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Finite-size effects in transport data from quantum Monte Carlo simulations
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We have examined the behavior of the compressibility, the dc conductivity, the single-particle gap, and the
Drude weight as probes of the density-driven metal-insulator transition in the Hubbard model on a square
lattice. These quantities have been obtained through determinantal quantum Monte Carlo simulations at finite
temperatures on lattices up to 16 × 16 sites. While the compressibility, the dc conductivity, and the gap
are known to suffer from “closed-shell” effects due to the presence of artificial gaps in the spectrum (caused by the
finiteness of the lattices), we have established that the former tracks the average sign of the fermionic determinant
(〈sign〉), and that a shortcut often used to calculate the conductivity may neglect important corrections. Our
systematic analyses also show that, by contrast, the Drude weight is not too sensitive to finite-size effects, being
much more reliable as a probe to the insulating state. We have also investigated the influence of the discrete
imaginary-time interval (�τ ) on 〈sign〉, on the average density (ρ), and on the double occupancy (d): we have
found that 〈sign〉 and ρ are more strongly dependent on �τ away from closed-shell configurations, but d follows
the �τ 2 dependence in both closed- and open-shell cases.
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I. INTRODUCTION

Metal-insulator transitions (MIT) are still a topic of intense
activity.1 In clean systems, an otherwise metallic system
can become an insulator through the opening of a gap in
the spectrum due to electronic repulsion; they become what
are known as Mott insulators.2 Alternatively, band insulators
correspond to systems in which the valence band is completely
filled, even in the absence of repulsive interactions. When
the onsite energies are different (but regularly distributed),
due to, say different atomic species, electrons may become
trapped: in this case, the system is a charge-transfer insulator.
In addition, in the presence of disorder, the system may
become an insulator as a result of electrons being unable
to diffuse throughout the lattice; i.e., they may undergo
an Anderson localization transition. One clear experimental
signature of the insulating state is a vanishing conductivity as
the temperature is decreased. However, from the theoretical
point of view, and in the context of quantum Monte Carlo
(QMC) simulations3–7 in particular, detecting an insulating
state is not always straightforward. First, one necessarily
deals with systems of finite size, hence with gaps in the
spectrum which may be of the same magnitude as the ones
responsible for the insulating behavior. These gaps occur
at filling factors corresponding to “closed shells,” and give
rise to atypical behavior in several quantities of interest;
further, these closed-shell effects, which are readily seen in the
noninteracting case, can persist in the presence of interactions
(see below). Second, QMC simulations are plagued by the
“minus-sign problem,”6,7 which precludes the study of several
low-temperature properties of the system as the electronic
density is varied continuously. And, finally, in spite of the wide
variety of quantities at our disposal to probe a MIT, such as
the compressibility, the dc conductivity, the single-particle gap,
and the Drude weight,8 to name a few, they yield conflicting
information in some cases, the origin of which is still not
fully understood. For instance, under somewhat restrictive
conditions,9–13 the dc conductivity can be calculated in a

convenient way, without resorting to analytic continuation of
imaginary-time QMC data to real frequencies, which may be
a delicate matter;14,15 however, in the case of the Hubbard
model, for some particular combinations of lattice size and
electronic densities (away from half-filling), the conductivity
behaves as if the system were insulating, which casts doubts on
whether the conditions are really met, or if it is a manifestation
of closed-shell effects, or both. In the case of homogeneous
versions of well-studied models, one may be able to generate
data for many different lattice sizes for a given electronic
density (minus-sign problem permitting); in this way, a trend
with system size can be established, and any deviation from
it should be readily identified. However, this may not be
the case of systems with an overlying structure, such as a
superlattice,17,18 a checkerboard lattice, or even in the presence
of staggered onsite energies (the ionic Hubbard model).19–22

