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We present a microscopic quantum theory of intersubband polarons, quasiparticles originated from the coupling
between intersubband transitions and longitudinal optical phonons. To this aim, we develop a second quantized
theory taking into account both the Fröhlich interaction between phonons and intersubband transitions and the
Coulomb interaction between the intersubband transitions themselves. Our results show that the coupling between
the phonons and the intersubband transitions is extremely intense, thanks both to the collective nature of the
intersubband excitations and to the natural tight confinement of optical phonons. Not only is the coupling strong
enough to spectroscopically resolve the resonant splitting between the modes (strong-coupling regime), but it
can become comparable to the bare frequency of the excitations (ultrastrong-coupling regime). We thus predict
the possibility to exploit intersubband polarons both for applied optoelectronic research, where a precise control
of the phonon resonances is needed, and also to observe fundamental quantum vacuum physics, typical of the
ultrastrong-coupling regime.
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I. INTRODUCTION

The theory of polarons, the quasiparticles describing
electrons in a polarizable medium, dates back to the early days
of quantum theory1 and it has been an active field of research
ever since.2 In this paper, we will develop a microscopic theory
of intersubband polarons, that is, a theory of intersubband
transitions coupled to longitudinal optical (LO) phonons in
semiconductor quantum wells.

The coupling between intersubband transitions and LO
phonons is relevant for a number of optoelectronic appli-
cations, as it determines the lifetime of carriers in excited
subbands.3 In particular, a precise knowledge of LO phonon
intersubband scattering rates is important in the engineering
of heterostructures for quantum cascade lasers.4 Normally, op-
toelectronic devices are designed to avoid being in resonance
with optical phonon transitions, due to the high absorption
between transverse and longitudinal optical (TO and LO)
phonon frequencies (Restrahlen band). A notable exception
is provided by quantum cascade lasers operating near such
optical resonances5,6 in which instead the transitions between
different subbands are almost resonant with LO phonon modes.

Even if the coupling between intersubband transitions and
LO phonons in semiconductor quantum wells has indeed
received some attention,7–9 and intersubband polaron res-
onances have been clearly and unambiguously observed,10

to the best of our knowledge, there is no microscopic
theory of such excitations as the spectra of intersubband
polarons are normally calculated with indirect methods. While
such methods allow us to calculate, at least qualitatively,
the polaron dispersions, missing a microscopic description
makes it difficult to study more complex phenomena as
nonequilibrium physics, quantum vacuum effects, or quantum
phase transitions.

Using a second quantization formalism, we reduce the full
electron-phonon Hamiltonian to a quadratic, bosonic form,
from which we then calculate the polaron dispersions. In
order to accomplish this task, we show that Coulomb inter-
action between electrons in conduction subbands naturally

separates into a dominant and a perturbative part, accordingly
to the number of electrons that can participate to each
transition.

Moreover, we show how, thanks to the tight confine-
ment of LO phonons, the coupling between intersubband
transitions and phonons can easily be in the ultrastrong-
coupling regime, a regime characterized by a coupling strength
comparable to the bare frequency of the excitations.11 Such
a fact can have interesting observable consequences, as a
whole new range of physics is a priori observable in this
regime: spectral deformations,12–14 quantum vacuum emission
phenomena,15–17 electroluminescence enhancement,18,19 and
even quantum phase transitions.20–22

This paper is organized as follows: In Sec. II, we develop
the general theory of the coupling between intersubband
transitions and LO phonons, which we then apply in Sec. III to
the case of GaAs quantum wells, showing how the ultrastrong-
coupling regime can be reached even with such relatively
weakly polar material. In Sec. IV, we compare the calculated
dispersions with those obtained using a homogeneous dielec-
tric function approach. Finally, a few considerations on the
impact of our results and on possible future developments are
drawn in Sec. V.

