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An effective field theory for clean electron systems is developed in analogy to the generalized nonlinear
σ model for disordered interacting electrons. The physical goal is to separate the soft or massless electronic
degrees of freedom from the massive ones and integrate out the latter to obtain a field theory in terms of
the soft degrees of freedom only. The resulting theory is not perturbative with respect to the electron-electron
interaction. It is controlled by means of a systematic loop expansion and allows for a renormalization-group
analysis in a natural way. It is applicable to universal phenomena within phases, and to transitions between
phases, with order parameters in arbitrary angular-momentum channels, and in the spin-singlet, spin-triplet,
particle-hole, and particle-particle channels. Applications include ferromagnetic and ferrimagnetic ordering,
non-s-wave ferromagnetic order (magnetic nematics), Fermi-liquid to non-Fermi-liquid transitions, and universal
phenomena within a Fermi-liquid phase.
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I. INTRODUCTION

The theory of many-fermion systems is of obvious im-
portance because of its ubiquitous applications in condensed-
matter physics. It is also a very hard problem due to the diffi-
culty of dealing with a macroscopic number of electrons which,
in many materials, interact strongly enough to preclude treat-
ing the interactions as weak perturbations of noninteracting
electrons. Historically, there have been two main approaches
to the problem. Landau’s Fermi-liquid theory,1,2 although
not perturbative, is phenomenological and self-contained in
nature, and often a more microscopic approach is desirable,
especially for investigations of the limitation of Fermi-liquid
theory. Many-body diagrammatic techniques,3,4 on the other
hand, are limited by their inherently perturbative approach.
Furthermore, it is neither feasible nor desirable to study all
aspects of a microscopic model, except in some special cases.
For many important applications it suffices to keep only the
low-lying excitations or soft modes of the system, which
govern the behavior at long times and large distances. The most
obvious examples of such applications are phase transitions,
but there also are many qualitative properties of entire phases
that depend on the soft modes only. These observables also
have the attractive property of being universal in the sense that
they depend only on basic symmetry properties of the system
and not on any microscopic details. Consider, for instance,
a Heisenberg ferromagnet. The critical behavior at the Curie
point, that is, the phase transition from the paramagnetic to
the ferromagnetic phase, is entirely governed by soft modes,5

but so is the divergence of the longitudinal susceptibility
everywhere in the ordered phase.6 To describe and understand
either phenomenon it therefore suffices to consider an effective
theory that takes into account only the relevant soft modes.
In the case of the Heisenberg ferromagnet at temperatures
T > 0, either a classical O(3) φ4 theory or an O(3) nonlinear σ

model provides a suitable effective theory.7 Such a theory can
sometimes be constructed based on symmetry considerations
only, but it often is desirable, and leads to greater physical
insight, to start with a microscopic description and derive the

effective theory by integrating out all nonessential degrees
of freedom in some simple approximation that respects the
crucial symmetries. The resulting “hydrodynamic,” that is,
long-wavelength and low-frequency, description of any system
of interest is complementary to, and serves a very different
purpose than, for instance, a first-principles approach that
aims at a description at atomic length and energy scales. In
order to obtain a well-behaved effective theory, care must be
taken to keep all soft modes of interest and all other soft
modes that couple to them. Integrating out soft modes leads
to long-ranged effective interactions between the remaining
degrees of freedom, and hence to nonlocal effective field
theories that can be hard to handle technically.

For noninteracting disordered electrons such an effective-
theory approach was pioneered by Wegner.8 Guided by an
analogy with classical ferromagnets he constructed a matrix
nonlinear σ model capable of describing the instability of
a (disordered) Fermi-liquid phase against the formation of
an Anderson insulator and allowed for the determination
of the critical behavior at the Anderson transition in terms
of an ε expansion about the lower critical dimension for
this problem, d−

c = 2. Wegner’s original formulation was
expanded upon by various authors,9–11 and eventually his σ

model was generalized to interacting disordered electrons.12

This theory and its generalizations have been extensively used
to describe the Anderson-Mott metal-insulator transition.13,14

