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The discovery of topological insulators in noninteracting electron systems has motivated the community
to research such topological states of matter in correlated electrons both theoretically and experimentally. In
this paper, we investigate a phase diagram for a topological Kondo insulating system, where an emergent
“spin’-dependent Kondo effect gives rise to an inversion for heavy-fermion bands, responsible for a topological
Kondo insulator. Using U(1) slave-boson mean-field analysis, we uncover an additional phase transition inside the
Kondo insulating state in two dimensions, which results from the appearance of the topological Kondo insulator.
On the other hand, we observe that the Kondo insulating state can be separated into three insulating phases in
three dimensions, identified as the weak topological Kondo insulator, the strong topological Kondo insulator, and
the normal Kondo insulator, respectively, and classified by Z2 topological indices. We discuss the possibility of
novel quantum criticality between the fractionalized Fermi liquid and the topological Kondo insulator, where the
band inversion occurs with the formation of the heavy-fermion band at the same time.
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I. INTRODUCTION

An effective field theory approach has been playing an
important role in predicting novel quantum states of matter.
Essential physical contents in the field theory approach are
the chiral anomaly for quantum number fractionalization,1

the parity anomaly for the quantum Hall effect,2 and an
SU(2) global anomaly3 for topological insulators in three
dimensions.4 However, the field theory approach alone is not
sufficient to thoroughly research such quantum matter in real
materials. It is necessary to construct or find the corresponding
lattice model, which can result in an ideal effective field theory
at low energies. In particular, the lattice model can be solved
almost exactly based on numerical simulations, helping us
to understand the connection between the lattice model and
effective field theory and verifying the possibility of novel
quantum phenomena.

The Su-Schrieffer-Heeger model, which describes one-
dimensional electrons coupled with lattices, confirms the
existence of e/2 fractional electric charge, carried by domain-
wall solitons.5 The Haldane model, which describes two-
dimensional electrons with a next-nearest-neighbor complex
hopping parameter on the honeycomb lattice, explains the
integer quantum Hall effect without Landau levels,6 where
each Dirac band carries a nontrivial topological quantum
number (Chern number), identified with the quantized Hall
conductance.7 Recently, the Haldane model has been general-
ized to the case with time-reversal invariance, where the spin-
orbit coupling serves as an effective magnetic flux, oppositely
assigned to spin-up and -down electrons, thus regarded as two
duplicates of the Haldane model. The Kane-Mele model has
proposed an interesting insulating state, called a topological
insulator, where the quantum spin Hall effect appears when
the z component of the spin quantum number is preserved,
but generically classified by the Z2 topological quantum
number with spin-non-conserving terms.8 The concept of the
topological insulator was extended to the three-dimensional
case,9–11 characterized by the Z2 topological index, which

counts the number of band inversions with modular 2.
An odd number of band inversions causes an odd number
of Dirac bands, identified with normalizable fermion zero
modes localized at each two-dimensional surface, where at
least one of them is protected against time-reversal-invariant
perturbations due to a topological origin.

Considering that these models basically describe non-
interacting electrons, an immediate and important question
concerns the role of electron correlations in such topological
states of matter.12 Actually, this direction of research has
been performed intensively, focusing in particular on the
emergence of gapped spin liquids,13 where spinons with
fractional spin quantum number 1/2 appear as elementary
excitations. The quantum dimer model on the triangular lattice
has confirmed the existence of a short-ranged resonating
valence bond state, identified with Z2 spin liquid.14 It has
been claimed that this gapped spin liquid state has appeared
in strongly correlated electrons on the honeycomb lattice.15

Such an effect has also been realized in strongly correlated
spinless fermions,16 which allow charge fractionalization in
geometrically frustrated lattices. Artificial but exactly solvable
spin models, represented as the Kitaev model,17 have been
investigated, proving the existence of topologically nontrivial
quantum states of matter, for example a non-Abelian quantum
Hall state, which allows Majorana fermions.18 Such exotica
have also been pursued near quantum criticality, referred
to as deconfined quantum criticality, where an effective
field theory approach had suggested the emergence of spin
quantum number fractionalization at an antiferromagnet to
valence-bond solid quantum critical point,19 and numerical
simulations for an extended Heisenberg model on the square
lattice confirmed this scenario with some modifications.20,21

Recently, it has been argued that the fractional quantum
Hall effect appears in a certain type of lattice models, whose
characteristic feature is the existence of an almost flat band
with a nontrivial Chern number.22 Electron correlations for
this partially filled flat band with the Chern number were
demonstrated to result in the fractional quantum Hall phase.
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An immediate and interesting question is how to construct the
lattice model, which shows the so-called fractional topological
insulator. An effective field theory approach suggested the
possibility of the fractional topological insulator,23,24 charac-
terized by the fact that the surface Dirac fermion carries a frac-
tional electric charge, which should be distinguished from the
fractionalized “normal’ insulator, not allowing gapless surface
modes. A hard-core boson model was proposed on the diamond
lattice, where the boson is assumed to fractionalize into two
fermions with e/2 fractional charge, forming a topological
band insulator for such fractionalized fermions and displaying
the fractional magnetoelectric effect.25 Introducing electron
correlations into the Kane-Mele model,26,27 an interesting spin
liquid state was proposed to exhibit an integer quantum spin
Hall effect in the case of Sz conservation.