II. THEORETICAL FRAMEWORK

A. Superradiant excitations

In 1954, Dicke23 noticed that a set of coherently excited
identical dipoles relaxes radiatively much faster than a single,
isolated one. This is due to the phenomenon of superradiance:
N identical dipoles behave as a single collective dipole√

N times bigger. The concept of superradiance has been
thoroughly applied to the study of intersubband polaritons24–27

in microcavity-embedded quantum wells. In such systems,
the light couples to a collective electronic excitation and, as
expected,11 the strength of the coupling between light and
matter is proportional to the square root of the number of
electrons involved.
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We study the coupling of intersubband transitions with
longitudinal optical phonons, considering also the role of
Coulomb electron-electron interaction. Such couplings are
extremely rich and, in order to limit the complexity of our
investigation, we will need to determine which scattering
channels are dominant and which are negligible. In general,
if N electrons undergo a certain transition in a coherent way,
the strength of the coupling is enhanced by a factor

√
N .

Transitions involving a macroscopic number of electrons will
thus be strongly enhanced and, for this reason, they will
be treated exactly within a Hamiltonian formalism, while
the others (involving only few electrons) will be treated
perturbatively (or ignored altogether). The degree of collective
enhancement of a scattering process will be evaluated looking
at the number of electrons that can undergo the transition
given fixed amounts of transferred impulsion and energy. In
Fig. 1, we show a few illustrative examples of collective and
noncollective transitions.

In the case of the Coulomb interaction, as we will see,
only the intersubband terms, responsible for the depolarization

FIG. 1. (Color online) (a) An example of collective transition:
an intersubband transition with small transferred momentum. All
the electrons can undergo a transition resonant approximately at
the same energy. (b) An example of noncollective transition: an
intrasubband transition with transferred momentum much smaller
than the Fermi wave vector h̄kF . The majority of electrons, being
Pauli blocked, do not participate to the process. (c) Another example
of noncollective transition: an intrasubband transition with transferred
momentum of the order of 2h̄kF , which is the minimum to allow all the
electrons to undergo the transition avoiding Pauli blocking. Anyway,
there is a large energy spread between the different single electron
transitions. For an infinite potential well, electrons on the two opposite
borders of the Fermi sea, with initial momenta ±h̄kF parallel to the

transferred momentum, have initially the same energy
h̄2k2

F

2m∗ = EF ,
where m∗ is the electron effective mass and EF the Fermi energy.
After the transition, they will end up with final momenta h̄kF and

3h̄kF , corresponding to final energies
h̄2k2

F

2m∗ = EF and
9h̄2k2

F

2m∗ = 9EF ,
respectively. This implies that, even if the transition is not blocked,
only a small fraction of the single electron transitions can be resonant
at the same time. In both cases, given that only few electrons can
participate to the collective transition, the superradiant enhancement
factor will be small.

shift, are collective. We will thus treat them exactly in the
Hamiltonian, while considering all the other terms in a random
phase approximation (RPA) linear response approach.

B. Free fields

We consider a symmetric quantum well of length LQW in a
bulk of height LBK, and S will be the surface of the sample. For
the moment, we limit ourselves to the case of a single quantum
well; the general case of multiple wells will be addressed later
in this section. The quantum well is supposed to be doped in
such a way that its Fermi level is between the first and the
second conduction subbands, separated between them by the
intersubband gap energy h̄ω12.

We develop our theory using a zero-temperature formalism
(T = 0); anyway, our results remain quantitatively accurate
while the thermal population of the second subband remains
negligible. Depending on material parameters and doping
level, this could imply the necessity to perform experiments in
different kinds of cryogenic environments.

Electron states will be indexed by the subband index j

and by the value of the in-plane wave vector k. Their wave
functions will be given by

ψj,k(ρ,z) = χj (z)
eikρ

√
S

, j = 1,2 (1)

where, for simplicity, we choose χj (z) to be real and, due to
the symmetry of the quantum well, the χj (z) have well-defined
and opposite symmetry. Wave functions in Eq. (1) are chosen
as the basis for second quantization, and the creation operator
for an electron in the state described by Eq. (1) will be denoted
as c

†
j,k. The free Hamiltonian of the electron gas in the two

considered subbands thus reads as

Hel =
∑

j={1,2},k
h̄ωj (k)c†j,kcj,k, (2)

where ω1(k) = h̄2k2

2m∗ and ω2(k) = ω1(k) + ω12. In Eq. (2), as
well as in the rest of this paper, we omit the electron spin index.
This is justified by the fact that all interactions we consider are
spin conserving. Given that we consider only in-plane wave-
vector exchanges q much smaller than the typical electron
wave vector k, we can make the approximation ωj (k + q) �
ωj (k), and introduce the operators describing intersubband
transitions with a well-defined and dispersionless energy h̄ω12