These theories are fundamentally based on diffusive soft
modes and do not allow for the clean limit to be taken.
This led to the strange situation where a successful effective
soft-mode theory was available for disordered electrons, but
not for clean ones, although one might think that the latter
poses a simpler problem.15 This last conclusion is fallacious,
however, mostly because the number of soft modes is much
larger in clean electron systems than in disordered ones. This
was noted in Ref. 16, whose main objective was to provide a
thorough derivation of Finkelstein’s generalized nonlinear σ

model for disordered systems. While this theory did allow
for the clean limit to be taken, the resulting field theory
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had nonlocal vertices and did not offer any obvious way to
obtain a description as useful as the nonlinear σ model for
the disordered case. Another effective field theory for clean
electrons was developed in Ref. 17. This theory is technically
based on a supersymmetric matrix formulation and aims to
incorporate and unify various other approaches that discuss the
validity and limitations of Landau Fermi-liquid theory.18–23 It
introduces bosonic degrees of freedom and integrates out the
fermions, as did Ref. 16, in contrast to Shankar’s derivation of
Fermi-liquid theory that applied renormalization-group (RG)
techniques to a fermionic field theory.24 The theory of Ref. 17
has recently been refined25 and formulated both in a version
that is formally exact and may be better suitable for numerical
work than standard Monte Carlo techniques26 and as an
effective field theory for low-lying excitations.27 The latter
was used for an analysis of the low-temperature specific heat
in two-dimensional systems.

In the present paper we take a different approach to this
problem. It is similar in spirit to Refs. 17 and 27, but rather
different technically. Our physical motivation is the desirability
of a broadly useful effective theory that is capable of describing
widely different phenomena such as ferromagnetic ordering
in non-s-wave angular momentum channels;28,29 quantum
ferrimagnetic order, which has received little attention so far; a
possible breakdown of Fermi-liquid theory due to a vanishing
quasiparticle weight;30 and, in addition, novel universal as-
pects of the Fermi-liquid phase.30 We are interested in a local
field theory that is not perturbative with respect to the electron-
electron interaction, but rather can be controlled by means of
a systematic loop expansion. This will provide a basis for an
application of RG techniques that allow for a resummation of
the expansion in powers of the loop parameter and thus make
it possible to go beyond perturbation theory in a controlled
fashion. This not possible within the framework of traditional
perturbation theory,3,4 which provides no information about
the structure of the renormalized theory. Technically, the
theory we develop is based on a generalization of Ref. 16.
The reason for the nonlocality of the latter was its restriction
to density or s-wave (� = 0) modes, with soft modes in higher
angular-momentum channels being effectively integrated out.
Formulating the theory in terms of phase-space variables
allows one to keep the soft modes in all angular-momentum
channels. This leads both to a local theory and allows for
natural description of order in � �= 0 channels. Integrating out
the massive modes in a tree approximation leads to an effective
action that explicitly keeps all of the soft modes. Its structure
is different from that of the generalized nonlinear σ model for
the disordered case. It can be constructed to any desired order
in the soft degrees of freedom, which in turn makes it possible
to perform a loop expansion to any desired order.

The organization of this paper is as follows. In Sec. II
we formulate our model in terms of fermionic fields. We
then bosonize the theory by constraining bilinear products
of fermion fields to bosonic matrix fields Q and integrating
out the fermions. We then discuss symmetry properties of
the Q fields and representations of observables in terms of
Q-correlation functions. In Sec. III we identify the soft modes
of the action by means of a Ward identity. In Sec. IV we expand
the Q-field theory about a saddle-point solution that describes a
Fermi liquid and separate the soft fluctuations from the massive

ones by means of the Ward identity. The massive degrees
of freedom are then integrated out in a tree approximation
to derive an effective theory entirely in terms of the soft
modes. We also make contact with the density formulation
of Ref. 16. In Sec. V we discuss universal features of the
energy-dependent density of states (DOS) in a Fermi liquid as
a simple application. In Sec. VI we summarize and discuss the
effective theory. We finally discuss various future applications
of the theory. A discussion of the effects of quenched disorder
and a pedagogical discussion of the O(2) nonlinear σ model
that stresses analogies with the current theory are relegated to
two appendixes.

