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Approximate theory of temperature coefficient of resistivity of amorphous semiconductors
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In this paper, we develop an approximate theory of the temperature coefficient of resistivity (TCR)
and conductivity based upon the recently proposed microscopic response method. By introducing suitable
approximations for the lattice dynamics, localized and extended electronic states, we produce explicit forms for
the conductivity and TCR, which depend on easily accessible material parameters. The theory is in reasonable
agreement with experiments on a-Si:H and a-Ge:H. A long-standing puzzle, a “kink” in the experimental log10 σ

versus 1/T curve, is predicted by the theory and attributed to localized to extended transitions, which have not
been properly handled in earlier theories.

DOI: 10.1103/PhysRevB.85.125135 PACS number(s): 71.23.An, 71.38.Fp, 71.38.Ht

I. INTRODUCTION

The temperature coefficient of resistivity (TCR) of an amor-
phous semiconductor (AS) is not only an important quantity
in transport theory, but also a critical parameter controlling the
sensitivity of uncooled microbolometers employed in thermal
imaging “night-vision” applications.1,2

The conventional approach to transport coefficients is the
kinetic method (Boltzmann or master equations, etc.). How-
ever, this is not applicable even to crystalline semimetals and
semiconductors (the so-called Landau-Peierls criterion).3–5

Comparing to metals, the low carrier concentration in these
materials results in a lower kinetic energy of carriers. Thus,
neither the elastic scattering by disorder nor the inelastic
scattering by a phonon has a well-defined transition probability
per unit time.3–5 In AS, the strong electron-phonon interaction
of localized states requires a reorganization of the vibrational
configuration for any transition involving localized state(s).6,7

For these intrinsic multiphonon transitions, the energy con-
servation between initial and final electronic states (a basic
condition of Fermi’s golden rule)3–5 is violated more seriously
than that for single-phonon emission and absorption.

In addition, transitions between localized and extended
states (LE and EL) are not treated adequately in a kinetic
approach. The Miller-Abrahams theory8 and its extensions
suppose that LE and EL transitions do not directly contribute
to conduction, and only maintain the distribution of carriers
between localized states and extended states in thermal
equilibrium (when an external electric field is absent) or in
the nonequilibrium stationary state (when an external field
is present). Electrical conduction is fulfilled by the transition
from a localized state to another localized state (LL) and the
transition from an extended state to another extended state
(EE).1,2,9 The theory of phonon-induced delocalization and the
theory of transient current excited by photon have heuristically
estimated conductivity from LE and EL transitions.

Rigorous expressions for the conductivity and Hall mobility
in AS have been obtained in the microscopic response method
(MRM).7,10 These expressions require transition amplitudes
rather than transition probability per unit time.11 Thus, the
long-time limit required in a kinetic approach3,4 is avoided.
To the lowest-order self-consistent approximation, there are
29 processes contributing to conductivity and 10 processes
contributing to Hall mobility.7 For example, in an n-doped

AS, the conductivity from LE transitions driven solely by an
external field is7{
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where the real part takes the upper sign, and the imaginary part
the lower sign. �s is the physical infinitesimal volume element
used to take spatial average. An AS can be viewed as uniform
when we measure its properties (e.g., conductivity) at a linear
length scale larger than12 10 nm. If we take �s as a sphere
with a radius larger than 5 nm, then the choice of the center s
of �s inside the AS will not affect7,10 σαβ . Ne is the number of
carriers in the conduction band inside �s, and f is the Fermi
distribution function. The velocity matrix elements in Eq. (1)
are defined by
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where E0
A and φA are the eigenvalue and eigenfunction of

localized state A. We will use letter A with or without a natural
number subscript to denote a localized state; similarly E0

B and
χB are the eigenvalue and eigenfunction of extended state B.
IB1A± arise from integrating out the vibrational degrees of
freedom, and are functions of external field frequency ω:
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where ωAB = (E0
A − E0

B)/h̄, ωα is the frequency of the αth
(α = 1,2, . . . ,3N ) normal mode, and N is number of atoms
inside �s. Denote �A

α as the shift in the origin of the
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αth mode induced by the electron-phonon (e-ph) interaction
in a localized state6,7 A, θA

α = �A
α (Mαωα/h̄)1/2. To make

the narration specific, we hereafter discuss conduction-band
transport only. For transport processes in the valence band,
one may repeat the discussion mutatis mutandis.

To calculate conductivity strictly, one needs (i) the eigen-
values and eigenvectors of single-electron states and (ii) the
eigenfrequencies and eigenvectors of the normal modes and
the electron-phonon coupling. These can be approximately
obtained by one step of ab initio molecular dynamics for an
optimized configuration. Then, one can compute (i) vα

BA for
all localized states and extended states; (ii) θA

α for all normal
modes in each localized states; (iii) time integrals IB1A± for a
given ω; and (iv) sum over all localized states and extended
states

∑
AB . Although the result obtained in this way should be

accurate and predictive, it is useful to develop an approximate
theory, which also provides functional dependence of transport
on various material parameters.

In this paper, we will first present a tractable model for
the conductivity and Hall mobility in AS. Then, we will use
this model to simplify the conductivity expressions obtained
in the MRM for the three simplest transitions: LL, LE, and
EL transitions driven solely by external field [cf. Figs. 2(a),
2(b), and 6(a) of [ 7]]. The conductivity from EE transition
caused by disorder has been solved in the coherent potential
approximation,13,14 exhibits weak temperature dependence,
and we will not consider it further.

The outline of the paper is as following. In Sec. II, we
describe our approximation for the lattice vibrations and e-ph
in coupling. In Sec. III A, we first illustrate that the MRM
conductivity can be put in the customary form of relaxation
time approximation and of Greenwood formula. At moderately
high temperature, we invoke an asymptotic expansion to
simplify the time integrals IB1A±. Under the approximations
introduced in Sec. II, one can (i) obtain the velocity matrix
elements analytically, and (ii) partially carry out the twofold
summations over the initial and final electronic states. The
conductivity from EL transitions is obtained in Sec. III B.
The conductivity from LL transitions is calculated in Sec. III C.
The matrix elements of electronic velocity could be carried out
in a spherical coordinate system analytically. The conductivity
from the LE transitions is the same order of magnitude as those
from the LL transitions. Below a crossover temperature T ∗, the
later is larger; above T ∗, the former is larger. This phenomenon
is the main reason for the kink in the experimental log10 σ

versus 1/T curve. As a demonstration, the numerical results
for n-doped a-Si:H and a-Ge:H samples are given.

II. APPROXIMATE IMPLEMENTATION OF MRM

A. Vibrations

To calculate the e-ph interaction for a localized state, we
need the transformation matrix between the atomic displace-
ments and normal modes.6 Because most amorphous materials
are isotropic1,2 and only acoustic modes are important for
the e-ph interaction in one-component semiconductors,15 one
can use the acoustic dispersion relation for the vibrational
spectrum:

ωk = ck, k = |k| (5)

TABLE I. Parameters for vibrational spectrum.