Our purpose here is to shed light into these discrepancies,
and to compare different approaches to detect a MIT from
QMC data; as a by-product, we will also establish a connection
between the behavior of the compressibility and the infamous
sign problem of the fermionic determinant. The layout of the
paper is as follows. In Sec. II, we introduce the Hubbard model,
and outline the computational approach used. In Sec. III, we
discuss the predictions from the electronic compressibility,
when the effects of closed shells manifest themselves as a
major finite-size effect. Section IV is devoted to finite-size
effects on the dc conductivity and the density of states,
as obtained through an inverse Laplace transform of the
current-current correlation function and the single-particle
Green’s function, respectively; in this section, we also provide
numerical estimates for the errors involved when the dc
conductivity is calculated setting the imaginary time τ = β/2,
where, as usual, β ≡ 1/T , in units such that the Boltzmann
constant is unity. In Sec. V, we discuss the Drude weight
in detail, and show that it does not suffer from closed-shell
effects. The single-particle excitation gap is considered in
Sec. VI, and we find that it suffers from the same closed-shell
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effects as the other probes of the insulating state, apart from
the Drude weight. In Sec. VII, a systematic study leads to
a connection between the sign of the fermionic determinant
and the compressibility; we also discuss the influence of the
imaginary-time interval on some of the data. And, finally,
Sec. VIII summarizes our findings.

II. MODEL AND CALCULATIONAL DETAILS

The simplest model to capture the physics of Mott insulators
is the repulsive Hubbard model, which is characterized by the
Hamiltonian

H = −t
∑

〈i,j〉,σ
(c†iσ cjσ + c

†
jσ ciσ )

+U
∑

i

(
ni↑ − 1

2

) (
ni↓ − 1

2

)
− μ

∑
i

ni, (1)

where, in standard notation, ciσ is the fermion destruction
operator at site i with spin σ =↑ , ↓, niσ = c

†
iσ ciσ , and ni =

ni↑ + ni↓. We only consider nearest-neighbor hopping (indi-
cated by 〈i,j 〉) on a two-dimensional L × L square lattice, and
work in the grand-canonical ensemble; the chemical potential
μ is tuned to yield the desired density ρ = ∑

i〈ni〉/N , where
N = L2 is the number of lattice sites. The hopping parameter
t sets the energy scale, so we take t = 1; throughout this paper,
we have considered the weak- to intermediate-coupling regime
U � 4, for which size effects are more severe.

We use determinant quantum Monte Carlo (DQMC)
simulations3–5,7,23 to investigate the properties of the Hubbard
model. In this method, the partition function is expressed as
a path integral by using the Suzuki-Trotter decomposition
of exp(−βH), introducing the imaginary-time interval �τ .
The interaction term is decoupled through a discrete Hubbard-
Stratonovich transformation,23 which introduces an auxiliary
Ising field. This allows one to eliminate the fermionic degrees
of freedom, and the summation over the auxiliary field (which
depends on both the site and the imaginary time) is carried
out stochastically. Initially, this field is generated randomly,
and a local flip is attempted, with the acceptance rate given
by the Metropolis algorithm. The process of traversing the
entire space-time lattice trying to change the auxiliary field
variable constitutes one DQMC sweep. For most of the data
presented here, we have used typically 1000 warmup sweeps
for equilibration, followed by 4000 measuring sweeps, when
the error bars are estimated by the statistical fluctuations;
when necessary, the data were estimated over an average
of simulations with different random seeds. Typically, we
have set �τ = 0.125, but often data were also collected for
�τ = 0.0625, just to confirm that systematic errors are indeed
small; further, for some quantities, we have also performed
extrapolations toward �τ → 0 from up to eight distinct values
of �τ . One should also keep in mind that since we do not use a
checkerboard breakup of the lattice, our equal imaginary-time
data for U = 0 are exact, so that they do not depend on
the imaginary-time discretization; the τ -dependent quantities
result from sampling even for U = 0, but the statistical errors
are negligible in this case. With the updating being carried out
on the Green’s functions,3,4,7 at the end of each sweep we have

at our disposal both equal-“time” and τ -dependent quantities,
which we discuss in turn.

III. ELECTRONIC COMPRESSIBILITY

Let us first consider the electronic compressibility κ =
ρ−2∂ρ/∂μ. Being a direct measure of the charge gap, it may
be used to detect insulating phases; a major computational
advantage is that it is a local quantity, thus fluctuating very
little within the DQMC approach. In Fig. 1(a), the density
ρ is plotted as a function of the chemical potential, for
different lattice sizes, for the free case U = 0, and at a fixed
temperature. If taken at face value, plateaus in the ρ × μ curves
would be identified with incompressible phases, and hence
with insulating regions. However, a closer look reveals that
both the width of the plateaus, as well as their positions, are
strongly dependent on the finite system sizes used. Given that
for U = 0 the system is certainly metallic for all densities,
the presence of these plateaus can be traced back to gaps
in the energy spectrum of the noninteracting Hubbard model
on a finite square lattice, which is given in the usual way
by E = ∑