(Ref. 11):

b†q = 1√
N

∑
k

c
†
2,k+qc1,k, bq = 1√

N

∑
k

c
†
1,kc2,k+q, (3)

where N is the number of electrons in the quantum well. In
the dilute regime, that is, if the number of excitations is much
smaller than N , the b

†
q operators are bosonic:

[bq,b
†
q′ ] � δq,q′ . (4)

At higher excitation densities, which are out of the scope of
this work, saturation effects start to appear and corrections to
Eq. (4) have to be taken into account. For a detailed analysis
of nonbosonicity effects in intersubband transitions, we invite
the interested readers to refer to Ref. 28.
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Using Eq. (3), we can rewrite the Hamiltonian of the
free electron gas in Eq. (2) in terms of bosonic intersubband
excitations

Hel =
∑

q

h̄ω12b
†
qbq. (5)

In this work, we are interested in the resonant case in which
ω12 is equal, or close, to the LO phonon frequency ωLO. We can
thus neglect confinement effects on the phonons and consider
bulk values for their frequencies.29,30 We will thus describe LO
phonons by means of the three-dimensional boson operators
dq,qz

:

[dq,qz
,d

†
q′,q ′

z
] = δq,q′δqz,q ′

z
, (6)

indexed by their in-plane and out-of-plane wave vectors. While
we know that LO phonon modes are confined inside the
quantum well, we do not need to impose this constraint in
the mode definition because, as we will see, intersubband
transitions end up coupling with linear superpositions of
phonon modes that are anyway confined inside the quantum
well. We consider only the case of one single longitudinal
optical branch, with the expansion to the case of multiple
branches not presenting any fundamental difficulty.

Moreover, we are interested only in phonons with small
in-plane wave vectors (in order to couple with coherent inter-
subband excitations), we can thus ignore phonon dispersion
and write the free phonon Hamiltonian as

Hph =
∑
q,qz

h̄ωLOd†
q,qz

dq,qz
. (7)

C. Electron-phonon interaction

Interaction between electrons and LO phonons can be
described using the Fröhlich Hamiltonian31

HFr =
√

h̄ωLOe2

2ε0ερSLBK

∑
q,qz

e−i(qρ+qzz)√
q2 + q2

z

d†
q,qz

+ H.c., (8)

where

1

ερ

= 1

ε∞
− 1

εs

, (9)

where εs and ε∞ are, respectively, the static and high-frequency
dielectric constants.30

The Hamiltonian in Eq. (8) can be written in second
quantization (neglecting incoherent intrasubband scattering3)
as

HFr =
√

h̄ωLOe2

2ε0ερSLBK

∑
q,qz

F (qz)√
q2 + q2

z

× (d†
q,qz

+ d−q,−qz
)(c†1,kc2,k+q + c

†
2,k−qc1,k), (10)

where we have defined

F (q) =
∫

dz χ1(z)χ2(z)e−iqz. (11)

From Eq. (10), we see that, due to the three-dimensional
character of the LO phonons,30 each electronic transition
couples to multiple phonon modes, indexed by different

values of the wave vector along the growth direction. It
is thus convenient to introduce second quantized operators
corresponding to the particular linear superpositions of phonon
modes that are coupled to electronic transitions

r†q = 1√
A

∑
qz

F (qz)d
†
q,qz√

q2 + q2
z

, rq = 1√
A

∑
qz

F̄ (qz)dq,qz√
q2 + q2

z

, (12)

the spatial wave functions along the z axis of which are

ϕq(z) = 1√
ALBK

∑
qz

F (qz)eiqzz√
q2 + q2

z

. (13)

From Eqs. (13) and (11), we see that the intersubband
transitions naturally couple to phonon modes localized inside
the quantum well [it is easy to verify that ϕq(z) vanishes to the
first order in q if z is outside the common support of χ1 and
χ2].