μ c kD ρm

B (GPa) (GPa) (103m/s) (Å−1) (g/cm3)

a-Si (Refs. 12,16,17) 100 52 6.21 1.44 2.33
a-Ge (Refs. 12,16,17) 75 41 3.08 1.38 5.33

where ωk is the angular frequency for any mode characterized
by wave vector k. For every k, there are one longitudinal
and two transverse modes. We will use kτ to label a normal
mode, where τ = 1,2,3 is the index of phonon branches.18

Although translational invariance is destroyed in AS, standing
wave modes are still well defined. Here, c is the average speed
of sound:

3

c3 = 2

c3
t

+ 1

c3
l

, (6)

where ct and cl are the speeds of transverse and longitudinal
waves, which are determined by18 the bulk modulus B and
shear modulus μ. The cutoff wave vector kD = (6π2na)1/3 is
determined by the number density na = N /V of atoms, where
V is the volume of an AS and N is total number of atoms.19

na can be inferred from the observed mass density ρm. For
a-Si and a-Ge, ρm, B, μ,9,12 kD , and c are listed in Table I. For
a-Si, the Debye frequency ωD is 8.91 × 1013 Hz, not far from
the observed cutoff frequency20 70 meV = 1.07 × 1014 Hz.

It is convenient to use {x3(j−1)+1,x3(j−1)+2,x3(j−1)+3} to rep-
resent the vibrational displacement vector uj = {ujx,ujy,ujz}
for the j th atom (j = 1,2,3, . . . ,N ). Denote �α (α =
1,2, . . . ,3N ) as the normal coordinate of the αth mode, so that
the atomic displacements and the normal modes are related by

xm =
∑

α

�mα�α, m = 1,2, . . . ,3N (7)

where � is the minor of the determinant |�jl − ω2Mjδjl|
(j,l = 1,2,3, . . . ,3N ), and � is the force constant matrix.21

When we use kτ to label modes,
∑

α → ∑
kτ .

For a localized state, the shifts in the origins of normal
modes caused by the e-ph interaction are the key quantities to
determine the reorganization energy for transitions involving
the localized state.6 The shift in origin is determined6 by �−1,
�, and the e-ph coupling constant. �−1 and � are complicated
for a system with many atoms. To avoid using �−1 and find
a more practical �, we use a continuum to model the discrete
random network of AS. In a continuum, one can classify the
atomic vibrations according to possible standing wave modes.
There is no reciprocal lattice for AS. Because a continuum is
isotropic and has continuous translational symmetry, the wave
vectors of the possible standing waves (k points) are uniformly
distributed in the wave-vector space (Debye sphere SD). The
N k points inside SD correspond to 3N vibrational modes.

The atomic displacement u at position R and time t satisfies
the wave equation

1

c2

∂2u(R,t)

∂t2
= ∇2u(R,t). (8)
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The plane-wave solution of Eq. (8) is19

u(R,t) = 1

N 1/2

∑
kτ

eik·Rekτ�kτ e
−i(tck+ϕkτ ), (9)

where ekτ is the polarization vector of mode kτ . For a one-
component system,19

ekτ · e∗
kτ ′ = δττ ′ . (10)

�kτ and ϕkτ are the amplitude and phase of mode kτ , and are
determined by the initial conditions. The inverse of Eq. (9) is

�kτ e
−i(tck+ϕkτ ) = 1

N 1/2

∑
R

u(R,t) · e∗
kτ e

−ik·R. (11)

The normal coordinate of mode kτ is �kτ e
−i(tck+ϕkτ ), so that

�u(R),kτ = N−1/2eik·Rekτ (12)

and

(�−1)kτ,u(R) = N−1/2e−ik·Re∗
kτ . (13)

In other words, the u(R)th column of matrix �−1 is the (kτ )th
eigenvector that belongs to the (kτ )th eigenvalue (ωkτ )2 =
(ck)2 of the matrix of force constants. Equations (12) and
(13) as consequences of Eq. (8) are contained in the Debye
assumption (5).

B. Localized states

To obtain analytical expressions for the e-ph interaction
in a localized state and the velocity matrix elements, we
need reasonable and simple approximate wave functions for
localized and extended states. We assume all localized states
are spherically symmetric. The difference among localized
states is expressed by the localization length.2 For a localized
state A, denote RA as the position vector of the center, and the
normalized wave function is

φA(r − RA) = π−1/2ξ
−3/2
A e−|r−rA|/ξA, (14)

where r and ξA are the coordinate of electron and localization
length.22 Following Mott, ξA is determined by the eigenvalue
E of localized state φA (Ref. 22):

ξE = bZe2

4πε0ε
(Ec − E)−1, (15)

where Z is the effective nuclear charge of an atom core and
ε is the static dielectric constant. Ec is the mobility edge
and b is a dimensionless constant. b is determined by the
shortest possible localization length ξmin with E = 0. Realistic
calculations of tail states are given in Refs. 23–27.

The parameters1,12 for electron-core interaction and local-
ized state are listed in Table II. In a-Si:H and a-Ge:H,1,12 the
most localized states are associated with dangling bonds. The
localization length is one half the average bond length: ξmin =
2.35 Å/2 and 2.45 Å/2. Using Eq. (15), one has b = 0.121
and 0.170. The measured value of mobility edge for a-Si is
rather dispersed:28,29 0.2–2 eV; we will take30 Ec = 0.5 eV.
Figure 1 plots localization length versus eigenenergy, and we
purposely left out a small neighborhood (Ec − U,Ec) of E,
where U is the Urbach energy for band tail. When ξE is
larger than the linear size of a physical infinitesimal volume
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FIG. 1. (Color online) Localization length as function of energy:
(a) a-Si, (b) a-Ge.

element16 (∼100 Å), the corresponding localized state acts
like an extended state for purposes of transport.

There is a distinction between a large polaron and a carrier
in a weakly localized state with ξ several tens of Å. A large
polaron can move freely before meeting a scatterer, while a
localized carrier in AS is trapped in the region where φA has
support. To make a localized carrier move, thermal activation
involving a reorganization of vibrational configuration is
necessary.6

Because (i) no translational invariance exists in an AS
and (ii) a localized electronic state is confined in some finite
region, the spatial distribution of localized states needs special
attention. For various macroscopic properties, an AS can
be viewed as isotropic and uniform at a length scale larger
than16 10 nm (this effectively defines the physical infinitesimal
volume element �). Therefore, it is convenient to describe the
spatial distribution of localized states in a spherical coordinate
system. For a given origin and polar axis, the sum over
localized states A1 can be changed into an integral over a
combined spatial and energetic distribution of localized states:

∑
A1

→
∫ Rc

0
R2dR

∫ π

0
sin θ dθ

∫ 2π

0
dφ

∫ Ec

−∞
dE f (R,θ,φ; E),

(16)

where R is the distance between the origin and the center RA1

of a localized state φA1 , Rc is the radius of an AS sample,
f (R,θ,φ; E) is the number of localized states in a volume
element defined by (R,R + dR), (θ,θ + dθ ), and (φ,φ + dφ)
with energy (E,E + dE), i.e., position-dependent density of
states. Since a volume element with a linear size of 10 nm
is representative for an AS, in the calculation of transport
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TABLE II. Parameters for electronic state.