q�qF (ρ);σ ε(q), with ε(q) = −2t(cos qx + cos qy),
where qF (ρ) is the Fermi wave vector for the density ρ. In
Fig. 2, the total energy is shown as a function of the electronic
density for a 10 × 10 lattice: the energy gaps do not have the
same magnitude, and one should notice, in particular, the gap
at ρ = 0.42, which is quite large in comparison with the those
between levels with E < −2. This gap appears as a plateau
in the data for the 10 × 10 lattice in Fig. 1(a), indicated by
the horizontal dashed line. The existence of this “gap” is a
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FIG. 1. (Color online) Electronic density vs chemical potential:
(a) for the free case, at β = 16, and for different linear lattice sizes L;
(b) for the L = 10 lattice and different interactions U . The horizontal
dashed lines highlight the specific density (ρ = 0.42) at which one
plateau appears for the L = 10 lattice.
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FIG. 2. (Color online) Total energy E as a function of electronic
density ρ for the L = 10 lattice at T = 0 in the noninteracting limit
(U = 0).

manifestation of what is referred to as the closed-shell problem
and is characteristic of the finiteness of the lattice. It should be
stressed that such effects are still present when the interaction
is switched on, at least up to intermediate values of U : from
Fig. 1(b), we see that the gap moves toward smaller values of μ

as U is increased, although without any noticeable decrease in
magnitude; in what follows, we illustrate further consequences
of these closed-shell effects. As the lattice size is increased,
the gaps become smaller, and the plateaus in the electronic
density become narrower, until they completely vanish in the
bulk limit L → ∞. For this reason, from now on we will refer
to these plateaus as pseudoinsulating states. The use of the
compressibility to locate insulating regions must therefore be
supplemented with thorough analyses of the robustness and
the width of the plateaus with system size and temperature.

IV. CONDUCTIVITY AND DENSITY OF STATES

The optical conductivity and the density of states (DOS) are
other probes of the insulating state, which are worth discussing
in depth; this is especially in order, given that the use of the
shortcut to calculate the dc conductivity (see below) has been
increasingly widespread,24,25 even beyond QMC.26

First, we recall that the simulations yield imaginary-time
quantities, such as the real-space single-particle Green’s
function

G(r ≡ i − j,τ ) = 〈ciσ (τ )c†jσ (0)〉, 0 � τ � β (2)

and the current-current correlation functions


(q,τ ) ≡ 〈jx(q,τ )jx(−q,0)〉, (3)

where jx(q,τ ) is the Fourier transform of the time-dependent
current-density operator jx(i,τ ) ≡ eHτ jx(i) e−Hτ , with

jx(i) = it
∑

σ

(c†i+x̂,σ
ci,σ − c†i,σ ci+x̂,σ

). (4)

Now, the fluctuation-dissipation theorem yields27


(q = 0,τ ) =
∫ ∞

−∞

dω

π

e−ωτ

1 − e−βω
Im 
(q = 0,ω), (5)

and linear response theory implies28

Im 
(q = 0,ω) = ω Re σ (ω); (6)

similarly, we have27,28

G(r = 0,τ ) =
∫ ∞

−∞
dω

e−ωτ

1 + e−βω
N (ω). (7)

The calculation of σ (ω) and N (ω) is then reduced to numer-
ically invert these Laplace transforms at a given temperature.
Here, we employ an analytical continuation method,15 through
which the conductivity and the DOS can be obtained for the
whole spectrum ω.16 While there has been some debate over
which type of analytic continuation method is best suited to
perform these Laplace transforms,14,29 our purpose here is
not to perform a systematic study of the outstanding issues;
instead, we adopt one of the procedures15 to extract estimates
for σ (ω), which, in turn, will be used to test the trends in the
calculation of σdc, as discussed below.