The normalization factor A can be fixed by imposing
bosonic commutation relations for the r

†
q operators

[rq,r
†
q′] = 1

A

∑
qz,q ′

z

F (qz)F (−q ′
z)√(

q2 + q2
z

)(
q ′2 + q ′

z
2
) [dq,qz

,d
†
q′,q ′

z
]

= δq,q′LBKI (q)

2Aq
, (14)

and thus

A = LBK

2

I (q)

q
, (15)

where we have defined

I (q) =
∫

dz dz′χ1(z)χ2(z)χ2(z′)χ1(z′)e−q|z−z′ |. (16)

We can thus write Hamiltonians in Eqs. (7) and (10) in terms
of coherent r

†
q and b

†
q operators as

Hph =
∑

q

h̄ωLOr†qrq (17)

and

HFr =
∑

q

√
N2DEGh̄ωLO

e2

4ε0ερ

I (q)

q
(b†q + b−q)(rq + r

†
−q),

where

N2DEG = N

S
(18)

is the density of the two-dimensional electron gas (2DEG). In
order to pass from Eq. (7) to (17), we are neglecting higher-
order phonon modes confined inside the quantum well. This is
justified by the fact that we limit ourselves to long-wavelength
modes.

D. Superradiant electron-electron interaction

In order to treat the Coulomb electron-electron interaction,
we start by the second quantized form of the Hamiltonian
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FIG. 2. (Color online) (a) Index convention of the matrix element
V imnj

q . Two electrons in subbands j and n, with momenta k and k′,
are scattered into subbands i and m, with momenta k + q and k′ − q,
respectively. (b) Graphical representation of the four qualitatively
different kinds of scattering processes from Eq. (22).

describing the Coulomb interaction32 [see Fig. 2(a) for a
graphical representation of the interaction coefficients]

Hc=1

2

∑
i,j,m,n=1,2

∑
q,k,k′

V imnj
q c

†
i,k+qc

†
m,k′−qcn,k′cj,k, (19)

where

V imnj
q = e2

2ε0ε∞q

∫
dz dz′χi(z)χj (z)χm(z′)χn(z′)e−q|z−z′ |,

(20)

is the two-dimensional Coulomb matrix element. It is impor-
tant to notice that in Eq. (20) we used the high-frequency
dielectric constant ε∞ instead of the static one. This is
due to the fact that εs includes the effect of the coupling
to LO phonons, which are already treated exactly in the
Hamiltonian.

Due to the symmetry of the wave functions, a certain
number of matrix elements in Eq. (20) can be seen to be zero,
in particular, all the matrix elements with an odd number of 1

and 2 indices:

V 1112
q = V 1121

q = V 1211
q = V 2111

q = 0,
(21)

V 2111
q = V 2212

q = V 2122
q = V 1222

q = 0.

The other elements can be evaluated as

V 1122
q = V 1212

q = V 2121
q = V 2211

q = e2I (q)

2ε0ε∞q
,

V 1221
q = V 2112

q = e2

2ε0ε∞q

∫
dz dz′χ2

1 (z)χ2
2 (z′)e−q|z−z′ |,

(22)

V 1111
q = e2

2ε0ε∞q

∫
dz dz′χ2

1 (z)χ2
1 (z′)e−q|z−z′ |,

V 2222
q = e2

2ε0ε∞q

∫
dz dz′χ2

2 (z)χ2
2 (z′)e−q|z−z′ |,

where I (q), defined in Eq. (16), is the same integral
we encountered studying the electron-phonon Fröhlich
interaction.

The four distinct nonzero possible values of the matrix
elements correspond to different kinds of scattering processes.
In Fig. 2(b), a graphical representation for each of these
processes is shown. It is important at this point to notice
a major difference between the elements in the first line of
Eq. (22) and the others. The elements in the first line [upper
left subpanel in Fig. 2(b)] represent intersubband excitations:
each electron is scattered from one subband to the other. Such
processes, responsible for the depolarization shift,32 describe
a superradiant process in the sense defined above, that is,
at least for small values of q, a great number of electrons
can coherently undergo the same transition, approximately
at the same energy. This is not the case for the interactions
described in the other lines of Eq. (22), which instead describe
intrasubband excitations that, either due to Pauli blocking or
to the nonflat energy dispersions, involve only few electrons
(see Fig. 1 for a graphical visualization of this crucial point).

Our previous discussion on superradiant processes thus im-
plies that the terms in the first line of Eq. (22) strongly dominate
over the others due to their superradiant enhancement. For
this reason, we have to treat them exactly in a Hamiltonian
formalism, while we can limit ourselves to treat the others
within a perturbative approach.