In this paper, we construct an elementary setup for the pos-
sible interplay between electron correlations and topological
aspects in the presence of time-reversal symmetry. Recently,
a topological Kondo insulating state has been proposed to
open a novel direction of research for interacting topological
states of matter.28 The existence of the topological Kondo
insulator is based on an emergent “spin’-dependent Kondo
effect, which plays basically the same role as the spin-orbit
interaction and gives rise to an inversion for heavy-fermion
bands. We revisit this problem, investigating an effective
Anderson lattice model for the topological Kondo insulator,
where this effective Hamiltonian can be regarded as one of the
most studied models, particulary for non-Fermi-liquid physics
near heavy-fermion quantum criticality.29

Using U(1) slave-boson mean-field analysis, we uncover an
additional phase transition inside the Kondo insulating state in
two dimensions, which results from the appearance of the
topological Kondo insulator. On the other hand, we observe
that the Kondo insulating state can be separated into three
insulating phases in three dimensions, identified as the weak
topological Kondo insulator, the strong topological Kondo
insulator, and the normal Kondo insulator, respectively, and
classified by Z2 topological indices. Such phase transitions
inside the Kondo insulator are described by gap closing, which
is expected to be continuous. We derive an effective Dirac
theory near the gap closing momentum point for the phase
transition from the strong topological Kondo insulator to the
normal Kondo insulator.

We would like to emphasize that the phase diagram of the
present study differs from that of the previous investigation28

in that our phase diagram is constructed in the plane of the
hybridization coupling and temperature, while the previous
phase diagram displays a phase structure as a function of
an effective orbital energy for localized electrons at zero
temperature. However, the mechanism for the emergence of
the topological Kondo insulator is essentially the same.

II. PHASE DIAGRAM FOR A TOPOLOGICAL
KONDO INSULATOR

A. An effective Anderson lattice model

In order to consider the topological nature of the heavy-
electron system, we construct the simplest model, which
introduces one s orbital and one f orbital in the unit cell.

Conduction electrons are described by

Hc =
∑

k

∑
σ

(
εc

k − μc

)
c
†
kσ ckσ , (1)

where εc
k is the dispersion relation of the conduction electron

with momentum k and real spin σ , and μc is the electron
chemical potential. The f -electron Hamiltonian is given by
the site energy εf − μc and the on-site Coulomb interaction
U ,

Hf =
∑

i

∑
τ

(εf − μc)f †
iτ fiτ + U

∑
i

nf iτ nf i−τ , (2)

where nf iτ = f
†
iτ fiτ is the density operator of the f electron

with pseudospin τ belonging to one representation γ of the
j = 5/2 multiplet at site i . |i − τ 〉 is the time-reversal partner
of |iτ 〉 in the Kramers doublet. Representations other than the
γ representation are assumed to be irrelevant.

An essential point is how these itinerant and localized
electrons are coupled, generically given by the hybridization
term

Hhyb =
∑

k

∑
σ,τ

Vστ (k)c†kσ fkτ + H.c., (3)

where fkτ is the Fourier k component of fiτ . In order
to determine the structure of Vστ (k), we have to specify
the representation γ of the f electron and its surroundings
associated with conduction electron sites. If we restrict the
f -electron states to the j = 5/2 multiplet, the hopping matrix
is described by

〈isσ |Hhyb| jγ τ 〉 � 〈isσ |Hhyb| jησ 〉 〈 jησ | jmσ 〉
×〈

jmσ
∣∣ jj = 5

2μ
〉 〈

jj = 5
2μ

∣∣ jγ τ
〉
,

(4)

where η is the representation and basis of the cubic harmonic
oscillator, m is the z component of the orbital angular
momentum of the f electron, and μ is the z component of
the total angular momentum. The approximate equality comes
from the ignorance of the j = 7/2 multiplet in estimating the
matrix element.

Resorting to the table of 〈isσ |Hhyb| jησ 〉 in Ref. 30, we can
estimate s-f integrals as follows:

〈is|Hhyb| jxyz〉 =
√

15lmn(sf σ ), (5)

〈is|Hhyb| jx(5x2 − 3r2)〉 = 1
2 l(5l2 − 3)(sf σ ), (6)

〈is|Hhyb| jx(y2 − z2)〉 = 1
2

√
15l(m2 − n2)(sf σ ), (7)

where l,m,n are the direction cosine of the vector i- j .
The factor of 〈 jησ | jmσ 〉 corresponds to the weight of
spherical harmonics in cubic harmonics. 〈 jmσ | jj = 5

2μ〉 is
merely the Clebsch-Gordan coefficient. The last factor of
〈 jj = 5

2μ| jγ τ 〉 of Eq. (4) is the weight of |j = 5/2μ〉 in
|γ τ 〉. Using the bases in the cubic crystalline electric field for
|γ τ 〉, we obtain the table of 〈ησ |γ τ 〉 in Table I.

Next, we specify the hybridization process as the orbital of
the conduction electron is situated at the same position as the
case of 6s-electron states of rare-earth ions, thus there is no
local hybridization between s and f electrons. Therefore, the
main hybridization process results from the nearest-neighbor
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TABLE I. 〈ησ |γ τ 〉. η describes a cubic harmonic oscillator. The
wave function of |γ τ 〉 is chosen by those of j = 5/2 in the cubic
crystal structure.