II. FIELD-THEORETIC FORMULATION
OF THE INTERACTING FERMION PROBLEM

A. Fermionic formulation

Our starting point is a description of interacting fermions
in terms of Grassmann fields. The partition function can be
written31

Z =
∫

D[ψ̄,ψ] eS[ψ̄,ψ]. (1)

Here ψ̄ and ψ are Grassmann-valued fields, and D[ψ̄,ψ] is
the Grassmannian integration measure. The action S has the
form

S =
∫

dx
∑

σ

ψ̄σ (x) [−∂τ − ε(∇) + μ] ψσ (x) + Sint.

(2a)
The first term describes noninteracting electrons with chemical
potential μ. For simplicity and definiteness we assume a single
parabolic band, that is,

ε(∇) = −∇2/2me, (2b)

with me the effective electron mass. If desired, the model can
easily be generalized to include a nontrivial band structure
instead. We use a (d + 1)-vector space-time notation with
x = (x,τ ),

∫
dx = ∫

V
dx

∫ 1/T

0 dτ . x denotes the position, τ

is the imaginary-time variable, V and T are the system volume
and the temperature, respectively, and σ =↑ , ↓≡ +,− is the
spin label. We use units such that h̄ = kB = 1. Sint describes
an electron-electron interaction via a two-body potential
v(x),

Sint = −1

2

∫
dx1 dx2

∑
σ1,σ2

v(x1 − x2) δ(τ1 − τ2)

×ψ̄σ1 (x1) ψ̄σ2 (x2) ψσ2 (x2) ψσ1 (x1). (2c)

In a microscopic theory the potential v(x) would be the
Coulomb interaction. Here we assume for simplicity that the
theory has already been renormalized to take into account
screening, so v(x) represents a statically screened Coulomb
interaction, or a some similar short-ranged model interaction.
Equation (2c) describes the interactions of number-density
fluctuations at all wavelengths, and in a microscopic descrip-
tion this is the only interaction term there is.32 Integrating
out fluctuations at short wavelengths in order to generate
an effective long-wavelength theory generates interaction
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amplitudes in the spin-triplet channel in addition to the spin-
singlet one, and in the particle-particle channel in addition to
the particle-hole hole one, and all of these effective interaction
amplitudes appear in all angular momentum channels.16,33,34

The theory we develop is general, and any desired interaction
amplitudes can be kept. However, for the sake of transparency
and simplicity of the formalism we restrict ourselves to a
finite number. Some of the most interesting applications of
the theory are related to instabilities of the Fermi-liquid state
due to a density-density interaction and to magnetic order of
the ferromagnetic or magnetic nematic variety. Furthermore,
the soft modes in the particle-particle channel become massive
in the presence of a magnetic field, as they do in disordered
systems,14 and hence can be suppressed experimentally.
Accordingly, in the remainder of this paper we keep only
interaction amplitudes in the particle-hole channel, and further
restrict ourselves to the spin-singlet s-wave (� = 0) and the
spin-triplet s-wave (� = 0) and p-wave (� = 1) channels.
Generalizations to other interaction channels, for instance,
the spin-triplet d-wave channel that has been discussed in
the literature,28 are straightforward. It needs to be stressed,
however, that a restriction to low-angular-momentum channels
represents an approximation over and above the low-energy re-
striction that is central to our approach and that a complete low-
energy effective theory needs to keep all angular momentum
channels.