Here, we will thus construct an exact, Hamiltonian ap-
proach to treat the effect of the depolarization shift terms,
neglecting the others. We will analyze later the effect of the
intrasubband terms. Let us start to rewrite the depolarization
shift part of Eq. (19) in a more useful form

Hc =
∑

q,k,k′

e2I (q)

4ε0ε∞q
(c†1,k+qc

†
1,k′−qc2,k′c2,k + c

†
1,k+qc

†
2,k′−qc1,k′c2,k + c

†
2,k+qc

†
1,k′−qc2,k′c1,k + c

†
2,k+qc

†
2,k′−qc1,k′c1,k)

=
∑

q,k,k′

e2I (q)

4ε0ε∞q
(c†1,k+qc2,kc

†
1,k′−qc2,k′ + c

†
1,k+qc2,kc

†
2,k′−qc1,k′ + c

†
2,k+qc1,kc

†
1,k′−qc2,k′ + c

†
2,k+qc1,kc

†
2,k′−qc1,k′ )

+
∑

q

Ne2I (q)

4ε0ε∞q
. (23)
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We see from Eq. (23) that, thanks to its collective, superradiant
nature, the depolarization shift can be naturally written in terms
of the bosonic intersubband excitations defined in Eq. (3) as

Hc =
∑

q

N2DEG
e2

4ε0ε∞

I (q)

q
(b†q + b−q)(b†−q + bq), (24)

where we have neglected the last constant term, which simply
shifts the ground-state energy.

E. Residual electron-electron interaction

We treated exactly the depolarization shift terms of the
Coulomb interaction in a bosonic excitation formalism. More-
over, we showed how the terms other than those responsible
for the depolarization shift are strongly suppressed due to
their lack of collective enhancement and can thus be treated
perturbatively.

Here, we study the perturbative effect of such residual
Coulomb contributions due to the intrasubband terms in the last
three lines of Eq. (22) [schematized in the last three panels of
Fig. 2(b)]. An important result due to Lee and Galbraith33,34 is
that such intrasubband terms do not contribute to the screening
of the intersubband ones at the level of the random phase
approximation. This can be seen writing the Dyson equation
for the dynamically screened Coulomb potential35 Vq(ω) as

V imnj
q (ω) = V imnj

q +
∑
rs

V irsj
q 	sr

q (ω)V smnr
q (ω), (25)

where 	sr
q (ω) is the RPA polarization function. In the case of

an intersubband contribution (e.g., V1122
q ), Eqs. (21) and (22)

imply that

V1122
q (ω) = V 1122

q +
∑
rs

V 1rs2
q 	sr

q (ω)V s12r
q (ω)

= V 1122
q +

∑
r �=s

V 1rs2
q 	sr

q (ω)V s12r
q (ω)

= V 1122
q + V 1122

q

[
	12

q (ω) + 	21
q (ω)

]
V1122

q (ω). (26)

We have thus

V1122
q (ω) = V 1122

q

1 − V 1122
q

[
	12

q (ω) + 	21
q (ω)

] , (27)

from which we see that the intrasubband Coulomb terms
(V 1111

q , V 2222
q , V 1221

q , and V 2112
q ) do not intervene in the

renormalization of the intersubband terms.
An analogous reasoning can be done for the phonon-

electron interaction. Calling Mq,qz
and Mq,qz

(ω) the bare and
screened versions of the potential defined in Eq. (10), we have
the Dyson equation

Mq,qz
(ω) = Mq,qz

+
∑
rs

V 1mn2
q 	sr

q (ω)Mq,qz
(ω)

= Mq,qz
+ V 1122

q

[
	12

q (ω) + 	21
q (ω)

]
Mq,qz

(ω)

, (28)

and thus the formula for the screened potential is

Mq,qz
(ω) = Mq,qz

1 − V 1122
q

[
	12

q (ω) + 	21
q (ω)

] . (29)

Being that the RPA screening is only due to terms that are
exactly treated in the Hamiltonian, we can thus neglect the
screening due to the two-dimensional electron gas.