ησ \ γ τ �7+ �7− �8(1)+ �8(1)− �8(2)+ �8(2)−

A2u↑
√

3
7 i 0 0 0 0 0

T1uα↑ 0 0 0 − 3
2
√

7
0

√
3

2
√

7

T1uβ↑ 0 0 0 3
2
√

7
i 0

√
3

2
√

7
i

T1uγ↑ 0 0 0 0 −
√

3
7 0

T2uξ↑ 0 2√
21

0
√

5
2
√

21
0

√
5

2
√

7

T2uη↑ 0 2√
21

i 0
√

5
2
√

21
i 0 −

√
5

2
√

7
i

T2uζ↑ 2√
21

0 −
√

5√
21

0 0 0

A2u↓ 0
√

3
7 i 0 0 0 0

T1uα↓ 0 0 − 3
2
√

7
0

√
3

2
√

7
0

T1uβ↓ 0 0 − 3
2
√

7
i 0 −

√
3

2
√

7
i 0

T1uγ↓ 0 0 0 0 0
√

3
7

T2uξ↓ 2√
21

0
√

5
2
√

21
0

√
5

2
√

7
0

T2uη↓ − 2√
21

i 0 −
√

5
2
√

21
i 0

√
5

2
√

7
i 0

T2uζ↑ 0 − 2√
21

0
√

5√
21

0 0

hopping from the f -electron state at a site i to the s-electron
state at a neighboring site i + e, where e is a vector connecting
with a neighboring unit cell.

Using the hybridization matrix discussed above, we obtain
the matrix element for the hopping to the (100) direction,

〈i + xs↑|Hhyb|i�8(1)−〉 = 〈i + xs↓|Hhyb|i�8(1)+〉
= − 3

2
√

7
(sf σ ), (8)

〈i + xs↑|Hhyb|i�8(2)−〉 = 〈i + xs↓|Hhyb|i�8(2)+〉

=
√

3

2
√

7
(sf σ ); (9)

for the hopping to the (010) direction,

〈i + ys↑|Hhyb|i�8(1)−〉 = −〈i + ys↓|Hhyb|i�8(1)+〉
= 3

2
√

7
i(sf σ ), (10)

〈i + ys↑|Hhyb|i�8(2)−〉 = −〈i + ys↓|Hhyb|i�8(2)+〉

=
√

3

2
√

7
i(sf σ ); (11)

and for the hopping to the (001) direction,

〈i + zs↑|Hhyb|i�8(2)+〉 = −〈i + zs↓|Hhyb|i�8(2)−〉

= −
√

3

7
(sf σ ), (12)

respectively.
Introducing Vsf =

√
3

2
√

7
(sf σ ) for simplicity, we obtain the

hybridization Hamiltonian to the (100) direction as

H
(100)
hyb = Vsf

∑
k

(
[c†k↑ c

†
k↓]

[
0 2

√
3i sin kx

2
√

3i sin kx 0

] [
fk�8(1)+
fk�8(1)−

]

+[c†k↑ c
†
k↓]

[
0 −2i sin kx

−2i sin kx 0

] [
fk�8(2)+
fk�8(2)−

] )
+ H.c.; (13)

for the (010) direction as

H
(010)
hyb = Vsf

∑
k

(
[c†k↑ c

†
k↓]

[
0 2

√
3 sin ky

−2
√

3 sin ky 0

] [
fk�8(1)+
fk�8(1)−

]

+[c†k↑ c
†
k↓]

[
0 2 sin ky

−2 sin ky 0

] [
fk�8(2)+
fk�8(2)−

] )
+ H.c.; (14)

and for the (001) direction as

H
(001)
hyb = Vsf

∑
k

[c†k↑ c
†
k↓]

[
4i sin kz 0

0 −4i sin kz

] [
fk�8(2)+
fk�8(2)−

]
+ H.c. (15)

Gathering all these terms, the resulting hybridization Hamiltonian is given by

Hhyb = Vsf

∑
k

[c†k↑ c
†
k↓]

(
V̂�8(1) (k)

[
fk�8(1)+
fk�8(1)−

]
+ V̂�8(2) (k)

[
fk�8(2)+
fk�8(2)−

])
+ H.c., (16)
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where the hybridization matrix

V̂�(k) = d�(k) · σ̂ (17)

is

d�8(1) (k) = (2
√

3i sin kx,2
√

3i sin ky,0), (18)

d�8(2) (k) = (−2i sin kx,2i sin ky,4i sin kz). (19)

We note that this model Hamiltonian describes the nearest-
neighbor hybridization process between s and f electrons of
rare-earth ions in the simple-cubic lattice. In Appendix A, we
discuss how the hybridization Hamiltonian is modified when
the lattice symmetry is lowered from the simple cubic to the
tetragonal.

B. U(1) slave-boson mean-field analysis

We start from an effective Anderson lattice model,

H =
∑

k

∑
σ

(
εc

k − μc

)
c
†
kσ ckσ +

∑
i

∑
α

(εf − μc)f †
iαfiα

− ε
∑

i j

∑
αα′

ti jαα′f
†
iαf jα′ + U

2

∑
i

∑
α

f
†
iαfiαf

†
i−αfi−α

+V
∑

k

∑
i

∑
ασ

[d�(k) · σ̂ σαc
†
kσ fiαe−ik·r i + H.c.], (20)

where ti jαα′ is the hopping integral of f electrons with a
parameter ε 	 1 and the subscript sf in Vsf is omitted for
simplicity. This effective hopping for localized fermions is
introduced phenomenologically to describe possible phase
transitions from the “fractionalized’ Fermi-liquid state31 to
the Kondo insulating phase at zero temperature, which can be
regarded as resulting from Ruderman-Kittel-Kasuya-Yoshida
(RKKY) spin correlations effectively in an intermediate energy
scale.32 The hybridization coupling term is given by Eqs. (18)
and (19) for the simple-cubic case.33

We take the U(1) slave-boson representation for the Kondo
effect in the strong-coupling limit, where the localized fermion
is expressed as fiα → b

†
i fiα with the single occupancy

constraint b
†
i bi + ∑

α=± f
†
iαfiα = 1. Then, the effective La-

grangian is given by

L =
∑

k

∑
σ

c
†
kσ

(
∂τ − μc + εc

k

)
ckσ + V

∑
k

∑
i

∑
ασ

× [�ασ (k)c†kσ b
†
i fiαe−ik·r i + H.c.]