We define Fourier transforms of the fermionic field,

ψ̄σ (k) ≡ ψ̄nσ (k) =
√

T/V

∫
dx e−ikx ψ̄σ (x),

(3)
ψσ (k) ≡ ψnσ (k) =

√
T/V

∫
dx eikx ψσ (x),

where k = (k,ωn) is a four vector that comprises a wave vector
k and a fermionic Matsubara frequency ωn = 2πT (n + 1/2),
and kx ≡ k · x − ωnτ . With the restrictions explained above
the action then reads

S =
∑
k,σ

ψ̄σ (k)[iωn − k2/2me + μ]ψσ (k) + Sint, (4a)

with

Sint =−�(0)
s

2

T

V

∑
q

′ 3∑
i=1

n(q) n(−q) + �
(0)
t

2

T

V

∑
q

′
ni

s(q) ni
s(−q)

+�
(1)
t

2

T

V

∑
q

′ 3∑
i,α=1

j iα
s (q) j iα

s (−q). (4b)

Here q = (q,�n) comprises a wave vector q and a bosonic
Matsubara frequency �n = 2πT n. �(0)

s , �
(0)
t , and �(1)

s are
the interaction amplitudes in the particle-hole spin-singlet
s-wave, spin-triplet s-wave, and spin-triplet p-wave channels,
respectively. They are related to the parameters F s

0 , F a
0 , and

F a
1 , respectively, in Landau Fermi-liquid theory.3

∑′
q denotes

a sum over wave vectors that is restricted to |q| < � with a
cutoff wave number �. The long-wavelength properties we are
interested in do not depend on �. The electron number density
n, spin density ns, and spin current density j iα

s are given in
Eqs. (5) below, and for completeness we also list the number
current density jα:

n(q) =
∑

k

∑
σ

ψ̄σ (k + q/2) ψσ (k − q/2), (5a)

jα(q) =
∑

k

kα

∑
σ

ψ̄σ (k + q/2) ψσ (k − q/2), (5b)

ni
s(q) =

∑
k

∑
σ1,σ2

ψ̄σ1 (k + q/2) (σi)σ1σ2 ψσ2 (k − q/2), (5c)

j iα
s (q) =

∑
k

kα

∑
σ1,σ2

ψ̄σ1 (k + q/2)(σi)σ1σ2ψσ2 (k − q/2). (5d)

The σi (i = 1,2,3) are the Pauli matrices, and the kα (α =
1,2,3) are the components of the wave vector k. �(0)

s > 0
describes a repulsive density-density interaction, and �

0,1
t >

0 describe ferromagnetic interactions in the s- and p-wave
channels, respectively.

B. Bosonic formulation

1. Phase-space degrees of freedom

Our goal is to rewrite the action in terms of bosonic matrix
fields. For this purpose it is convenient to define a bispinor,11

ηn(x) = 1√
2

⎛
⎜⎜⎜⎝

ψ̄n↑(x)

ψ̄n↓(x)

ψn↓(x)

−ψn↑(x)

⎞
⎟⎟⎟⎠ , (6a)

with an adjoint35

η+
n (x) = (Cη)n(x)

= i√
2

(−ψn↑(x), − ψn↓(x),ψ̄n↓(x), − ψ̄n↑(x)). (6b)

Here Cnm = i(τ1 ⊗ s2) δnm is the charge conjugation matrix in
the spin-quaternion space spanned by τi ⊗ sj (i,j = 0,1,2,3),
with τi = −sj = −iσj , with σ0 the 2 × 2 unit matrix and σ1,2,3

the Pauli matrices. Explicitly,

τ0 =
(

1 0
0 1

)
, τ1 =

(
0 −i

−i 0

)
, τ2 =

(
0 −1
1 0

)
, τ3 =

(−i 0
0 i

)
, (7a)

s0 =
(

1 0
0 1

)
, s1 =

(
0 i

i 0

)
, s2 =

(
0 1

−1 0

)
, s3 =

(
i 0
0 −i

)
. (7b)
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We now define a bilinear tensor product,

Bnm(x, y) = η+
n (x) ⊗ ηm( y) = i

2

⎛
⎜⎜⎜⎝

−ψn↑(x)ψ̄m↑( y) −ψn↑(x)ψ̄m↓( y) −ψn↑(x)ψm↓( y) ψn↑(x)ψm↑( y)

−ψn↓(x)ψ̄m↑( y) −ψn↓(x)ψ̄m↓( y) −ψn↓(x)ψm↓( y) ψn↓(x)ψm↑( y)