F. Hopfield-Bogoliubov Hamiltonian

Putting together Eqs. (5), (18), and (24) , we arrive to the
full Hamiltonian for the intersubband transitions–LO phonons
system

H =
∑

q

h̄ω12b
†
qbq + h̄ωLOr†qrq

+
√

N2DEGh̄ωLO
e2

4ε0ερ

I (q)

q
(b†q + b−q)(r†−q + rq)

+N2DEG
e2

4ε0ε∞

I (q)

q
(b†q + b−q)(b†−q + bq). (30)

The Hamiltonian in Eq. (30) can be rewritten in a more compact
form by introducing the intersubband transitions–LO phonons
coupling coefficient 
 and the Coulomb coefficient D:


 =
√

N2DEGωLO
e2

4ε0ερh̄

I (q)

q
, D = N2DEG

e2

4ε0ε∞

I (q)

q
,

(31)

where we have dropped the dependences over the wave
vector as we are interested in the long-wavelength limit [from
Eq. (16), we can verify that limq→0

I (q)
q

tends to a constant
value].

By using Eq. (31), Eq. (30) can be written as

H = h̄
∑

q

ω12b
†
qbq + ωLOr†qrq + 
(b†q + b−q)(r†−q + rq)

+D(b†q + b−q)(b†−q + bq), (32)

which can be cast in matrix form as

H = h̄

2

∑
q

v̂†
q ηHq v̂q, (33)

where the column vector of operators v̂q is defined as

v̂q = [bq,rq,b
†
−q,r

†
−q]T , (34)

η is the diagonal metric

η = diag[1,1,−1,−1], (35)

and the Hopfield-Bogoliubov36 matrix Hq is defined as

Hq =

⎛
⎜⎜⎜⎝

ω12 + 2D 
 2D 



 ωLO 
 0

−2D −
 −ω12 − 2D −


−
 0 −
 −ωLO

⎞
⎟⎟⎟⎠ . (36)

Diagonalizing the matrix in Eq. (36) will yield the frequen-
cies of the normal modes of the system ω±, which are usually
called polarons.37,38 In our case, we name them more properly
intersubband polarons because the electronic part of the mixed
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excitations is an intersubband transition. The Hamiltonian in
Eq. (32) can thus be put in the diagonal form

H =
∑

j=±,q

h̄ωjp
†
j,qpj,q + E�, (37)

where the pj,q are the annihilation operators for the two
polaronic branches, given by a linear superposition of bq, rq,

b
†
−q, and r

†
−q operators, and E� is the energy of the new ground

state relative to that of the uncoupled system.

G. Coupled ground state

The coupling between the intersubband transitions and the
LO phonons does not modify only the system’s resonances but
it also qualitatively modifies the nature of its ground state. It is
easy to verify that, if |0〉 is the ground state for the uncoupled
phonons and intersubband excitations, defined in the usual way
as

bq|0〉 = rq|0〉 = 0,

then

pj,q|0〉 �= 0,

that is, |0〉 is not the ground state for the coupled system. The
real ground state of the Hopfield matrix in Eq. (36), which has
been thoroughly studied in Ref. 11, has the form of a two-mode
squeezed vacuum.

Still, thanks to the bosonicity of the system, such a ground
state does not influence the response of the system, which
can be described as a gas of free bosonic excitations [from
Eq. (37)]. A notable exception is the case in which the
parameters of the system are nonadiabatically modulated in
time. In this case, the sudden change in the ground state39

can have observable effects, such as the emission of quantum
vacuum radiation.15,16

It is also interesting to notice that, from Eq. (31), we can
write the Coulomb coefficient D as

D = 
2

ωLO

ερ

ε∞
� 
2

ωLO
. (38)

As it has recently been shown in Ref. 40, Eq. (38) implies that
the ground state of the system will not undergo a Dicke phase
transition, regardless of the strength of the coupling.

H. Multiple quantum wells

Until now, we considered the case of a single quantum
well. This choice has been motivated by the fact that, as we
will show, the presence of multiple wells does not modify our
results. Given that we are considering rather large quantum
wells (in order for the transition to be resonant with the LO
phonon mode), the optical phonon spectrum is not modified30

and the optical phonon modes we consider are confined in each
quantum well.