Ec (eV) U (meV) nloc (Å−3) Z ε qTF (Å−1) b

a-Si 0.5 (Ref. 30) 50 (Ref. 31) 5/10.863 (Ref. 32) 4 11.68 1.7 0.121
a-Ge 0.5 51 5/11.323 4 16 1.7 0.170

coefficients, one may replace the volume V of the entire AS
sample with the volume � of a physical infinitesimal volume
element. Then, Rc is the radius of �.

In a physical infinitesimal volume �, various possible
atomic configurations appear according to the proper statistical
weights, which would be found in a much larger sample.
Therefore, the coarse-grained average f of f (R,θ,φ; E) over
such a physical infinitesimal volume element is no longer
position dependent: f = N (E), where N (E) is the usual
density of states. However, the weight factors in Eq. (16)
play an important role in determining transport properties.
The reason is that although f is independent of (R,θ,φ),
the transition amplitudes (velocity matrix elements) depend
on the relative position of another localized state or on the
wave-vector direction of the involved extended state.

For many AS,33,34 in the range of band tail, the density of
localized states satisfies

f (R,θ,φ; E) = N (E) = nloc

U
e−(Ec−E)/U , (17)

where U is the Urbach energy and nloc is the number of
localized states per unit volume. The pre-exponential factor
is determined from the requirement that the integral of N (E)
over all localized energy spectrum should be nloc. In general,
Ec and U take different values for the valence band and the
conduction band.34 Denote n as the carrier concentration, and
the Fermi energy EF of a weakly doped AS is

EF = Ec + U ln(n/2nloc). (18)

When n � 2nloc, all occupied states are localized at T =
0 K. For a-Si, the conduction-band energy spectrum (17) is
illustrated in Fig. 2. We can see from Fig. 1(a) and Eq. (17)
that most localized states in a-Si have a localization length
in the range 6–12 Å. In approximation (17), the density
of states N (E) of localized states reaches its maximum at
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F
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FIG. 2. (Color online) Density of states of the conduction tail
for n-doped a-Si samples: the first three vertical lines are the Fermi
energy for n = 1019, 1020, and 1021 cm−3. The rightmost vertical line
is the mobility edge.

Ec. Therefore, the most probable localization length is ξ =
cZe2/(4πε0εU ). For a-Si, ξ = 11.75 Å. This is consistent
with various experiments.35–41

Making use of relation (15), the integral over the energy
eigenvalues of localized states is converted into an integral
over localization lengths:∫ Ec

−∞
dEAN (EA) → bZe2nloc

4πε0εU

∫ ∞

0

dξ

ξ 2
exp

(
− bZe2

4πε0εUξ

)
.

(19)

Comparing Eq. (16) with the sum over states
∑

k → ∫
BZ

V d3k
(2π)3

in a crystal is helpful, where k is the wave vector of a Bloch
state in Brillouin zone, and V is volume of the crystal. The
matrix elements behind

∑
k may depend on the direction of k,

d3k = k2dk sin θkdθkdφk takes into account the dependence
on the two wave vectors of two Bloch states.

C. Extended states

If one imagines that an AS is obtained from deforming
its reference crystal, an extended state in the AS can be
viewed as a superposition of a principal Bloch wave with a
given wave vector and its scattered secondary waves.42,43 The
scattered waves are produced by scattering the principal Bloch
wave with the disorder potential (the difference between the
potential energy in the AS and that in its reference crystal).42,43

Excepting the EE transitions driven by external field, we may
approximate an extended state χB1 (r) by a plane wave with
certain momentum p, and its eigenenergy is that of the plane
wave:

χB1 = V −1/2eip·r/h̄, EB1 = p2/2m, (20)

where V is the volume of AS sample, and the energy zero point
of extended states is at the mobility edge Ec. An extended state
in an AS is labeled by the wave vector of its principal Bloch
wave. The sum over extended states becomes an integral over
momentum:

∑
B1

→ ∫
V d3p

(2πh̄)3 .

D. Interaction between a carrier and an atomic core

In a solid, the attraction to an electron from an atomic
core may be crudely approximated by a screened Coulomb
potential19

V (r) = Ze2

4πε0ε

e−qT F r

r
, (21)

where r is the position of electron relative to an atomic core.
qTF = 2.95(rs/a0)−1/2 Å−1 is the Thomas-Fermi wave vector,
and is determined by the carrier density. rs/a0 is a number
about 2 to 6. For a-Si:H (Ref. 1) and a-Ge,12 we take the value
for c-Si and c-Ge: qTF = 1.7 Å−1.
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E. Electron-phonon coupling in a localized state

We consider the mean e-ph interaction in a localized state
φA. The e-ph interaction Hamiltonian is

He-ph =
∑
nσ

unσ

∂V (r − Rn)

∂Xnσ

, σ = x,y,z (22)

where Rn (Xnx,Xny,Xnz) is the position vector of the nth atom,
and unσ is the σ th Cartesian component of vibrational ampli-
tude of the nth atom. Usually, the average e-ph interaction in
state φA is written in a linear coupling form44∫

d3x φ∗
A(r − RA)He-phφA(r − RA) = −

∑
nσ

unσ gA
nσ , (23)

where gA
nσ is the e-ph coupling constant in state φA. Because

we consider only localized state φA, it is convenient to shift
the origin of coordinate to the center RA of φA. In Eq. (22), we
sum over all the atoms in V of an AS sample. In addition, the
factors V (r − Rn) and φA(r − RA) in the integrand of Eq. (23)
involve two atoms, and directly integrating over coordinate is
difficult (requiring ellipsoidal coordinate system). To obtain
the coupling constant gA

nσ , we Fourier transform ∂V (r −
Rn)/∂Xnσ in the left-hand side of Eq. (23), first carry out the
integral in coordinate r, then execute the integral over wave
vector q. The final result is

gA
nσ = 16(Ze2/4πε0ε)

ξ 4

Xnσ

R2
n

{
Rn

2

e−2Rn/ξ

q2
TF − (2/ξ )2

+
[
qTFe

−qTFRn − (2/ξ )e−2Rn/ξ[
(2/ξ )2 − q2

TF

]2 − ξ

8

e−2Rn/ξ

q2
TF − (2/ξ )2

]

+ 1

Rn

[
e−qTFRn − e−2Rn/ξ[

(2/ξ )2 − q2
TF

]2 − ξ 2

16

e−2Rn/ξ

q2
TF − (2/ξ )2

]}
,

(24)

where Rn = |Rn − RA| is the distance between the nth atom
to the center RA of localized state φA. The first term decays
exponentially, and the second and the third terms contain
additional decay factors R−1

n and R−2
n , respectively. Since we

are concerned only with localized state φA, hereafter we drop
the subscript A on ξ and g.