In Fig. 3, we compare the DOS at density ρ = 0.42 for
the free and interacting cases, obtained through the method
described in Ref. 15. It is clear that irrespective of the value of
U , the DOS vanishes at the Fermi energy for L = 10, while
being nonzero for L = 6 and 12. Figure 4 shows the optical
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FIG. 3. (Color online) DOS spectrum for different lattice sizes
at ρ = 0.42, and for U = 0 (a) and U = 2 (b). The Fermi energy
(ω = 0) is shown as a dashed line. The error bars represent statistical
errors from different realizations.
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FIG. 4. (Color online) Optical conductivity from inverted Laplace
transform (see text) at (a) half-filling ρ = 1 and (b) for ρ = 0.42, at
given U and inverse temperature, for different lattice sizes and �τ .
The error bars represent statistical errors from different realizations.

conductivity for the interacting case (U = 2), calculated with
the same inversion method,15 both at half-filling and for ρ =
0.42. We see that, while at half-filling the insulating behavior
is apparent for all system sizes [σdc(T ) = limω→0 σ (ω,T ) →
0], for ρ = 0.42 one would be led to identify an insulating
behavior if only data for a 10 × 10 lattice were available. One
should also note that data for both �τ = 0.125 and 0.0625 are
the same, within error bars. The origin of this “false insulating”
behavior can therefore be traced back to the closed-shell effects
discussed above, although here σ (ω) is particularly affected by
the large gap required to add an electron to the closed shell of
42 electrons; an analogous problem occurs at the closed-shell
density of ρ = 86/144 for the 12 × 12 lattice (not shown).

In addition to suffering from the closed-shell problem, the
inversion procedure adopted15 can be very costly in computer
time, due to the need of very small error bars in the data
for 
. An alternative method9–12 to obtain σdc(T ) consists of
setting τ = β/2 ≡ 1/2T in Eq. (5), and assuming σ (ω) admits
a Taylor expansion near ω = 0, the integral can, in principle,
be carried out term by term in the surviving even powers of ω,
and we get

σdc(T ) ≈ σ
(0)
dc (T ) + σ

(2)
dc (T ), (8)

plus higher-order terms, with

σ
(0)
dc (T ) = 1

πT 2

(q = 0,τ = 1/2T ) (9)

and

σ
(2)
dc (T ) = −T 2π2

(
∂2σ

∂ω2

)
ω=0

. (10)

Note that if one wants to take σ
(0)
dc (T ) as an approximation

for σdc(T ), σ
(2)
dc (T ) must be small; this should occur if the

temperature is low enough, and the frequency dependence of
the conductivity is smooth, i.e., if T 
 
, where 
 sets a small
energy scale of the problem.10 While it is hard to assess a priori
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FIG. 5. (Color online) Temperature dependence of the dc con-
ductivity [circles, zeroth order in ω, and triangles, up to second order;
see Eqs. (8)–(10)], and of the Drude weight (squares; see Sec. V),
for U = 2, on a 10 × 10 lattice, and for different electronic densities.
The error bars for σdc are due to the averaging process, while those
for D/e2 are due to extrapolations toward ωm → 0.

if this condition is satisfied, in the present case we have data for
σ (ω) at our disposal for several temperatures; this allows us to
calculate σ

(2)
dc (T ), and check the errors involved in neglecting it

in Eq. (8). For ρ = 1, we see from Fig. 5(a) that σ
(0)
dc (T ) rises

as the temperature is lowered [(red) circles], but eventually
bends down at some temperature, consistently with σ

(0)
dc → 0

as T → 0; in a generic situation, in which QMC data for these
lowest temperatures were not available, one could be misled
to state that the system is metallic. However, when σ

(2)
dc (T )

is included [(blue) triangles in Fig. 5(a)], the conductivity
acquires the correct steady decrease with decreasing T � 0.15;
this shows that higher-order terms may indeed be crucial at
temperatures not so low. Figure 5(b) shows that for ρ = 0.42,
σ

(0)
dc steadily decreases as T decreases, which is suggestive of

insulating behavior; the inclusion of data for σ
(2)
dc (T ) does not

revert this trend. Since for other densities the metallic behavior
is unequivocal [see, e.g., Fig. 5(c)], one concludes that the
spurious effect for ρ = 0.42 is yet another manifestation of the
closed-shell density. We have found that these overall features
are also present for U = 4; in particular, the contribution
of σ

(2)
dc (T ) when ρ = 0.42, although significant, is again

not sufficient to yield a metallic behavior, thus confirm-
ing that the false insulating state is indeed a closed-shell
effect.
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From this analysis we conclude that extreme care must
be taken when examining limT →0 σ

(0)
dc (T ) to indicate whether

the ground state is metallic or insulating; in addition, while
the overall trend may be captured (away from closed-shell
densities), attempts to fit experimental data with σ

(0)
dc (T ) should

lead to error, if the temperatures involved are not too low.