This is a rather important difference between the intersub-
band polaron case we consider in this paper and the physics
of intersubband polaritons. For intersubband polaritons, the
electromagnetic mode coupled to the intersubband transitions
extends over all the structure. It thus couples to all the
electrons, regardless of the quantum well they are in. This

means that the only meaningful parameter for intersubband
polaritons is the total density of electrons, and the light-matter
coupling thus scales as

√
nQWN2DEG, where nQW is the number

of quantum wells inside the microcavity.
In the present case instead, being the phonon modes

confined inside each quantum well, electrons in different
wells are completely decoupled. This can also be inferred
from the coupling integral in Eq. (20). This integral does
vanish, at least in the long-wavelength limit (first order in
q), if the wave functions for the two integration variables
z and z′ do not have a common support, i.e., if the two
interacting electrons are in different quantum wells. This
means that, contrary to the intersubband polariton case, the
intersubband polaron interaction scales only as

√
N2DEG, and

growing multiple quantum wells in the same sample will not
increase the coupling.

III. RESULTS

In order to obtain some numerical predictions from the
Hamiltonian in Eq. (32), we need to fix a few parameters
concerning the material and the quantum well. For the sake
of simplicity, we consider the quantum well to be correctly
approximated by a rectangular, infinite potential well of length
LQW. We thus have

h̄ω12 = 3h̄2π2

2m∗L2
QW

, (39)

and the electronic and phononic modes profiles are given by

χ1(z) =
√

2

LQW
sin

(
πz

LQW

)
,

χ2(z) =
√

2

LQW
sin

(
2πz

LQW

)
, (40)

ϕ0(z) =
√

16

5LQW
sin3

(
πz

LQW

)

inside the well and zero outside. As explained in Sec. II, we
see here explicitly that the intersubband transitions couple to a
linear superposition of phonon modes that is localized inside
the quantum well [the cubic sinus in the third line of Eq. (40)
comes from the integral of the first two, as can be verified
performing the integral in Eq. (13)]. By inserting Eq. (40) into
Eq. (16) and performing the integral, we have

lim
q→0

I (q) → 10

9π2
qLQW. (41)

In Fig. 3, we plot the normalized coupling 

ωLO

as a function
of the density of the two-dimensional electron gas for a GaAs
quantum well. In the inset of Fig. 3, we instead present a
comparison of the values of 


ωLO
, at room temperature, for

different semiconductors of the III-V and II-VI groups,41 as a
function of the respective LO phonon energies, for a reference
doping N2DEG = 1012 cm−2.

In Fig. 4, there is a plot of the intersubband polaron
frequencies ω± as a function of the intersubband frequency
ω12, in GaAs, for N2DEG = 1012 cm−2. Notice that, due to the
effect of Coulomb interaction, the resonant anticrossing is not
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FIG. 3. Normalized coupling 


ωLO
in GaAs as a function of the

doping density N2DEG. Inset: the same quantity as a function of
the LO phonon frequency ωLO for different materials, for N2DEG =
1012 cm−2.

at ω12 = ωLO, but at a lower frequency. In the inset of the same
figure we plot the same quantity as a function of the electron
density. The length LQW has been chosen in this case to have
the two uncoupled modes at resonance (ω12 = ωLO, that is
LQW � 23 nm).

It is clear from the figures that intersubband polarons are
not only strongly coupled, having coupling constants much
larger than their linewidth (usual linewidths being not bigger
than a few meV), but they are indeed in the ultrastrong-
coupling regime, with values of the normalized coupling



ωLO
comparable or larger than the best ones reported in the

literature. For physically realizable levels of doping, coupling
values of a few tenths of the bare frequency of the excitation
ωLO are predicted in GaAs, and it seems that values much
larger can be obtained using more polar materials. The reason
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FIG. 4. Intersubband polaron frequencies ω± as a function of the
intersubband frequency ω12 in GaAs for N2DEG = 1012 cm−2. Inset:
the same quantity as a function of the doping for ω12 = ωLO.

of such large coupling can be found in the superradiant nature
of intersubband excitations and in the natural confinement of
the phonons inside the quantum well, which gives an extremely
small mode volume when compared with what can be obtained
with photonic microcavities.