F. Polaron formation

The static displacements of atoms induced by the e-ph
interaction measure the strength of e-ph interaction and
determine whether the e-ph coupling should be treated as a
perturbation or be included in the zeroth-order Hamiltonian.6

The static displacement of the mth atomic degree of freedom
caused by the e-ph interaction in localized state φA is6

xA0
m =

∑
p

(�−1)mpgA
p , m,p = 1,2, . . . ,3N (25)

where �−1 is the inverse of force constant matrix. The shift
�A

α in origin of the αth (α = 1,2, . . . ,3N ) mode by the carrier
localized in state φA is6

�A
α =

∑
m

(�−1)αmxA0
m . (26)

This has the physical interpretation of the polaronic relaxation
due to the e-ph coupling.

If �−1 and �−1 were known analytically, we could use
Eq. (25) to find {xA0

m }, and then use Eq. (26) to find {�A
α }.

The continuum model in Sec. II A allows us to first find the
shifts in origins {�A

α } of normal modes in a localized state.
Then, static displacements {xA0

m } can be obtained from Eq. (7).
In the continuum model, the normal modes are labeled by
wave vectors k. By substituting Eq. (25) into Eq. (26), and
noticing �−1�−1 = W−1�T , where (W−1)αβ = δαβM−1

α ω−2
α ,

one concludes that

�A
kτ = M−1

k ω−2
k

∑
nσ

gA
nσ�nσ,kτ , (27)

where n = 1,2,3, . . . ,N and σ = x,y,z. Substituting Eq. (12)
into Eq. (27) and replacing the sum by an integral over all
space, Eq. (27) becomes

�A
kτ = Re

∑
σ

∫
V

d3X gA
Rσ eσ

kτ e
ik·R

N 1/2Mkω
2
k�a

, (28)

where �a = V/N is the average volume occupied by
one atom. For a-Si and a-Ge,12,19 �a ≈ (5.43 Å)3/4 and
(5.66 Å)3/4. Equation (28) expresses the shift �A

k in the
origin of normal mode k with the e-ph coupling constant
gA

nσ . We take k as the polar axis (z axis) and transform to a
spherical coordinate system because the integrand of Eq. (28)
does not contain azimuthal angle φ, and {gA

nx} and {gA
ny} do

not contribute to �A
kτ . Only when gA

n has a component along
k does it contribute to �A

kτ . The integrations over the R−2

and R−3 terms in Eq. (24) are purely imaginary, and do not
contribute to �A

k . The origin shift of mode kτ induced by the
e-ph interaction in localized state φA is

�A
kτ = 1

N 1/2Mk2c2

27πZe2/(4πε0ε�aξ
5)[

q2
TF − (2/ξ )2

]
[(2/ξ )2 + k2]2

. (29)

Because we take AS to be an isotropic continuous medium,
�A

kτ depends only on the magnitude k. The k−2 divergence
in Eq. (29) when k → 0 is caused by the Debye spectrum
(ωk = ck). In a Debye model, the number of modes per unit
volume per unit angular frequency interval is19 (2π2c)−13k2

when k < kD . The shift is smaller for higher wave number,
and decays with wave vector k as [(2/ξ )2 + k2]−2. Because
for all materials19 qTF ∼ 1.2–2.1 Å−1, while ξ > 2 Å for
localized states caused by topological disorder,22 the factor
[q2

TF − (2/ξ )2] in the denominator of Eqs. (24), (29), (31),
(34), and (37) will not lead to a divergent result.

Equation (29) exhibits two obvious features: (i) �A
k > 0

for every mode k; (ii) if ξA1 < ξA2 , then �
A1
k > �

A2
k for every

mode k. We have shown that three-state conduction processes,
which are first order in residual interactions, are the same
order of magnitude as the two-state processes discussed here.7

Also, in the lowest-order self-consistent approximation, three-
and four-state processes must be included in the Hall mobility
calculation.7 Some of the aforementioned transport processes
involve at least two localized states. To carry out asymptotic
expansion at high temperature for such processes, the features
(i) and (ii) are essential.
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The static atomic displacements in localized state A can be
found from Eqs. (26) and (29):

x0A
σ (R) = N 1/2�a

(2π )3

3∑
τ=1

∫
d3k eik·R�A

kτ e
σ
kτ . (30)

Next, substitute Eq. (29) into Eq. (30) and carry out the integral.
One finds the displacement x0A along the radial direction for
an atom at R caused by e-ph interaction in a localized state:

x0A(R) = 4

Mc2

Z∗e2/4πε0ε

ξ
[
q2

TF − (2/ξ )2
] 1 − 1

2e−2R/ξ

R
, (31)

where we have let kD → ∞ to obtain an analytic result. It is
interesting to notice that Eq. (31) is similar to the wave function
of large polaron in the strong-coupling limit (cf. Ref. 15).

Figure 3(a) is an illustration of Eq. (31) for a-Si at ξ =
11.75 and 23.50 Å (5 and 10 times bond length). We observe
that the more localized (smaller ξ ) the state, the larger the
atomic displacements, i.e., the stronger e-ph interaction (larger
atomic displacements). This agrees with previous experiments
and simulations.45,46 For the hardest mode20 ω = 70 meV of
a-Si, the amplitude A0 =(h̄/Mω)1/2 of zero-point vibration is
0.046 Å, and the amplitude Ath = (kBT /Mω2)1/2 of thermal
vibration at 300 K is 0.028 Å. Considering these two peaks
of the a-Si phonon spectrum are at20 20 meV (A0 = 0.086 Å,
Ath = 0.098 Å) and 60 meV (A0 = 0.050 Å, Ath = 0.033 Å),
the static displacements of atoms estimated in Eq. (31)
are twice the amplitude of vibrations. Comparing the root
mean square of bond-length fluctuation 0.2 Å (geometric

0 10 20 3035
0

0.04

0.08

0.12

0.16

r (Å)

x
0
(
r
)
 
(
Å
) ξ=11.75Å

ξ=23.5Å

(a)

3 6 9 12
0

0.1

0.2

0.3

ξ(Å)

λ B
A
(
e
V
)

(b)

FIG. 3. (Color online) (a) Static displacements x0(r) of atoms in
a localized state φA as function of the distance r to the center of φA in
a-Si: solid line is for ξ = 11.75 Å, circle line is for ξ = 23.5 Å. The
displacements are larger in a more localized state. (b) The binding
energy caused by e-ph interaction as a function of localization length.
The binding energy is larger for a more localized state.

disorder) from ab initio molecular dynamics simulation,23

the approximate acoustic dispersion relation (5) somewhat
overestimates the long-wave contribution in Eqs. (28), (29),
(30), and (31).