+
∑

i

∑
α

f
†
iα(∂τ + εf − μc + iλi )fiα

− ε
∑

i j

∑
αα′

ti jαα′f
†
iαb

†
i b jf jα′ + i

∑
i

λi (b
†
i bi − 1),

(21)

where λi is the Lagrange multiplier field for the constraint and
�ασ (k) ≡ d�(k) · σ̂ σα .

Taking bi → b ≡ 〈bi 〉 with iλi → λ in the saddle-point
approximation, we obtain two self-consistent equations for b

and λ, given by

λ = V 2
∑

k

∑
αα′σ

�ασ (k)�∗
α′σ (k)

1

π

∫ ∞

−∞
dωnF (ω)Im

× G
f

αα′ (ω + i0+,k)

ω − εc
k + μc + i0+ , (22)

b2 − 1

π

∑
k

∑
α

∫ ∞

−∞
dωnF (ω)ImGf

αα(ω + i0+,k) = 1, (23)

respectively. Gf (ω,k) is the spinon Green’s function, given by

Gf (ω,k) =
[

(ω − εf + μc − λ)1 + ε t(k)

−V 2b2 �(k) · �∗(k)

ω − εc
k + μc

]−1

, (24)

where [t(k)]αα′ ≡ ∑
ij [t ij ]αα′ exp[ik · (r i − rj )]. nF (ω) =

1/[exp(ω/T ) + 1] is the Fermi-Dirac distribution function.

C. Phase diagram

It is natural to expect a phase transition from the fraction-
alized Fermi liquid to the Kondo insulating state, described
by the emergence of the Kondo effect (b �= 0) above a critical
strength of hybridization. An interesting aspect of this effective
lattice model is that there can exist additional phase transitions
inside the Kondo-insulating phase, not described by the holon
condensation but characterized by the change of the Z2

topological index.
For simplicity, we take tαα′ (k) = δαα′ t(k) with t(k) = εc

k.
Introduction of the spin dependence will not change possible
phases but will modify critical values of V associated with
their phase transitions. The dispersion relations for the heavy-
fermion bands are given by

E±(k) = 1
2

[
εc

k − εt(k) + εf + λ
] − μc

± 1
2

√[
εc

k + εt(k) − εf − λ
]2 + 4V 2b2�2(k), (25)

respectively, where �2(k) = 1
2 Tr[�(k) · �†(k)].

In order to see how the band inversion occurs from
this dispersion relation, we consider time-reversal-invariant
momenta that satisfy k∗

m = −k∗
m + G, where G is a reciprocal-

lattice vector. It is straightforward to check that there are eight
time-reversal-invariant momentum points in three dimensions
while there are four in two dimensions. The Z2 topological
index, which measures how many times bands are twisted
with modular 2, has been reformulated for such time-reversal-
invariant momenta in the case in which the system preserves
the inversion symmetry.9–11 First, we observe that the band gap
in the Kondo insulating phase closes linearly at some of the
time-reversal symmetry points which satisfy εf + λ = εc

k∗
m

+
εt(k∗

m), where �(k) ∼ |k| appears near k∗
m. This identification

leads us to define the parity δm = sgn[εc
k∗

m
+ εt(k∗

m) − εf − λ].

See Appendix B. Following Dzero et al.,28 we can evaluate the
Z2 topological indices given by

ISTI =
∏
m

δm, (26)
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FIG. 1. U(1) slave-boson mean-field phase diagram for an ef-
fective Anderson lattice model with the �8(2) hybridization on the
simple-cubic lattice. Phase I is the fractionalized Fermi-liquid state,
where localized spins are decoupled from conduction electrons
(b = 0) forming a spinon “Fermi’-liquid state (spin liquid). The
Kondo insulating phase (b �= 0) is separated into phase II, phase
III, and phase IV, classified by the topological Z2 indices. Phase II
is the weak topological Kondo insulator and phase III is the strong
topological Kondo insulator. Phase IV is the normal Kondo insulator.
The first transition belongs to the second order in the saddle-point
approximation, but fluctuation corrections might change the nature
of the continuous transition to first order. On the other hand,
phase transitions inside the Kondo insulator are also continuous,
but are regarded as robust against quantum corrections, where both
hybridization and gauge fluctuations are irrelevant. The topological
aspect of the band structure is changed by the gap closing transition.
Model parameters of t = 1, ε = 0.005, εf = −6, and μc = 0 are
used.

Iα
WTI =

∏
m

δm

∣∣∣∣
(k∗

m)α=0

, (27)

where ISTI is an index for a strong topological insulator while
Iα

WTI are indices for a weak topological insulator. We will see
these indices changed, showing additional phase transitions
inside the Kondo insulator.

