
amplitude on the spread is characteristic for the SML regime,
therefore, one can see from the Fig. 14(c) that the regimes
cross over at �ω ∼ 0.5ωR .

The spin polarization amplitude in the SML regime depends
critically on the pump pulse area [see also Fig. 14(d)]. It is close
to zero for � < 0.3π , but strongly increases for � exceeding
this value, approaching a maximum at � → 2π for sufficiently
large τs/TR . The dependence of Sb

z for a large spread, which
corresponds to a constant plateau level, can be written as

Sb
z = 1 − Q

1 + Q

⎡
⎣1 −

√
M2 − 1

L2 − 1

⎤
⎦ , (32)

where M = Qe−TR/τs and L = e−TR/τs (1 + Q2)/2. The calcu-
lations in Fig. 14(d) show that with increasing electron spin
relaxation time τs , the maximum signal amplitude shifts to a
pulse area of 2π (unlike the dependence of spin polarization
on pulse area for excitation by a single pulse, for which Rabi
oscillations occur with maximum at � = π ).

The fact that the separation between RSA and SML is
controlled by the ratio �ω/ωR offers the instructive oppor-
tunity to realize a changeover between these two regimes by
tuning the magnetic field. This would be possible for the case
when the Larmor frequency spread is controlled by �g (see
Sec. III D 1) because in this case �ωg increases linearly with
B. Results of corresponding calculations for �ωg = 0.1ω0

are given in Fig. 15. In analogy with Figs. 14(a) and 14(b),
one can identify the RSA regime in low magnetic fields
(|ω0/ωR| < 3), where both the polarization amplitude and the
phase change with B, and the SML regime in larger magnetic
fields (|ω0/ωR| > 5), where these parameters do not vary
anymore.
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FIG. 15. (Color online) Magnetic field dependence of (a) carrier
spin polarization −Sb

z at zero pump-probe delay (t → 0−), and
(b) spin precession phase of the signal calculated for the same
parameters as in panel (a). The RSA and SML regimes are shown
by arrows. The labels with numbers are in accordance with Fig. 16.
τs/TR = 3, � = π , �ωg = 0.1ω0.

Figure 13(c) shows the range of parameters in which
the different spin accumulation regimes can be obtained.
The dashed curve corresponds to the condition �ω = 0.5ωR ,
which may serve as approximate boundary between the RSA
and SML regimes. Indeed, if the g-factor spread is small,
the spin-frequency distribution contains only one phase-
synchronized mode in a broad range of magnetic fields, the
latter are expressed via ω0(B)/ωR . It corresponds to the RSA
regime for which the parameter space is placed below the
dashed curve in Fig. 13(c). On the contrary, if the g-factor
spread is large, several phase-synchronized modes become
involved already at weak magnetic fields and, for relatively
efficient optical pumping, SML occurs. It corresponds to the
parameter space above the dashed curve in Fig. 13(c).

The time evolution of the spin polarization for the magnetic
fields marked by numbers in Fig. 15(a) are given in Fig. 16.
Figure 16(a) corresponds to the RSA regime (weak magnetic
fields). One can see that the spin polarization phase and
amplitude at small negative delays depend on the relation to
the PSC. However, in the SML regime, shown in Fig. 16(b),
both values are constant, irrespective of whether the PSC are
fulfilled or not.

From the results of Secs. IV and V, one can conclude about
the two main features of the SML regime. The first one is a
fixed phase of the spin signal at very small negative delays,
which is independent on the magnetic field. This reflects
the primary amplification of spins with commensurable spin
beat frequencies in a strongly inhomogeneous ensemble. The
second one is a characteristic revival of the dephased signal
before the next pump pulse arrival shown in Fig. 12.

It is also interesting that, in contrast with the RSA regime,
in the SML regime the magnetic field dependence of the
spin polarization at very small negative delay is smooth. The
dependence is similar to that presented by the dashed line
in Fig. 11(c). The width of this bell-like curve is determined

FIG. 16. (Color online) Carrier spin polarization as a function of
pump-probe delay for different magnetic fields denoted in Fig. 15(a).
Panel (a) corresponds to the RSA regime and panel (b) to the SML
regime. τs/TR = 3, � = π , �ωg = 0.1ω0, τ T

s � τr .

by the nuclear field fluctuations and is approximately equal
to 4�B .

Let us summarize the conditions for the SML regime. Apart
from the obvious condition τs � TR , it requires the following:

(1) A significant spread of carrier spin precession frequen-
cies �ωg � 0.5ωR . The spread can be caused by the nuclear
fluctuation fields or by the spread of g factors.

(2) The frequency spread �ω � 0.5ωR leads to a dephasing
of the spin signal within the time T ∗

2 � TR/π , i.e., faster than
the time interval between subsequent pump pulses.

(3) One can see from Figs. 14(c) and 14(d) that the pump
pulse area should be sufficiently large, � � π/2. Otherwise,
the frequency spread �ω � 0.5ωR would cause only a decay
of the spin polarization without its remarkable revival before
the next pump pulse arrival.

VI. CONCLUSIONS

To conclude, we have performed a comprehensive theoreti-
cal study of carrier spin coherence in spin ensembles subject to
periodic optical pumping. The effect of spin accumulation has
been analyzed for singly charged quantum dots and quantum
wells with a low density carrier gas. The accumulation results
in two regimes of carrier spin coherence: resonance spin
amplification and spin mode locking. These regimes, while
being different in their phenomenological appearances and
realization conditions, have the same origin and occur for
spin ensembles for which the carrier spin coherence time
exceeds by far the pump repetition period. The resonance spin
amplification and spin mode locking are mutually exclusive
regimes because of the requirement on excitation power and
precession frequency spread.

For the RSA regime, sufficiently homogeneous spin en-
sembles and small excitation powers (small pump pulse areas)
are required. These conditions are experimentally realized
in QW structures with electron or hole resident carriers
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of low density, i.e., for the regime, where negatively or
positively charged trions play an important role. In this
case, the spin dephasing times for resident carriers can be
extracted with high accuracy, even when they exceed the pulse
repetition period. The spreads of g factors and nuclear spin
fluctuations are less important for the long-lived spin coher-
ence compared to the case of strongly inhomogeneous QD
ensembles.

In contrast to the RSA regime, the SML regime requires a
strong inhomogeneity of the spin precession frequency in the
spin ensemble and high excitation powers (pump areas close
to π and more). By now, the SML regime has been observed
experimentally and studied in great detail for ensembles of

(In,Ga)As/GaAs QDs, each singly charged with a resident
electron. In principle, it may be also observable for quantum
dots singly charged with a resident hole, if the respective
conditions are met.
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