The consequences of our results can be multiple, both for
fundamental and applied research. On the fundamental side,
intersubband polarons could become a new laboratory to test
quantum vacuum physics, typical of the ultrastrong-coupling
regime.15 On the applied side, our theory can be naturally
exploited in the study of quantum cascade lasers working
in or near the Restrahlen band. It can, for example, help
in explaining the anticrossing observed in Ref. 5, near the
LO phonon frequency. Moreover, the capability to strongly
modify the LO phonon spectrum could have an impact on the
performances of optoelectronic devices, as the electron–LO
phonon scattering rate determines the lifetime of carriers in
excited subbands.3

IV. COMPARISON WITH DIELECTRIC
FUNCTION THEORY

In the previous sections, we have developed a detailed
microscopic theory for the intersubband transitions coupled to
LO phonons. Here, we will compare the dispersions obtained
from the microscopic theory with those obtained with an
homogeneous dielectric function theory, as the one used in
Ref. 10.

The propagation of an electromagnetic wave in a dispersive,
homogeneous medium obeys the equation

div[D(ω)] = div[ε(ω)E(ω)] = 0. (42)

This implies that it is possible to have propagating longitudinal
waves, such as polarons, only at frequencies for which

Re[ε(ω)] = 0, (43)

where Re indicates the real part.
The z component of the dielectric function of a homoge-

neous medium filled with quantum wells is given by10,13

ε(ω) = ε∞
ω2 − ω2

LO

ω2 − ω2
TO + iω0+ − ε∞

ω2
P

ω2 − ω2
12 + iω0+ , (44)

where

ω2
P = 2ω12d

2
12N2DEG

h̄ε0ε∞LQW
(45)

is the plasma frequency of the two-dimensional electron gas
and d12 is the intersubband dipole

d12 = e

∫
dz χ1(z)zχ2(z). (46)

The equation

Re[ε(ω)] = 0 (47)

thus reads as

ω4 − ω2
(
ω2

LO + ω2
12 + ω2

P

) + ω2
LOω2

12 + ω2
TOω2

P = 0. (48)

As Eq. (44) neglects both the dielectric response in the x−y

plane and the nonhomogeneity in the z direction, in order to
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recover the same result from our microscopic approach, we
have to consider only phonon modes with q = 0 and qz → 0.
From Eqs. (11) and (46), we thus have

F (qz)√
q2 + q2

z

→ −i
d12

e
. (49)

Following exactly the same procedure of Sec. II, but with the
F (q) defined in Eq. (49) and considering only the qz → 0
mode, we get


 =
√

N2DEGωLOd2
12

2ε0ερLQWh̄
, (50)

and thus, from Eq. (38),

D = N2DEGd2
12

2ε0ε∞LQWh̄
. (51)

In order to obtain the polaronic eigenfrequencies, we have
to diagonalize the matrix in Eq. (36) using the coupling
coefficients for the homogeneous limit defined in Eqs. (50)
and (51). We thus obtain the secular equation

ω4 − ω2
(
ω2

LO + ω2
12 + 4Dω12

)
+ω2

LOω2
12 + 4Dω12ω

2
LO − 4
2ω12ωLO = 0, (52)

which, by using Eqs. (51) and (45), can be put into the form

ω4 − ω2
(
ω2

LO + ω2
12 + ω2

P

) + ω2
LOω2

12 + ω2
P ω2

LO
ε∞
εs

= 0.

(53)

Equating the coefficients of Eqs. (48) and (53), we obtain

ω2
TO = ω2

LO
ε∞
εs

, (54)

which is the well-known Lyddane-Sachs-Teller relation.30

We have thus proved that the homogeneous version of our
theory gives the same results as the homogeneous dielectric
function approach. It is anyway important to notice that the
homogeneous limit is not exact, as a quantum well is, by
definition, spatially inhomogenous. Ignoring the higher qz

modes leads to underestimate the intersubband dipole of a
factor roughly equal to

√
2.

V. CONCLUSIONS

In this paper, we have developed a microscopic theory of
intersubband polarons, mixed excitations resulting from the
coupling between intersubband transitions in doped quantum
wells and LO phonons. We took into account the electron-
electron Coulomb interaction and we were able to treat exactly
the resulting depolarization shift. We proved that intersubband
polarons can be in the ultrastrong-coupling regime, reaching
extremely high values of the coupling constant. We critically
discussed the relevance of our results both for fundamental
and applied research.
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