We solve the mean-field equations (22) and (23) with (24)
for the simple-cubic lattice with

εc
k = −t(k) = −2t(cos kx + cos ky + cos kz) (28)

numerically, and we take the hybridization term of the �8(2)

symmetry. Our slave-boson analysis uncovers four different
phases in three dimensions, shown in Fig. 1. When the
hybridization coupling is smaller than a critical value Vc,
the Kondo effect does not exist, i.e., b = 0 (phase I), giving
rise to local magnetic moments decoupled from conduction
electrons, where such localized spins form a spinon “Fermi’-
liquid state (spin liquid) due to their dispersions originating
from the RKKY interaction.31 Such an exotic liquid state
may be realized in geometrically frustrated lattices or at
finite temperatures.34 Increasing the hybridization coupling
above Vc, the Kondo effect results in the formation of the
heavy-fermion band (b �= 0), but the condition of half-filling
for conduction electrons leads to an insulating state instead
of the heavy-fermion metal. An interesting point is that the
Kondo insulating state can be separated into three insulating
phases, classified by the Z2 topological indices. Phase II is

FIG. 2. Temperature dependence of the renormalized orbital
energy εf + λ for various values of V . Dotted lines indicate the
value of εc

k∗
m

+ εt(k∗
m) at time-reversal-invariant points. In this figure,

it is straightforward to see changes of Z2 topological indices, where
the Chern parity can be evaluated automatically. Model parameters
of t = 1, ε = 0.005, εf = −6, and μc = 0 are used.

characterized by the trivial strong topological-insulator index
of ISTI = 1, but nontrivial weak topological-insulator indices
of I x

WTI = I
y

WTI = I z
WTI = −1. Thus, phase II is identified by

the weak topological Kondo insulator. Phase III is character-
ized by ISTI = −1 and I x

WTI = I
y

WTI = I z
WTI = 1. As a result,

it is the strong topological Kondo insulator. The last Kondo
insulating phase, phase IV, is the conventional Kondo insulator
with trivial Z2 indices of ISTI = 1 and I x

WTI = I
y

WTI = I z
WTI =

1.
It is straightforward to see changes of Z2 topological

indices in Fig. 2, where the Chern parity can be evaluated
automatically. For example, if one fixes V = 3t and lowers
temperature, he can find a continuous phase transition from the
weak topological Kondo insulating state (phase II) to the strong
topological Kondo insulating phase (phase III) around T ≈ 5t .
If one considers V = 4t , he can observe two continuous phase
transitions (i) from the weak topological Kondo insulating state
(phase II) to the strong topological Kondo insulating phase
(phase III) around T ≈ 11t and (ii) from the strong topological
Kondo insulating state (phase III) to the nontopological Kondo
insulating phase (phase IV) around T ≈ 3t . Figure 3 shows
the phase transition from the fractionalized Fermi liquid state
(phase I) to the weak topological Kondo insulating phase
(phase II) at each temperature, depending on the value of
the hybridization coupling constant. Figures 2 and 3 show
how we obtain the phase diagram, Fig. 1.

Since the first phase transition from the fractionalized Fermi
liquid to the weak topological Kondo insulator is given by the
holon condensation, i.e., the formation of the Kondo effect,
it belongs to the second-order transition in the saddle-point
approximation. Two more phase transitions inside the Kondo
insulator are described by gap closing, thus they also belong
to the continuous transition. An important point is that such
second-order transitions inside the Kondo insulating phase
are expected to be robust because singular corrections from
fluctuations will not exist inside the Kondo insulator. In
particular, both hybridization and gauge fluctuations will not
play an important role in these phase transitions. On the other
hand, such quantum corrections may be important for the
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FIG. 3. Temperature dependence of the boson-condensation am-
plitude for various values of V . This figure determines the phase
transition from the fractionalized Fermi liquid state (phase I) to
the weak topological Kondo insulating phase (phase II) at each
temperature, depending on the value of the hybridization coupling
constant. Model parameters of t = 1, ε = 0.005, εf = −6, and
μc = 0 are used.

nature of the first phase transition from the fractionalized Fermi
liquid to the weak topological Kondo insulator, which will be
discussed in the final section.

It is straightforward to check the two-dimensional case, i.e.,
the effective Anderson lattice model on the square lattice. In-
deed, we performed the same slave-boson mean-field analysis
in two dimensions and found the corresponding phase diagram
of Fig. 4. The main difference from the three-dimensional
case is the absence of the strong topological Kondo insulating
phase, where the quantum “spin’ Hall Kondo-insulating phase
exists between the fractionalized Fermi liquid and the normal
Kondo insulator. Figure 5 displays the band structures of
both the topological (normal) Kondo insulating phase and the
critical point, where the gap closing occurs at k∗

ππ = (π,π ).

FIG. 4. U(1) slave-boson mean-field phase diagram for an effec-
tive Anderson lattice model with the �8(1) hybridization and kz = 0,
i.e., on the square lattice. Phase I is the fractionalized Fermi-liquid
state (b = 0), phase II is the topological Kondo insulator (b �= 0
and I z

WTI = −1), and phase III is the normal Kondo insulator (b �= 0
and I z

WTI = 1). Model parameters of t = 1, ε = 0.005, εf = −6, and
μc = 0 are used.

0
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πky

10

0

10

E k

0
kx

0
ky

10

0

10

E k

π

FIG. 5. (Color online) Top: The band structure in the Kondo
insulating state (phase III). It is almost identical to that in the
topological Kondo insulating phase (phase II). The electron chemical
potential lies between the band gap. Bottom: The band structure at the
critical point inside the Kondo insulator. Gap closing appears at k∗

ππ =
(π,π ), described by the Dirac theory from Eq. (31) to Eq. (39) with
kz = 0. Model parameters of t = 1, ε = 0.005, and εf = −6 are used.