V. DRUDE WEIGHT

We now discuss the Drude weight D, defined through

lim
T →0

Re σ (ω,T ) = D δ(ω) + σreg(ω), (11)

where σreg(ω) is the regular (or incoherent) response. Approx-
imants to D are readily available from QMC simulations as8,12

D̃m(T )

πe2
≡ [〈−kx〉 − 
(q = 0,iωm)], (12)

where ωm = 2mπT is the Matsubara frequency, and 〈kx〉 is the
average kinetic energy of the electrons per lattice dimension.
The Drude weight is then given by

lim
T ,m→0

D̃m ≡ lim
T →0

D(T ) = D. (13)

In actual calculations, both limits should be taken through
extrapolations of sequences of low-temperature frequency-
dependent data D̃m(T );30 finite-size effects and finite-�τ

effects must also be taken into consideration when analyzing
the data.

Figure 6(a) illustrates how the uniform current-current
correlation function at half-filling depends on the Matsubara
frequency, with both β and U fixed, for different system sizes.
While 〈−kx〉 is hardly dependent on the system size (see solid
symbols in Fig. 6), the same does not hold for 
(0,ωm).
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FIG. 6. (Color online) Current-current correlation function

(q = 0,ωm) at half-filling ρ = 1.0, as a function of ωm/2πT , where
ωm is the Matsubara frequency, at a fixed inverse temperature β = 16.
The solid symbols denote 〈−kx〉. In (a), the onsite repulsion is kept
fixed and the data correspond to different linear lattice sizes; in (b),
data are for a 12 × 12 lattice, but for different values of U . The error
bars represent statistical errors from different realizations.
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FIG. 7. (Color online) Same as Fig. 6, but for ρ = 0.42; in (b),
data are for a 10 × 10 lattice.

Nonetheless, approximants to the Drude weight, as given by
Eq. (12), do indeed approach zero with growing linear lattice
size L, as it should for an insulating state. Figure 6(b) displays
the same quantity, now for a fixed system size, but for different
values of U ; we see that as m → 0, D̃m → 0 for U �= 0, while
D̃m approaches a nonzero value for U = 0.

Data for ρ = 0.42 and U = 2 are shown in Fig. 7. We see
that D̃m/πe2 [Eq. (12)] for the 10 × 10 lattice does not show
any false insulating behavior, as it did for other quantities: in
Fig. 7(a) the difference between 〈−kx〉 and limωm→0 
(0,ωm)
does not display a significant change with lattice size, while in
Fig. 7(b) the data show that the closed-shell problem does not
manifest itself over a wide range of values of U .

In order to extract more quantitative data, we adopt the
following procedure: For fixed L, U , and β, we plot D̃m

as a function of m ≡ ωm/2πT , and extrapolate to m → 0
with the aid of a parabolic fit to the data for the smallest m’s
(figure not shown); we then obtain the temperature-dependent
Drude weight D(T ) appearing in Eq. (13). By varying the
temperature, system size, and U , we can generate plots of
D(T ), examples of which are shown in Figs. 8 and 9. As
shown in Fig. 8, for a 12 × 12 lattice at half-filling, in the
noninteracting case the Drude weight clearly extrapolates to a
nonzero value as T → 0. For U > 0, D(T ) vanishes at some
temperature T0(L,U ), which increases with U for a given L.
Data for half-filling in Fig. 9 show that at a fixed temperature,
the Drude weight vanishes as the lattice size increases; that is,
the points below T0 in Fig. 8 should approach the D = 0 line
for sufficiently large L.