ψ̄n↓(x)ψ̄m↑( y) ψ̄n↓(x)ψ̄m↓( y) ψ̄n↓(x)ψm↓( y) −ψ̄n↓(x)ψm↑( y)

−ψ̄n↑(x)ψ̄m↑( y) −ψ̄n↑(x)ψ̄m↓( y) −ψ̄n↑(x)ψm↓( y) ψ̄n↑(x)ψm↑( y)

⎞
⎟⎟⎟⎠ , (8)

and its Fourier transform,

Bnm(k, p) = 1

V

∫
dx d y e−ik·x+i p· y Bnm(x, y). (9a)

The 4 × 4 matrix Bnm(k, p) can be expanded in the spin-
quaternion basis defined above,

Bnm(k, p) =
3∑

i,r=0

i
rBnm(k, p) (τr ⊗ si). (9b)

It is further useful to define

Bnm(k; q) = Bnm(k + q/2,k − q/2), (9c)

with analogous definitions for other objects that depend on
two wave vectors. All bilinear products of the fermion fields
ψ̄ and ψ can be written in terms of B, and in particular
all terms in the interacting part of the action [Eq. (4b)] can
be written in terms of products of the B. An inspection
shows that in the spin-quaternion basis, Eq. (7), the matrix
elements i

r=0,3B and i
r=1,2B describe the particle-hole and

particle-particle channels, respectively, and the i=0
r B describe

the spin-singlet channel while the i=1,2,3
r B describe the spin-

triplet channel. Taking moments of Bnm(k; q) with respect to k
generates variables in different angular momentum channels.
For instance,

B(0)
nm(q) =

∑
k

Bnm(k; q) (10a)

defines s-wave or density degrees of freedom,

B(1)
nm(q) =

∑
k

k Bnm(k; q) (10b)

defines current degrees of freedom, etc.
We note that the introduction of bispinors and of matrices

with spin-quaternion valued matrix elements is necessary in
order to handle both particle-particle and particle-hole degrees
of freedom within the same framework, as it makes it possible
to form bilinear products ψ̄ψ̄ and ψψ in addition to ψ̄ψ

[see Eq. (8)]. For purposes that involve the particle-hole
channel only one can restrict oneself to ordinary spinors, in
which case the matrix B [Eq. (8)] becomes a 2 × 2 matrix.
Another observation is that B constitutes an overcomplete
representation of bilinear fermion degrees of freedom since
all of the matrix elements of B are not independent. We come
back to this point in Sec. II B3 below.

2. Q-matrix field theory

Our next step is to constrain the matrices B in the interaction
terms to a classical matrix field Q by means of a Lagrange
multiplier field �̃. The fermion fields then enter the action
only bilinearly and can be integrated out exactly. This way
we obtain an effective action A that depends on Q and �̃

according to

Z =
∫

D[ψ̄,ψ] eS[ψ̄,ψ] =
∫

D[η] eS[η]

=
∫

D[η] eS[η]
∫

D[Q,�̃] eTr [�̃(Q−B)]

=
∫

D[Q,�̃] eA[Q,�̃]. (11)

Here and it what follows Tr denotes a trace over all degrees of
freedom, including the continuous position in real space, while
by tr we denote a trace over all discrete degrees of freedom
that are not explicitly shown.

In order to describe phenomena in angular-momentum
channels higher than the s-wave one, or even in order to
keep non-s-wave interaction constants, one obviously needs
to apply this procedure to the phase-space variables defined
in Eqs. (8) and (9). As we see later, this leads to a local field
theory that allows for a systematic loop expansion about a
saddle-point solution that describes a Fermi liquid. For certain
purposes that require a density-channel interaction only it is
technically advantageous to formulate the theory in terms
of density variables [Eq. (10a)], even though this leads to a
nonlocal theory, that is, one where the vertices diverge in the
limit of small wave numbers. The starting point for such a
formulation was given in Ref. 16, and we revisit and further
develop this method in Sec.IV E.