G. Reorganization energy

Unlike a carrier in an extended state, a carrier in a localized
state is confined by the disorder potential. Beyond that, the
e-ph interaction produces6 an additional binding energy EA

b to
a localized carrier in φA:

EA
b = 1

2

∑
α

Mαω2
α

(
�A

α

)2
. (32)

Because the reorganization energy measures the energy shift
from initial vibrational configuration to the final vibrational
configuration, EA

b is the same as6 the reorganization energy
λBA of LE transition φA → χB and the reorganization energy
λAB of EL transition χB → φA: λAB = λBA = EA

b . For the
continuous medium model, the sum over modes in Eq. (32)
may be converted to an integral over the Debye sphere in
spherical coordinate system (k,θ ′,φ′):

λAB = N�a

2(2π )3

3∑
τ=1

∫ kD

0
dk k2

×
∫ π

0
dθ ′ sin θ ′

∫ 2π

0
dφ′Mk2c2(�A

kτ

)2
. (33)

Owing to spherical symmetry in Eq. (33), the direction of polar
axis is arbitrary. Substituting Eq. (29) into (33) and carrying
out the integral, one finds

λAB = 2π
(27πZ∗e2/4πε0ε)2ξ

27Mc2�a[(ξqTF)2 − 4]2

(
15

48
tan−1 kDξ

2

+ kDξ
[
1 + ( kDξ

2 )2
]−1

12

{[
1+

(
kDξ

2

)2]−2

+ 5

4

[
1+

(
kDξ

2

)2]−1

+ 15

8

})
.

(34)

Figure 3(b) displays the change in binding energy with
localization length. We can see that more localized states have
larger binding energy. In other words, when a carrier leaves
or enters a more localized state, the required reorganization
energy is larger, and the corresponding LE and EL transitions
are more hindered.

The reorganization energy λA2A1 for LL transition φA1 →
φA2 satisfies a reciprocity condition6 λA1A2 = λA2A1 , where

λA2A1 = 1

2

∑
α

Mαω2
α

(
�A2

α − �A1
α

)2
. (35)

Equation (35) can be expressed as

λA2A1 = ∣∣EA1
b

∣∣ + ∣∣EA2
b

∣∣ − BA2A1 , (36)

where E
A1
b is obtained from Eq. (34) by replacing ξ with ξ1,

ξ1 is the localization length of φA1 . BA2A1 = ∑
α h̄ωαθA2

α θA1
α is
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the interference term

BA2A1 = 27πZ∗e2/4πε0ε

�aξ
5
1

[
q2

TF − (2/ξ1)2
] 27πZ∗e2/4πε0ε

ξ 5
2

[
q2

TF − (2/ξ2)2
] 4π

Mc2

{
[(2/ξ2)2 − (2/ξ1)2]−2

[
ξ 3

1

16
tan−1 kDξ1

2
+ kDξ 4

1

8
(
k2
Dξ 2

1 + 4
)

+ ξ 3
2

16
tan−1 kDξ2

2
+ kDξ 4

2

8
(
k2
Dξ 2

2 + 4
)]

− 2[(2/ξ2)2 − (2/ξ1)2]−3

[
ξ1

2
tan−1 kDξ1

2
− ξ2

2
tan−1 kDξ2

2

]}
. (37)

Equations (34), (36), and (37) determined the reorganization
energy λA2A1 for LL transition φA1 → φA2 .

III. CONDUCTIVITY FROM LE AND EL TRANSITIONS
DRIVEN SOLELY BY FIELD

In this section, we assemble the approximations of the
preceding section to estimate the various contributions to the
conductivity.

A. LE transitions driven by field

1. Connection to relaxation time approximation and
Kubo-Greenwood formula

Inside the summation of Eq. (1), only electronic degrees of
freedom appear. Each term can be written as

{
Re

Im
σBA

αβ (ω) = (
mBA

eff

)−1
αβ

ne2τBA
± (ω), (38)

where n = Ne/�s is the carrier density,

τBA
± (ω) = Im i[IBA+ ± IBA−]

may be viewed as a relaxation time for which the real part of
conductivity takes plus sign, and the imaginary part takes the
minus sign. Here,

(
mBA

eff

)−1
αβ

= −
(
wα

AB − vα
BA

)(
v

β

BA

)∗

2
(
E0

A − E0
B

) (39)

may be interpreted as the inverse of the effective mass
tensor for transition φA → χB . In this sense, σ

B1A
αβ (ω) is a

generalization of the energy-dependent conductivity2 σE
αβ(ω).

With this notation, Eq. (1) becomes

σαβ(ω) =
∑
AB1

σ
B1A
αβ (ω)

[
1 − f

(
EB1

)]
f (EA), (40)

a generalization of the Kubo-Greenwood formula (2.11) of
Refs. 2 and 49. This shows how a kinetic approach may be
properly generalized to AS.

2. High-temperature approximation of the time integral IB A±

To calculate IBA±(ω) defined by Eq. (4), we change the
integration variable from s to t : s = t − iβh̄/2. Equation (4)

becomes

IBA±(ω) = exp

{
−1

2

∑
α

coth
βh̄ωα

2

(
θA
α

)2
}
eβh̄(±ω+ωAB )/2

×
∫ iβh̄/2

−∞+iβh̄/2
dt eit(±ω+ωAB)

× exp

{
1

2

∑
α

(
θA
α

)2
csc h

βh̄ωα

2
cos tωα

}
. (41)

If we view t as a complex variable, the saddle point of
1
2

∑
α(θA

α )2 csc h
βh̄ωα

2 cos tωα is at (0,0). Because the integrand
in Eq. (41) is analytic in the whole complex-t plane, we can
deform the integral path from (−∞ + iβh̄/2,0 + iβh̄/2] to a
new path C1 + C2 + C3 crossing the saddle point (0,0), where
C1: (−∞ + iβh̄/2,−∞ + i0], C2: (−∞,0], C3: (0 + i0,0 +
iβh̄/2]. Because of the external field and residual interactions
being adiabatically introduced,7 the integration along C1 is
zero. When kBT � h̄ω (ω is the frequency of the first peak in
phonon spectrum),

∑
α(θA

α )2kBT /h̄ω is large. The integrals
along C2 and C3 can be asymptotically calculated by the
Laplace method.50 The final result for IBA± is

IBA±(ω) = ih̄/λBA + h̄eβh̄(±ω+ωAB )/2−yBA
± −λBA/4kBT

(kBT λBA)1/2

×
[√

π

2
− iG

(
yBA

±
)]

,

(42)

where

yBA
± = [h̄(±ω + ωAB)]2

4λBAkBT
, λBA = 1

2

∑
α

h̄ωα

(
θA
α

)2
, (43)

and

G(y±) =
⎧⎨
⎩

∑∞
n=0

y
n+1/2
±

n!(2n+1) if y± � 1,

ey±
2
√

y±

[
1 + ∑∞

n=1
(2n−1)!!

2nyn±

]
if y± > 1.