Away from half-filling, the minus-sign problem prevents us
from analyzing the size dependence at very low temperatures,
and we are restricted to data for β = 16 for the densities
ρ = 0.42, and 0.66, while keeping U � 2. Nonetheless, some
important conclusions can be drawn from our analyses of
the data for D(T ) on finite-sized lattices: (1) we have found
no evidence of a vanishing Drude weight at fixed, finite
temperatures in the limit L → ∞, as previously suggested for
the one-dimensional case;31 (2) the dependence of D with 1/L,
for fixed both temperature and onsite repulsion, is rather weak,
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FIG. 8. (Color online) Drude weight approximants as a function
of temperature for ρ = 1.0 for a L = 12 lattice for different values
of U . The error bars result from uncertainties in the extrapolations
ωm/2πT → 0 (see text).

without suffering from closed-shell effects, thus rendering
extrapolations toward L → ∞ trustworthy. Once again, data
for �τ = 0.125 are the same as those for �τ = 0.0625, within
error bars. The small dependence of the Drude weight on �τ

is shown in Fig. 10.
Our results therefore show that the Drude weight has been

hitherto unjustifiably overlooked as a reliable probe of the
metal-insulator transition; its use should be more widespread,
given that it is free from closed-shell effects, and its clear-cut
temperature dependence allows for an unambiguous charac-
terization of insulating states.
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symbols. Error bars result from uncertainties in the extrapolations
ωm/2πT → 0 (see text) and are only appreciable for ρ = 1.
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FIG. 10. (Color online) Dependence of the (normalized) Drude
weight with the square of the “time” interval, at fixed temperature and
lattice size at half-filling (triangles), and at ρ = 0.42 (circles). Error
bars result from uncertainties in the extrapolations ωm/2πT → 0
(see text).

VI. SINGLE-PARTICLE EXCITATION GAP

Another quantity used to infer the transport properties
of the system is the single-particle excitation gap �sp(q),
which is the minimum energy necessary to extract one
fermion from the system and is, essentially, related to the
gap measurable in photoemission experiments. It can be
obtained from the imaginary-time–dependent Green’s function
in reciprocal space, which for large τ decays exponentially, i.e.,
G(qF ,τ ) ∼ e−�sp(qF )τ (see, e.g., Ref. 32). We can therefore
obtain �sp through fits of QMC data for the Green’s function,
calculated at the Fermi wave vector for the electronic densities
of interest. Figure 11 shows the imaginary-time dependence
of the Green’s function for the half-filled case. In the upper
panel, the absence of a decay in the noninteracting case is
a signature of a metallic state, while the exponential decay
in the lower panel results from a finite gap. The inset in
Fig. 11(b) compares data obtained for two values of �τ : the
time-dependent Green’s functions lie on the same exponential
curve, which illustrates that this quantity is also negligibly
dependent on the �τ used. The size dependence of the gap
is shown in Fig. 12 for different values of U ; for U = 2, one
also sees that data for a smaller �τ lie on the same curve. The
limiting (i.e., L → ∞) value of �sp increases from zero with
increasing U , as expected; it is again clear that the value of
�τ does not influence this extrapolation procedure.

Figure 13 shows data for the Green’s function for the density
ρ = 0.42. In the noninteracting case, and discarding the data
for L = 10, we see that the slope decreases as L increases,
leading to a vanishing gap as L → ∞, as one would expect
for a metallic system; the data for L = 10 are completely
off the mark, again as a result from the closed-shell density
for this L. For the interacting case [Fig. 13(b)], the Green’s
function for L �= 10 behaves in a way similar to that for the free
case; again, the L = 10 case behaves completely differently
from the others, bearing a negative gap as the signature of
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FIG. 11. (Color online) Log-linear plot of the imaginary-time
dependence of the Green’s function G(q,τ ) at the Fermi wave
vector qF for different lattice sizes at half-filling ρ = 1.0 for the
noninteracting (a) and interacting (b) cases. The error bars in (b)
are due to statistical errors from averaging over different realizations
and equivalent qF points; here, �τ = 0.125. The inset includes data
obtained with �τ = 0.0625, denoted by the corresponding crossed
symbols from the main panel.
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FIG. 12. (Color online) Finite-size dependence of the single-
particle excitation gap �sp(qF ) at half-filling for different values of
the onsite repulsion. The error bars are due to the exponential fits
to the data for G(qF ,τ ) (see text). The crossed symbols denote the
corresponding data for �τ = 0.0625.
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FIG. 13. (Color online) Same as Fig. 11, but now for the electronic
density ρ = 0.42.

the closed-shell problem. In this respect, it is interesting to
have in mind that the single-particle excitation gap provides a
very clear indication that a closed-shell incident is at play for a
given combination of ρ and L. For completeness, we note that,
similarly to half-filling (Fig. 11), the dependence with �τ is
negligible.