Application of the procedure sketched in Eq. (11) to the
phase space variables [Eqs. (8) and (9)] yields the following
formal expression for the effective action:

A[Q,�̃] = A0 + Tr (�̃T Q) + Aint[Q]. (12a)

Here

A0 = 1
2 Tr ln G−1, (12b)

where

G−1 = G−1
0 − i�̃ (12c)

is the inverse Green’s operator, with(
G−1

0

)
nm

(x, y) = δnm(τ0 ⊗ s0) δ(x − y)

× [iωn + ∇2/2me + μ] (12d)
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the bare Green’s operator. If a nontrivial band structure is
desired, −∇2/2me should be replaced with an appropriate
energy function ε(∇) [see Eqs. (2)]. Rewriting the interaction
part of the action [Eq. (4b)] in terms of the B and constraining
the latter to Q by means of the functional delta-constraint we
find

Aint = A(0,s)
int + A(0,t)

int + A(1,t)
int , (13a)

where

A(0,s)
int = T �(0)

s

2V

∑
r,s=0,3

(−)r
∑
n1,n2
n3,n4

δn1−n2,n4−n3

∑
k, p

∑
q

′
tr

× ((τr ⊗ s0) Qn1n2 (k; q))(τr ⊗ s0) Qn3n4 ( p; −q)),

(13b)

A(0,t)
int = T �

(0)
t

2V

∑
r,s=0,3

(−)r
3∑

i=1

∑
n1,n2
n3,n4

δN1−n2,n4−n3

∑
k, p

∑
q

′
tr

× ((τr ⊗ si) Qn1n2 (k; q))(τr ⊗ si) Qn3n4 ( p; −q)),

(13c)

A(1,t)
int = T �

(1)
t

2V

∑
r,s=0,3

(−)r
3∑

i=1

∑
n1,n2
n3,n4

δn1−n2,n4−n3

∑
k, p

k · p
∑

q

′
tr

× ((τr ⊗ si) Qn1n2 (k; q))(τr ⊗ si) Qn3n4 ( p; −q)).

(13d)

3. Symmetry properties and representation of observables

We now derive some useful symmetry properties of the
Q matrices. B as defined in Eq. (8) is self-adjoint under the
operation defined in Eq. (6b). Q inherits this property, so we
have

Q+ = CT QT C = Q. (14a)

In the spin-quaternion basis defined in Eqs. (7) this implies

i
rQnm(x, y) =

⎛
⎜⎝

+
+
+
−

⎞
⎟⎠

r

⎛
⎜⎝

+
−
−
−

⎞
⎟⎠

i

i
rQmn( y,x), (14b)

i
rQnm(k, p) =

⎛
⎜⎝

+
+
+
−

⎞
⎟⎠

r

⎛
⎜⎝

+
−
−
−

⎞
⎟⎠

i

i
rQmn(− p, − k), (14c)

i
rQnm(k; q) =

⎛
⎜⎝

+
+
+
−

⎞
⎟⎠

r

⎛
⎜⎝

+
−
−
−

⎞
⎟⎠

i

i
rQmn(−k; q). (14d)

Here the symbols ⎛
⎜⎝

+
+
+
−

⎞
⎟⎠

r

,

etc., denote a factor of +1 for r = 0 and a factor of −1 for
r = 1,2,3, and analogously for i. We have made use of these
relations in order to write the interacting part of the action in the
form of Eqs. (13). They imply that all of the Q-matrix elements
are not independent. In a model with N Matsubara frequencies,
only N (N + 1)/2 matrix elements are independent. We later
choose these to be the ones with n � m.