D. Comparison with the previous study

One may wonder what the differences are between the
present study and the previous seminal work.28 The mech-
anism itself for the emergence of the topological Kondo
insulator is essentially the same. However, we emphasize that
our phase diagram differs from the previous one in that Fig. 1 is
shown in the plane of (V,T ) while the previous study displays
its phase diagram as a function of the renormalized orbital
energy εf + λ at T = 0. In particular, Fig. 1 with Fig. 2 shows
us a general feature for the emergence of the topological Kondo
insulating phase, at least where it should occur just before the
normal Kondo insulating phase. Figure 2 displays the change
of the parity δm as temperature decreases with various values of
V . Considering how the εf + λ(V,T ) curve cuts εc

k∗
m

+ εt(k∗
m)

at various time-reversal-invariant momentum points k∗
m in

Fig. 2, one can realize that the topological Kondo insulating
phase will appear before the normal Kondo insulating phase.

The two studies use different methods to analyze this
problem, although this difference does not seem to be
crucial. Basically, we need two “order parameters’ for the
self-consistent mean-field analysis of this problem. In the
slave-boson approach, we have the condensation amplitude of
the hybridization order parameter b and the effective chemical
potential εf + λ for localized electrons, which correspond to
the quasiparticle weight (the wave-function renormalization
constant) Z and the renormalized orbital energy in the previous
study.28 Investigating the previous study carefully, we suspect
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that the analysis may not be fully self-consistent because the
previous study uses the renormalized orbital energy as an
external parameter for the phase diagram, while it should be
determined self-consistently. Although this can be easily fixed,
this is one difference in the analysis. In this respect, we draw
a phase diagram, Fig. 6, in the plane of (V,εf ) at low temper-
ature, recovering and extending the phase diagram of Ref. 28.

E. An effective Dirac theory for the hybridization
coupling with the symmetry �8(1)

The Dirac theory gives an effective field theory for
the phase transition from the strong topological Kondo
insulator to the normal Kondo insulator. The effec-
tive slave-boson Hamiltonian for the topological Kondo
insulator is

H =
∑

k

�
†
kH (k)�k + λ(b2 − 1), (29)

H (k) =

⎛
⎜⎜⎜⎝

εc
k − μc V b�(k) 0 0

V b�∗(k) −εt(k) + ε̃f − μc 0 0

0 0 εc
k − μc −V b�∗(k)

0 0 −V b�(k) −εt(k) + ε̃f − μc

⎞
⎟⎟⎟⎠ , (30)

where �
†
k = (c†k↑,f

†
k−,c

†
k↓,f

†
k+) is the four-component

Dirac spinor with ε̃f = εf + λ, and �(k) = 2
√

3i sin kx +
2
√

3 sin ky is the form factor of the �8(1) hybridization.
Expanding H (k) around the gap closing point with time-

reversal symmetry, k∗
πππ = (π,π,π ), we obtain an effective

Dirac theory

H ( p) =
(

h( p) 0
0 h∗(− p)

)
, (31)

where h( p) = ε( p)σ0 + d( p) · σ is the two-by-two Dirac
Hamiltonian with

ε( p) = C − D
(
p2

x + p2
y + p2

z

)
, (32)

d( p) = (Apy,Apx,M( p)), (33)

FIG. 6. Phase diagram for the �8(2) hybridization at temperature
T = 0.1t . Phase I is the fractionalized Fermi-liquid state, phase II
is the weak topological Kondo insulator, phase III is the strong
topological Kondo insulator, and phase IV is the normal Kondo
insulator. Model parameters of t = 1, ε = 0.005, and μc = 0 are
used.

M( p) = M − B
(
p2

x + p2
y + p2

z

)
, (34)

C = 3t + 3

2
ε + 1

2
ε̃f − μc, (35)

D = 1

2

(
t + ε

2

)
, (36)

A = −2
√

3V b, (37)

B = 1

2

(
t − ε

2

)
, (38)

M = 3t − 3

2
ε − 1

2
ε̃f . (39)

This effective Hamiltonian turns out to be identical with that
of Ref. 35 when px → py and py → px are performed with
pz = 0. The spectrum is

E±( p) = ε( p) ±
√

A2
(
p2

x + p2
y

) + M2( p). (40)

Note that sgn(M) = δk∗
πππ

corresponds to the parity at the sym-
metry point k∗

πππ = (π,π,π ). Recall that the Chern number is
given by C = 1 for M/B > 0 and C = 0 for M/B < 0 in
the two-dimensional case. This means that the parity δk∗

πππ

describes the transition from the topological insulator to the
trivial insulator via gap closing.

In Appendix C, we derive an effective Dirac theory for the
case of hybridization with �8(2).

III. SUMMARY AND DISCUSSION

It is essential to construct realistic lattice models when
researching novel quantum states of matter. In this study,
we construct an effective Anderson lattice model in order
to study an interplay between the topological aspect and
strong correlation, regarded as two cornerstones for novel
quantum states of matter. The topological structure could be
introduced in the spin-pseudospin–dependent hybridization
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between conduction electrons and localized electrons, which
originates from the interplay between the spin-orbit interaction
and crystalline electric field for localized f electrons. The
spin-pseudospin–dependent Kondo effect plays essentially the
same role as the spin-orbit coupling for topological insulators,
allowing the topological Kondo insulator inside the Kondo
insulating phase. Although its existence was already pointed
out in an interesting recent study,28 our detailed slave-boson
analysis has clarified its position in the phase diagram. In
addition, we can argue that the existence of the topological
Kondo insulating phase is robust against quantum correc-
tions because hybridization fluctuations cannot be strong
inside the Kondo insulator, and gauge fluctuations are not
either.