VII. MINUS-SIGN PROBLEM

In the present formulation of the QMC method, once the
fermionic degrees of freedom are traced out, the role of
Boltzmann factor in the partition function is played by the
product of two determinants (see, e.g., Refs. 4,6, and 7).
Since one can not guarantee that this product is positive definite
for each configuration of the auxiliary fields, the averages are
carried out in the ensemble of positive Boltzmann weights, at
the expense of having to divide these averages by the average
sign of the product of determinants 〈sign〉. Therefore, when
〈sign〉 becomes significantly smaller than 1, the average values
of most quantities of interest become meaningless: this is the
infamous “minus-sign problem.” It should be noted that other
implementations of the QMC method also run into similar
problems (see, e.g., Ref. 33).

This problem has eluded a variety of attempts of solution
proposed over the years (see, e.g., Ref. 7 for a partial list of
references). For instance, once realized that simply ignoring
the negative sign leads to serious discrepancies,6 attempts to
use different Hubbard-Stratonovich transformations turned out
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FIG. 14. (Color online) Average sign (circles) of the fermionic
determinant and κ̃ [(green) thick line for U = 0, and (green) triangles
for U = 2; see text for the definition of κ̃] as functions of electronic
density for different system sizes. Filled, half-filled, and empty
circles, respectively, denote U = 2, 3, and 4; data for U = 0 are
with β = 30, while for U �= 0 data are with β = 16. For the sake
of clarity, error bars were omitted since they are smaller than data
points.

to be fruitless;34,35 the minus-sign problem has been alleviated
with implementations of QMC constraining the sampling
process,36–39 from which a ground-state wave function is ob-
tained. Other frameworks have been proposed to improve the
sign problem,40–42 but systematic implementations comparing
results for, e.g., correlation functions in the Hubbard model
are, as far as we know, still unavailable.

More recently, arguments have been given43 suggesting that
there is no generic solution to the sign problem; instead, in the
most favorable scenario, one may find special solutions for
specific models.43 In view of this, it is imperative to gather
as much information as possible about 〈sign〉. With this in
mind, we define a quantity κ̃ ≡ 1 − ρ2κ , directly related to
the compressibility κ defined in Sec. III. Figure 14 shows
that κ̃ reaches the value 1 at the densities corresponding to
closed shell, as already discussed. In the same figure, we
also show 〈sign〉 as a function of ρ: interestingly, we see
that it tracks κ̃ , in the sense that, at least for U � 2, it is
harmless at densities such that κ̃ ≈ 1 (κ ≈ 0), but it can be
seriously deleterious to the QMC averaging process when the
system is more compressible, especially at larger values of
U . Since a larger compressibility, in turn, corresponds to
stronger density fluctuations, one may conclude that these
are inherently linked with the minus-sign problem. It is
worth noticing that improvements on convergence have been
achieved within both projector44,45 and fixed-node39 QMC
simulations if closed-shell configurations are used as initial
states; in addition, in Ref. 44, it was also pointed out that the
choice of closed-shell initial states led to larger 〈sign〉 than
when open-shell initial states were taken. On the other hand,
shell effects have also disrupted the density dependence needed
in the search for phase separation in the t-J model.46,47 Thus,
while indications of an interplay between closed-shell and the
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FIG. 15. (Color online) Average sign of the fermionic determi-
nant as a function of the square of Suzuki-Trotter time interval for
a 10 × 10 lattice, with (a) β = 10 and (b) β = 16. Black squares
and (green) up triangles, respectively, correspond to the closed-shell
density ρ = 0.42 and to ρ ≈ 0.5; half-filled and filled symbols,
respectively, correspond to U = 2 and 4.

minus-sign problem have been suggested in the past, Fig. 14
presents the first systematic evidence of this connection.