(44)

The applicable condition for a-Si is T > 232 K;20,51,52 for
a-Ge it is T > 115 K.51–53

3. Velocity matrix elements

Under the approximations in Secs. II B and II C, the velocity
matrix elements in Eq. (2) can be obtained by changing the
integration variable from r to r′ = r − RA, and introducing a
spherical coordinate system with RA as the origin and p as
polar axis. One can show that vx

B1A
= v

y

B1A
= 0, i.e., for the

velocity components perpendicular to p, the matrix elements
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are zero:

v
B1A
⊥ = 0. (45)

The matrix element of vz (the velocity component parallel to
p) is

v
B1A
‖ = vz

B1A
= p

m
8π1/2 e−ip·RA/h̄V −1/2ξ 3/2

(1 + p2ξ 2/h̄2)2
. (46)

Similarly,

w
AB1
‖ = wz

AB1
= − p

m
8π1/2 e−ip·RA/h̄V −1/2ξ 3/2

(1 + p2ξ 2/h̄2)2
. (47)

By substituting Eqs. (46) and (47) into (39), the inverse of the
effective mass tensor becomes(

m
B1A−1
eff

)
αβ

= m−1pαpβ

m
(
E0

B1
− E0

A

) 32πξ 3V −1(
1 + p2ξ 2/h̄2

)4 . (48)

Since for each Cartesian component2

〈χB |xα|φA〉 = ih̄〈χB |vα|φA〉
(EA − EB)

, α = x,y,z (49)

from (45) and (46), one has

〈χB |r⊥|φA〉 = 0 and 〈χB |r‖|φA〉 = ih̄vBA
‖

(EA − EB)
. (50)

4. Relation to kinetic method

Because φA vanishes at xα = ±∞ (α = x,y,z), by means
of partial integration, one can show that wα

AB = −vα
BA. Then,(

wα
AB − vα

BA

)(
v

β

BA

)∗ = −2vα
BA

(
v

β

BA

)∗ = − 2
3vα

BA

(
vα

BA

)∗
δαβ,

(51)

the last step is correct only for a cubic or isotropic body. For
such a body, the product of two matrix elements is a real
number. From the requirement that Re σαβ and Im σαβ are real
numbers, we only require

Re[IBA+ ± IBA−]

=
√

πh̄

2(kBT λBA)1/2
[e− λBA

4kB T
[1+ (h̄ωBA−h̄ω)

λBA
]2 ± e

− λBA
4kB T

[1+ (h̄ωBA+h̄ω)
λBA

]2

]

(52)

in expression (1). The temperature dependence (52) is the
same as that obtained from the kinetic method,6 although the
Landau-Peierls condition is not satisfied. This is a coincidence
caused by two factors. First, for LE, EL, LL, and EE transitions
driven by external field, the contribution to conductivity has
the form of Eq. (1). Thus, only the real part of the one-
dimensional time integral plays a role. In contrast to Eq. (4),
in the corresponding kinetic expression,6 the upper limit of
time integral is ∞ (long-time limit) rather than 0. Second,
because in both cases we apply an asymptotic expansion to
calculate the time integral at high temperature, at leading order,
the real part of (4) is half the corresponding time integral in
kinetic theory. The difference in temperature dependence only
appears in subdominant terms.

When transfer integrals or e-ph interaction are involved
at first order, various transport processes are the same order

of magnitude as the processes discussed here (zero order in
residual interaction). In these first-order processes, it is the
imaginary part of a twofold time integral that contribute to
conductivity (cf. Ref. 7). Some of these first-order processes do
not appear in kinetic models. Even for the processes expected
from kinetic theory, the temperature dependence derived in the
MRM is different from that derived from kinetic theory.

5. Summation over electronic states

To carry out the sum over the final extended states and
average over initial localized states, we first carry out

∑
B for

a fixed localized state A. We take the center RA of φA(r − RA)
as the origin of coordinates, the incident direction k/|k| of
electromagnetic wave as polar axis (z axis), the directions
(ε1,ε2) of two linear polarization vectors as x and y axis,
respectively. The incident field is expressed as

F = F1ε1 + F2ε2 + 0k/|k|. (53)

Consider an extended state (a wave packet propagating along
p) V −1/2eip·r/h̄, here for simplicity we neglected other waves
with wave vectors close to p. We can select an orthogonal
frame (l, m, n), where n = p/|p|, l, and m are two unit
vectors perpendicular to each other and perpendicular to n.
The position vector r of electron can be resolved as

r = r⊥1l + r⊥2m + r‖n. (54)

According to Eq. (50), one has

〈χB |r|φA〉 = n〈χB |r‖|φA〉. (55)

The matrix elements of the perturbation of the external field
are simplified to

〈χB |F · r|φA〉 = F · n〈χB |r‖|φA〉

= sin θ (F1 cos φ + F2 sin φ)
ih̄vBA

‖
(EA − EB)

,

(56)

where θ is the inclination angle of p relative to k, and φ is
the azimuth angle of the orthogonal projection of p on plane
(ε1,ε2) relative to ε1. In this coordinate system,

∑
B1

→ V

(2πh̄)3

∫ ∞

0
dp p2

∫ π

0
dθ sin θ

∫ 2π

0
dφ. (57)

The incident field (53) has only x and y components.
So that only the xx, xy, yx, and yy components of the
conductivity tensor are involved in the conduction process
driven by field (53). In consonance with Eq. (56), one should
make the substitution

vx
BA → vBA

‖ sin θ cos φ, v
y

BA → vBA
‖ sin θ sin φ (58)

in the conductivity tensor (1). The angular part of integral
(57) can be carried out. From Eqs. (57) and (58), one can
see σxy = σyx = 0 and σxx = σyy = σ . Because the factors in
Eq. (1) do not depend on the position of localized state φA,
one can carry out the spatial integral in

∑
A. The conductivity
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from LE transitions is{
Re

Im
σ (ω) = 4πξ

3

3

bZe2nloc

4πε0εU

8ne2

3πh̄3m2

∫ ∞

0
dξ

∫ ∞

0
dp

[
1 − f

(
EB1

)]
f (EA)

p4(
E0

B1
− E0

A

) ξ exp
(− bZe2

4πε0εUξ

)
(1 + p2ξ 2/h̄2)4

×
√

πh̄

2(kBT λBA)1/2
[e− λBA

4kB T
(1+ h̄ωBA−h̄ω

λBA
)2 ± e

− λBA
4kB T

(1+ h̄ωBA+h̄ω

λBA
)2

], (59)

where n = Ne/�s is the carrier concentration, and EA and EB1 are given in Eqs. (15) and (20). From Eq. (59), one can easily
compute TCR: ρ−1 dρ

dT
= −σ−1 dσ

dT
, an important material parameter for bolometer.1,55 σ and TCR are expressed with easy access

quantities: U and Ec for localized states, ε and qTF for the interaction between electron and atomic core, and the averaged sound
speed c for the vibrations.