Unfortunately, it is difficult to say that such topological
states are quite interesting because the appearance of the
topological Kondo insulator just comes from the inversion of
heavy-fermion bands, basically the same as that in topological
insulators of noninteracting electrons. However, we would like
to point out that the present effective lattice model has a huge
potential for novel quantum states of matter. In particular,
we expect interesting spin-ordering structures in the position
of the fractionalized Fermi liquid state, which results from
the underestimation of spin correlations in the slave-boson
approach. In this respect, the saddle-point analysis based
on the slave-fermion theory36 will open the possibility of
fruitful spin structures, where exotic ordering of localized
spins may appear as a result of the spin-dependent Kondo
effect. Recently, the integer quantum Hall effect was proposed
in the ferromagnetically Kondo coupled lattice model on
geometrically frustrated lattices,37 where the kinetic-energy
cost for conduction electrons becomes reduced due to the
emergence of an internal magnetic flux from the formation
of the spin chirality order. In addition, it is natural to expect
the possibility of novel quantum criticality between the frac-
tionalized Fermi liquid and the topological Kondo insulator
because the band inversion occurs with the formation of the
heavy-fermion band at the same time, quite uncommon in
the Landau-Ginzburg-Wilson description for phase transitions.
Of course, anomalous scaling near this quantum criticality is
expected to be beyond the scope of the present mean-field
analysis. Recently, two of us constructed an Eliashberg theory
for the spin-density-wave transition in the surface state of
the three-dimensional topological insulator,38 where the band
reconstruction is not introduced but fluctuation corrections are
incorporated. In this study, we uncovered that the anomalous
self-energy correction (the of-diagonal self-energy in the spin
or pseudospin space) is essential for self-consistency. We
speculate that mathematically the same self-energy correction
via hybridization fluctuations will play an important role for
this nontrivial quantum criticality. In particular, we expect that
the characteristic feature for this quantum critical point may
be introduced in scaling of the anomalous Hall conductivity.
Numerical simulations for this model seem to be invaluable.

One may wonder what the role is of finite U in the Anderson
lattice model instead of the U → ∞ limit, where double
occupancy is allowed to cause additional charge fluctuations,
which differ from those due to hybridization with conduction
electrons. The slave-rotor representation has been developed
to describe the Mott transition from a spin liquid to a Fermi

liquid,39–41 where charge fluctuations from double occupancy
are taken into account. If we try to apply this methodology to
the Anderson lattice model, we face the difficulty of having
to deal with the hybridization coupling term. When we treat
such a term introducing condensation of the rotor field, the
result will be basically the same as the slave-boson approach
of the present model. On the other hand, if we introduce the
Kondo effect from an uncondensed phase as the “conventional’
slave-rotor approach,39,41 we need to take quantum corrections
from the hybridization term fully self-consistently at least
in the one-loop level. Then, we can perform the standard
“mean-field’ analysis with such a modified slave-rotor theory.
However, this procedure contains additional self-consistent
equations for self-energy corrections beyond the standard
slave-rotor analysis that are more complicated and beyond
the scope of the present issue, i.e., the phase structure of
the topological Kondo insulating system. However, this is
an important and fundamental problem in that the nature of
an orbital-selective Mott transition in the Anderson lattice
model32 may differ from the Mott transition of the Hubbard
model. This deserves to be studied more carefully in the near
future.

Recently, SmB6 has been suggested to belong to a class
of topological Kondo insulators.42 However, it has not been
completely confirmed yet whether this Kondo semiconductor
is or can become a topological insulator. The existence of the
so-called “in-gap’ states makes the problem difficult. Actually,
the origin of in-gap states is still controversial,43 although
the in-gap states have been observed by various experimen-
tal measurements such as resistivity, optical conductivity,
neutron scattering, specific heat, and NMR relaxation rate.
Other than these experimental measurements, more elaborate
observations for fingerprints, intrinsic in topological insulators
only, should be made to distinguish the topological aspect of
systems.
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APPENDIX A: MODEL HAMILTONIAN IN TETRAGONAL
SURROUNDINGS

We consider the effect of symmetry lowering from cubic to
tetragonal. In the cubic crystal structure, the level scheme of
the f electron for the j = 5/2 multiplet is given by

D5/2↓Oh = �7 ⊕ �8,

which serves as a basis for the extraction of the hybridization
Hamiltonian. In the tetragonal surroundings, the �7(Oh) and
�8(Oh) bases are reduced,

�7(Oh)↓D4h = �7,

�8(1)(Oh)↓D4h = �7,

�8(2)(Oh)↓D4h = �6,
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respectively. Therefore, �7(Oh) and �8(1)(Oh) states can mix in
the tetragonal surroundings, while the �8(2)(Oh) doublet splits
from the �8(Oh) quartet by the tetragonal crystalline electric
field.

Referring to the above discussion, we can imagine a special
case in which only one f -electron doublet is relevant to
describe the low-energy physics in the tetragonal system. If
the relevant doublet belongs to �7 in the tetragonal system, the
effective Hamiltonian will be

H�7 = Hc + Hf + H
�7
hyb,

Hc =
∑

k

∑
σ

(
εc

k − μc

)
c
†
kσ ckσ ,

Hf =
∑

i

∑
τ

(εf − μc)f †
iτ fiτ + U

∑
i

nf iτ nf i−τ ,

H
�7
hyb =

∑
k

[c†k↑ c
†
k↓]d�7 (k) · σ̂

[
fk+
fk−

]
+ H.c.,

with

εf = εf �7 ,

d�7 (k) = (2
√

3iṼsf sin kx,2
√

3iṼsf sin ky,0),

fkτ = fk�7τ ,

where εf �7 is the relevant �7 doublet corresponding to fk�7τ ,
and Ṽsf is affected from the original Vsf by the diagonalization
in the tetragonal surroundings.