It is also instructive to examine the behavior of 〈sign〉 with
�τ . Figure 15 compares data for one lattice size L = 10, but
for different values of U , β, and the chemical potential μ.
For β = 10, we see that for the closed-shell configuration
ρ = 0.42, 〈sign〉 ≈ 1 for all �τ in the range considered,
for both U = 2 and 4; this feature is maintained when β

is increased to 16, illustrating the harmlessness of 〈sign〉 at
the closed-shell density. Doping slightly away, e.g., for an
open-shell configuration with ρ ≈ 0.5, 〈sign〉 remains almost
independent of �τ for U = 2, but acquires a significant
dependence for U = 4, leading to low values for small �τ ;
for β = 16, 〈sign〉 ≈ 0 for all �τ in the relevant range. Worse
still, for U = 4 and ρ ≈ 0.7, 〈sign〉 is very close to zero for all
values of �τ considered, for both β = 10 and 16; this should
not come as a surprise, since Fig. 14 shows that κ̃ vanishes
near this density for the 10 × 10 lattice.

In Fig. 16, we display the dependence of two average
local quantities with �τ 2 for two fixed values of the chemical
potential, and for U = 4 and β = 10. Notwithstanding the fact
that systematic errors of order �τ 2 are expected as a result of
the Suzuki-Trotter decomposition, Fig. 16(a) shows that for
μ ≈ −3.2, the proportionality constant is quite small, so that
ρ = 0.42 over the whole range of �τ ; in the open-shell case,
for which 〈sign〉 deteriorates with decreasing �τ (see Fig. 15),
the dependence of ρ with �τ 2 is noticeable. By contrast,
Fig. 16(b) shows that the double occupancy

d ≡ 〈ni↑ni↓〉, (14)

follows the expected linear dependence with �τ 2 in both cases.
This indicates that whenever 〈sign〉 is strongly dependent on
�τ , one can still obtain meaningful averages by using solely
the data for the largest values of �τ to extrapolate toward
�τ = 0; although with less confidence, the same procedure
could be adopted for β = 16.
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FIG. 16. (Color online) Dependence of average values of (a)
electronic density and (b) double occupancy (see text) with the square
of the Suzuki-Trotter time interval for two values of the chemical
potential; U , β, and lattice size are fixed. The extrapolated values,
obtained from the fitting of a straight line through all points, are
shown in red at �τ = 0.

VIII. CONCLUSION

In conclusion, we have thoroughly examined the behavior
of several quantities obtained through QMC simulations at
finite temperatures for the homogeneous Hubbard model on
the square lattice and commonly used to locate insulating
behavior. Our results show that “closed-shell” effects, which
introduce important (though artificial) gaps in the spectrum,
may lead to false insulating behavior of the compressibility, of
the conductivity, and of the charge gap at certain combinations
of occupation and linear lattice size L; in situations in
which a long series of lattice sizes can not be obtained,
this may jeopardize extrapolations toward L → ∞. We have
also assessed corrections to the dc conductivity, which are
neglected when a Laplace transform is avoided through a

simplifying prescription, and found that the latter is not gener-
ically valid due to the absence of a sufficiently small energy
scale in the problem; although quite appealing, fittings to
experimental data with the conductivity thus obtained should
be avoided. The Drude weight, on the other hand, suffers from
more controllable finite-size and finite-temperature effects.
At half-filling, and at a fixed low temperature, it vanishes
with a power law in 1/L, the exponent of which depends
on U ; away from half-filling, the Drude weight is only
weakly dependent on either temperature and system size, being
free from the spurious behavior found in other quantities.
Therefore, amongst all quantities discussed here, the Drude
weight is certainly the most reliable one to use in situations
for which the data are limited to a restricted set of system
sizes.

In addition, we have also presented numerical evidence
showing that the sign of the fermionic determinant tracks
the compressibility: for densities at which the system is
“incompressible,” as a result of a gap due to the finiteness of the
lattice, 〈sign〉 ≈ 1, at least for U � 2. However, in-between
two successive incompressible densities, 〈sign〉 deteriorates
steadily as U increases. This behavior is suggestive that strong
density fluctuations may be linked to the minus-sign problem.
We have also investigated the influence of the imaginary-time
interval �τ on the behavior of 〈sign〉 and of some (local)
average quantities.

All analyzed quantities can be fitted to a linear dependence
with �τ 2, as expected from the Suzuki-Trotter discretization,
although at the closed-shell density, the slopes for both 〈sign〉
and the density ρ are very small. The �τ 2 dependence is
indicative that for some densities, one can confidently use data
for “large” �τ (i.e., those leading to 〈sign〉 � 0.5) to perform
extrapolations (toward �τ → 0) of average values.
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