B. EL transitions driven by external field

Since the field-matter coupling is Hermitian, the corresponding expressions for EL transition driven by field can be obtained
from those for LE transitions driven by field through exchanging the status of φA and χB :{

Re

Im
σ (ω) = 4πξ

3

3

bZe2nloc

4πε0εU

8ne2

3πh̄3m2

∫ ∞

0
dξ

∫ ∞

0
dp[1 − f (EA)]f (EB)

p4(
E0

A − E0
B

) ξ exp
(− bZe2

4πε0εUξ

)
(1 + p2ξ 2/h̄2)4

×
√

πh̄

2(kBT λAB)1/2
[e− λAB

4kB T
(1+ h̄ωAB −h̄ω

λAB
)2 ± e

− λAB
4kB T

(1+ h̄ωAB +h̄ω

λAB
)2

], (60)

where

yAB
± = (ωBA ± ω)2

4λABkBT
, λAB = 1

2

∑
α

h̄ωα

(
θA
α

)2
. (61)

For the LE transition driven by the transfer integral and the EL transition driven by e-ph interaction, one does not have this
symmetry.6,7

C. LL transition driven by external field

One can similarly find the conductivity from the LL transitions driven by external field [Fig. 2(a) of Ref. 7]:{
Re

Im
σαβ(ω) = −Nee

2

2�s

∑
AA1

Im

(
wα

AA1
− vα

A1A

)(
v

β

A1A

)∗(
E0

A − E0
A1

) i[IA1A+ ± IA1A−]
[
1 − f

(
EA1

)]
f (EA), (62)

where the velocity matrix elements are

wα
AA1

= − ih̄

m

∫
d3x φ(r − RA)

∂

∂xα

φ∗(r − RA1

)
(63)

and

vα
A1A

= − ih̄

m

∫
d3x φ∗(r − RA1

) ∂

∂xα

φ(r − RA). (64)

vα
A1A

is given in Eq. (A2) and wα
AA1

= −vα
A1A

. The time integral

IA1A±(ω) = exp

{
−1

2

∑
α

(
θA1
α − θA

α

)2
coth

βh̄ωα

2

}∫ 0

−∞
ds e±iωse

−is(E′
A1

−E′
A)/h̄

× exp

[
1

2

∑
α

(
θA1
α − θA

α

)2

2

(
coth

βh̄ωα

2
cos ωαs + i sin ωαs

)]
(65)

contains the primary temperature dependence of conductivity. At high temperature kBT � h̄ω, IA1A± reduces to

IA1A±(ω) = −ih̄/λA1A + h̄e−βh̄(±ω+ωAA1 )/2−y
A1A

± −βλA1A/4(
λA1AkBT

)1/2

[√
π

2
− iA

(
y

A1A±
)]

, (66)

where

λA1A = 1

2

∑
α

h̄ωα

(
θA1
α − θA

α

)2
(67)
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and

y
A1A± =

[
h̄
( ± ω + ωAA1

)]2

4λA1AkBT
. (68)

To carry out the summation over initial and final electronic
states, we first fix the initial electronic state A. We take
the center RA of localized state φA(r − RA) as the origin
and the incident direction k of the electromagnetic wave
as the polar axis. Denote R = RAA1 = |RA1 − RA| the dis-
tance between the centers of localized states φA1 (r − RA1 )
and φA, and the unit vector along (RA1 − RA) is nAA1 =
(XAA1 ,YAA1 ,ZAA1 )/RAA1 , where (XAA1,YAA1 ,ZAA1 ) are the
Cartesian components of vector RA1 − RA.

Since the conductivity tensor is usually expressed in a
system of Cartesian coordinates, we introduce an auxiliary
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FIG. 4. (Color online) Conductivity and TCR as functions of tem-
perature in two n-doped a-Ge:H samples at ω = 0. The experimental
values are taken from Refs. 47 and 48.

Cartesian system (ε1,ε2,k), where ε1 and ε2 are the two linear
polarization vectors. The electric field F has only x and y

components: F = F1ε1 + F2ε2 + 0k. Because we sum over
A1, the centers RA1 of localized states φA1 (r − RA1 ) sit at
different points. To simplify the calculation of the velocity
matrix elements, we resolve the position vector r of electron
in an orthogonal frame:

r = r⊥1lAA1 + r⊥2mAA1 + r‖nAA1 , (69)

where lAA1 and mAA1 are two unit vectors perpendicular to
each other and to nAA1 . From Eq. (A4), one has

〈
φA1

∣∣r|φA〉 = nAA1

〈
φA1

∣∣r‖|φA〉. (70)
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FIG. 5. (Color online) Conductivity and TCR as functions of
temperature in two n-doped a-Ge:H samples at ω = 1013 Hz. The
experimental values are taken from Refs. 47 and 48.
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FIG. 6. (Color online) Conductivity and TCR as functions of
temperature in two n-doped a-Si:H samples at ω = 1013 Hz. The
experimental values are taken from Ref. 55.

By means of Eq. (70), the perturbation of the electric field is

〈
φA1

∣∣F · r|φA〉 = F · nAA1

〈
φA1 |r‖

∣∣φA〉

= sin θ (F1 cos φ + F2 sin φ)
ih̄v

A1A
‖(

EA − EA1

) ,

(71)

where v
A1A
‖ has been obtained in the Appendix. The angular

integrals in summation
∑

A1
can be effected: σxy = σyx =

0 and σxx = σyy = σ . Because of the uniformity of AS, the
spatial integral in

∑
A can be carried out. The conductivity
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FIG. 7. (Color online) Conductivity as a function of frequency
at T = 300 K. (a) LL transition; (b) LE transition. In the frequency
range, the contribution from LE transition is more important than that
from LL transitions.

from LL transition driven by field is{
Re

Im
σ (ω)

= 4πξ
3

3

[
bZe2nloc

4πε0εU

]2 ∫ ∞

0

dξ1

ξ 2
1

exp

(
− bZe2

4πε0εUξ1

)

×
∫ ∞

0

dξ2

ξ 2
2

exp

(
− bZe2

4πε0εUξ2

)
ne2

[
1 − f

(
EA1

)]
f (EA)

2
(
E0

A − E0
A1

)
×

√
πh̄

2
(
λA1AkBT

)1/2 [e
− λA1A

4kB T
(1+ h̄ωA1A−h̄ω

λA1A
)2

± e
− λA1A

4kB T
(1+ h̄ωA1A+h̄ω

λA1A
)2

]

×
∫ Rc

0
R2dR

4π

3
(wAA1

‖ − v
A1A
‖ )(vA1A

‖ )∗, (72)

where, and in the Appendix, to shorten the symbols, we use ξ2

instead of ξA1 and use ξ1 instead of ξA.
We can see from Eqs. (59), (60), and (72) that when ω = 0,

Im σ = 0 for LL, LE, and EL transitions. For two n-doped a-
Ge:H samples with n = 1018 and 1019 cm−3, log10 σ and TCR
from LL, LE, and EL transitions as functions of temperature at
ω = 0 are plotted in Fig. 4. The corresponding results at ω =
1013 Hz are plotted in Fig. 5. Re σ increases with frequency,
while TCR decreases with frequency. For two n-doped a-Si:H
samples, the conductivity and TCR as functions of temperature
at ω = 1013 Hz are plotted in Fig. 6 (the results at ω = 0 were
reported in Ref. 54). The calculated TCR for a-Si:H falls54 in
the observed55,57,58 range between −2% and −8%.

At ω = 0, the conductivity from LE transition is the same
order of magnitude as that from LL transitions, and the
conductivity from EL transitions is much smaller than those
from LL and LE transitions. There is a crossover temperature
T ∗, below T ∗ the conductivity from LL transitions is larger
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FIG. 8. (Color online) TCR as a function of temperature in two
n-doped a-Si:H with n = 1017 cm−3 and 5 × 1017 cm−3, the diamond
symbol data are taken from Refs. 47 and 48, and the solid line
experimental data taken from Ref. 56.

than the conductivity from LE transitions, and above T ∗
the conductivity from LE transitions is larger. Because the
activation energy for LL transitions is different to that for
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FIG. 9. (Color online) dc conductivity as function of temperature
in two n-doped a-Si:H with n = 1017 cm−3 and 5 × 1017 cm−3;
experimental data are taken from Ref. 56.