When the relevant doublet is �6, the effective Hamiltonian
becomes

H�6 = Hc + Hf + H
�6
hyb,

Hc =
∑

k

∑
σ

(
εc

k − μc

)
c
†
kσ ckσ ,

Hf =
∑

i

∑
τ

(εf − μc)f †
iτ fiτ + U

∑
i

nf iτ nf i−τ ,

H
�6
hyb =

∑
k

[c†k↑ c
†
k↓]d�6 (k) · σ̂

[
fk+
fk−

]
+ H.c.,

with

εf = εf �6 ,

d�6 (k) = (−2iVsf sin kx,2iVsf sin ky,4iV ′
sf sin kz),

fkτ = fk�6τ ,

where V ′
sf corresponding to the hybridization to the z direction

is modified by the tetragonal surroundings. Here, εc
k is the

dispersion relation of conduction electrons in the tetragonal
surroundings.

APPENDIX B: REVIEW OF THE Z2 TOPOLOGICAL INDEX

We review the parity eigenvalue in the Z2 topological
indices of Eqs. (26) and (27). Generally speaking, any
four-by-four matrices with the Hermitian property can be
decomposed by the identity matrix I , five Dirac matrices
�a , and their ten commutators �ab = [�a,�b]/(2i). Thus, our
Hamiltonian matrix H�(k) can be expressed in terms of these

16 basis matrices. It is convenient to choose the following
representation for the Dirac matrices:

�(1,2,3,4,5) = (τ z ⊗ σ 0,τ x ⊗ σ 0,τ y ⊗ σ x,τ y ⊗ σ y,τ y ⊗ σ z),

where τ α and σ α are 2 × 2 matrices in the orbital (s and f )
and spin spaces, respectively.

An essential aspect is that this general expansion can be
simplified near gap closing momentum points, which occur
at time-reversal-invariant momentum points k∗

m, where the
gap closes linearly in momentum, thus the effective theory
is given by the Dirac theory. Such a Dirac theory, referred
as the Bernevig-Hughes-Zhang model,35 can be expanded by
only I and �a as

H�
k∗

m
(k) = d�

0 (k)I +
5∑

a=1

d�
a (k)�a.

Among these Dirac matrices, �1 is merely the parity operator
P̂ in the present representation,

P̂ = τ z ⊗ σ 0,

where τ z = + and τ z = − correspond to s and f orbitals,
respectively. The following relations on parity should be noted:

P̂�a P̂
−1 = �a for a = 1,

P̂�a P̂
−1 = −�a for a �= 1.

Therefore, �1 is only a parity-even Dirac operator.
For the three-dimensional system, there are eight time-

reversal-invariant points k∗
m in the first Brillouin zone. We

obtain two invariants at such time-reversal-invariant points,
given by

�H�(k∗
m)�−1 = H�(k∗

m),

P̂H�(k∗
m) P̂

−1 = H�(k∗
m),

where � is the time-reversal operator. Considering the relation
of Dirac matrices on parity transformation, we can easily
estimate the eigenvalue at k∗

m,

E�(k∗
m) = d�

0 (k∗
m)I + d�

1 (k∗
m) P̂,

where d�
1 (k∗

m) is given by

d�
1 (k∗

m) = 1
2

[
εc

k∗
m

+ εt(k∗
m) − εf − λ

]
.

Then, the parity eigenvalue δm at k∗
m can expressed as follows:

δm = −sgn
[
d�

1 (k∗
m)

] = −sgn
[
εc

k∗
m

+ εt(k∗
m) − εf − λ

]
.

APPENDIX C: AN EFFECTIVE DIRAC THEORY
FOR THE HYBRIDIZATION COUPLING WITH THE

SYMMETRY �8(2)

In the hybridization with �8(2), the effective Hamiltonian
is
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H (k) =

⎛
⎜⎜⎜⎝

εc
k − μc V b(−2i sin kx + 2 sin ky) 0 4V bi sin kz

V b(2i sin kx + 2 sin ky) −εt(k) + ε̃f − μc 4V bi sin kz 0

0 −4V bi sin kz εc
k − μc −V b(2i sin kx + 2 sin ky)

−4V bi sin kz 0 −V b(−2i sin kx + 2 sin ky) −εt(k) + ε̃f − μc

⎞
⎟⎟⎟⎠ .

Expanding this Hamiltonian around the k∗
πππ point, we

reach the following expression for the Dirac theory:

H ( p) =
(

h(p) g(p)
g∗(p) h∗(−p)

)
,

where

h( p) = ε( p)σ0 + d( p) · σ ,

g( p) = −2Aipzσx,

ε( p) = C − D
(
p2

x + p2
y + p2

z

)
,

d( p) = (Apy, − Apx,M( p)),

M( p) = M − B
(
p2

x + p2
y + p2

z

)
,

C = 3t + 3

2
ε + 1

2
ε̃f − μc,

D = 1

2

(
t + ε

2

)
,

A = 2V b,

B = 1

2

(
t − ε

2

)
,

M = 3t − 3

2
ε − 1

2
ε̃f .
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