LE transitions, this phenomenon explained the kink on the
observed log10 σ versus 1/T curve.54

For two n-doped a-Si:H samples at 300 K, log10 σ (ω)
versus log10 ω in a frequency range 1013 to 1014 Hz is
illustrated in Fig. 7(b). We can see that (i) the conductivity of
LL transitions slowly decreases with ω; (ii) the conductivity
from LE transitions increases rapidly with frequency. The
total conductivity is a sum from various processes,7 and the
conductivity from LL transitions is smaller than that from
the LE transitions at higher frequency. The total conductivity
arises mainly from LE transitions at higher frequencies. The
general trend in log10 σ (ω) versus log10 ω is not far from the
Tanaka and Fan59 result σ (ω) ∼ ω2, but obviously deviates
from the simple power law around 1013 Hz. We must be
cautious that the results derived in this work are only suitable
to the contributions from electrons: at such high frequency, the
ionic contribution should also be included.

In Fig. 8, we compared the observed and calculated TCR for
two n-doped a-Si:H with n = 1017 cm−3 and 5 × 1017 cm−3.
The calculations roughly agree with the experiment56 in
temperature range 282–349 K. The observed absolute values
of TCR are systematically smaller than those of the calculated.
This is due to the samples containing microcrystalline grains in
the amorphous matrix,55 while crystalline material has smaller
absolute value of TCR. Figure 9 shows the comparisons for
conductivity.

IV. CONCLUSION

The microscopic response method expresses transport
coefficients with transition amplitude rather than transition
probability per unit time, and may be used in amorphous
semiconductors in which the Landau-Peierls condition is
violated.3,4 We presented an approximate theory for the
conductivity and Hall mobility in amorphous semiconductors
systematically derived from the MRM. We obtained the
temperature dependence of the conductivity from the three
simplest transitions: LL, LE, and EL transitions driven solely
by field [cf. Eqs. (62), (59), and (60)]. The conductivity is
expressed in terms of accessible physical quantities: mobility
edge, Urbach energy, static dielectric constant, and elastic
modulus. LE transition (ignored in previous theories) con-
tributes to conductivity in the same order as LL and EE tran-
sitions. Below a crossover temperature T ∗, the conductivity
from LL transitions is larger than that from LE transitions;
above T , the conductivity from LE transitions is larger. This
phenomenon, and different activation energy for LL and
LE transitions, is the reason for the kink in the observed
conductivity versus the 1/T curve. We show how a kinetic
theory of transport can be properly generalized for AS.
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APPENDIX: VELOCITY MATRIX ELEMENTS BETWEEN
TWO LOCALIZED STATES

To calculate the velocity matrix elements in Eq. (64), it
is convenient to adopt a system of spherical coordinates. We
take the center RA of localized state φA(r − RA) as the origin
RA = 0, and the connection line RA1 − RA between the centers
of two localized states as the polar axis. Denote r = |r − RA|
and r2 = |r − RA1 | = [r2 + R2 − 2rR cos θ ]1/2, where R =
RA1 − RA and θ is the angle between r − RA and RA1 − RA.
The vz matrix element can be written as

vz
A1A

= − ih̄

m
π−1ξ

−3/2
1 ξ

−3/2
2

∫ ∞

0
r2dr

∫ π

0
sin θ dθ

×
∫ 2π

0
dφ e−r2/ξ2

∂

∂z
e−r/ξ1 ,

and one has similar expressions for the matrix elements of vx

and vy . Because r2 does not depend on the azimuth angle φ,

vx
A1A

= v
y

A1A
= 0. (A1)

We condense them as v
A1A
⊥ = 0: the matrix element for any

component of velocity perpendicular to the connection line
between two localized states is zero.

The φ integral is immediate, and the remaining r and θ

integrals in vz
A1A

can be calculated by changing the integration

variable θ to r2 for a fixed r . With the help of cos θ = r2+R2−r2
2

2rR

and sin θ dθ = r2dr2
Rr

, the integral over θ becomes an integral
over r2. One first carries out the integral over r2, then carries
out the integral over r . For the velocity component parallel to
the connection line between two localized states, the matrix
element is

v
A1A
‖ = − ih̄

m
π−1ξ

−3/2
1 ξ

−3/2
2

∫
d3x e−r2/ξ2∇‖e−r/ξ1 = − ih̄

m
(ξ1ξ2)−3/2

{
− 4

(
ξ 2

2

R2
+ ξ2

R

)
e−R/ξ2ξ ′3

ξ1

−
(

2 + 6
ξ2

R
+ 6

ξ 2
2

R2

)
ξ2e

−R/ξ2ξ ′2

ξ1
−

(
2 + 6

ξ2

R
+ 6

ξ 2
2

R2

)
ξ 2

2 e−R/ξ2ξ ′

ξ1

+
(

2

ξ2R
+ 2

R2

)
ξ 2

2 e−R/ξ2ξ ′′3

ξ1
[2 − (R2/ξ ′′2 + 2R/ξ ′′ + 2)e−R/ξ ′′

]

−
(

2

ξ2
+ 6

R
+ 6

ξ2

R2

)
ξ 2

2 e−R/ξ2ξ ′′2

ξ1
[1 − (R/ξ ′′ + 1)e−R/ξ ′′

] +
(

2 + 6
ξ2

R
+ 6

ξ 2
2

R2

)
ξ 2

2 e−R/ξ2ξ ′′

ξ1
(1 − e−R/ξ ′′

)

+
(

2

R2
− 2

Rξ2

)
ξ 2

2 e−R/ξ1ξ ′3

ξ1

(
R2

ξ ′2 + 2
R

ξ ′ + 2

)
+

(
6ξ2

R2
+ 2

ξ2
− 6

R

)
ξ 2

2 e−R/ξ1ξ ′2

ξ1

(
R

ξ ′ + 1

)

+
(

2 − 6
ξ2

R
+ 6

ξ 2
2

R2

)
ξ 2

2 e−R/ξ1ξ ′

ξ1

}
, (A2)

where ξ ′ and ξ ′′ are defined by

ξ ′−1 = ξ−1
1 + ξ−1

2 and ξ ′′−1 = ξ−1
1 − ξ−1

2 .

Equation (A2) displays the exponential decay of velocity
matrix elements with distance R between two localized states.
In the variable range hopping argument,2 only the exponential
decay of transfer integral with R is treated. In a process that is
first order in transfer integral, which is not discussed here, one
may expect interesting new features.

Because for each Cartesian component,

〈
φA1 |xα

∣∣φA〉 = ih̄
〈
φA1

∣∣vα|φA〉(
EA − EA1

) , α = x,y,z (A3)

from (A1) and (A2), one has

〈
φA1

∣∣r⊥|φA〉 = 0 and
〈
φA1

∣∣r‖|φA〉 = ih̄v
A1A
‖(

EA − EA1

) .

(A4)
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