In terms of the Q matrices the observables listed in Eqs. (5)
are given by

n(q,i�n) =
∑
m

∑
r=0,3

(−)3r/2
∑

k

0
rQm,m+n(k; q), (15a)

jα(q,i�n) =
∑
m

∑
r=0,3

(−)3r/2
∑

k

kα
0
rQm,m+n(k; q), (15b)

ni
s(q,i�n) =

∑
m

∑
r=0,3

(−)3r/2
∑

k

0
rQm,m+n(k; q), (15c)

j iα
s (q,i�n) =

∑
m

∑
r=0,3

(−)3r/2
∑

k

kα
0
rQm,m+n(k; q). (15d)

These are just examples of spin-singlet and spin-triplet
observables in the � = 0 and � = 1 channels, respectively.
Clearly, and desired observables can be expressed in terms of
the Q.

4. Correlation functions

Physical correlation functions can be written in terms of Q-
correlation functions by keeping appropriate source terms in
the action while performing the transformation to the Q-matrix
variables. For instance, for the Green’s function Gnσ (x − y) =
〈ψnσ (x) ψ̄nσ ( y)〉 we obtain

Gnσ (x − y) = i

2
tr [((τ0 + iτ3) ⊗ (s0 ∓ σ is3))〈Qnn(x, y)〉],

(16)

with σ = ↑ , ↓ ≡ +1, − 1. This can also be read off of Eq. (8)
directly by keeping in mind the isomorphism between B and
Q. For the DOS N as a function of the distance ω from the
Fermi surface this implies

N (ω) = 4

π
Re
〈
0
0Qnn

(x,x)
〉∣∣

iωn→ω+i0, (17)

where we have used the symmetry properties expressed in
Eqs. (14). Similarly, the number density susceptibility χ , and
the spin density susceptibility tensor χ

ij
s , can be written

χ (q,i�n) = 16 T
∑

m1,m2

∑
r=0,3

∑
k, p

〈
0
r (�Q)m1−n,m1 (k; q)

×i
r (�Q)m2,m2+n( p; −q)

〉
, (18a)

χij
s (q,i�n) = 16 T

∑
m1,m2

∑
r=0,3

∑
k, p

〈
i
r (�Q)m1−n,m1 (k; q)

×j
r (�Q)m2,m2+n( p; −q)

〉
. (18b)

Here �Q = Q − 〈Q〉, and, in Eq. (18b), i,j = 1,2,3. Other
correlation functions can be expressed analogously.
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III. IDENTIFICATION OF SOFT MODES: BROKEN
SYMMETRY AND A WARD IDENTITY

We are interested in separating the degrees of freedom
represented by the Q matrices into soft and massive modes. To
identify the soft modes we derive a Ward identity that relates
2-point Q-correlation functions to other quantities. We first do
so for noninteracting electrons and then discuss the effects of
interactions.

A. A Ward identity for noninteracting electrons

Let us consider transformations of the bispinors defined in
Eqs. (6),

ηn(x) →
∫

d y T̂ (±)
nm (x, y) ηm( y), (19a)

where the operator T̂ (±) defines nonlocal infinitesimal rota-
tions in frequency space,

T̂ (±)
nm (x, y) = (τ0 ⊗ s0) t (±)

nm (x, y), (19b)

t (±)
nm (x, y) = δnm δ(x − y) + [δnn1δmn2 − δnn2δmn1 ]

×ϕ±(x, y) + O(ϕ2). (19c)

Here the

ϕ±(x, y) = 1
2 [φ(x, y) ± φ( y,x)] = ±ϕ±( y,x) (19d)

are even and odd combinations, respectively, of a nonlocal
rotation angle φ. The matrices T̂ ± obey (T̂ (±))T = (T̂ (±))−1,
and (T̂ (±))T C T̂ (±) = C with C the charge conjugation matrix
defined below Eq. (6b). For fixed n1 and n2 they form an SO(2)
subgroup of a much larger symplectic group [Sp(8N,C) for a
system with 2N frequency labels: N positive ones, including
zero, and N negative ones] (see Ref. 16). The Q matrices
transform as

Q(x, y) → (T (±) Q (T (±))T . (20)

Explicitly we find

Qnm(x, y) → Qnm(x, y) + δQnm(x, y), (21a)

with

δQnm(x, y)

=
∫

d z {ϕ±( y,z) [δmn1 Qnn2 (x,z) ∓ δmn2 Qnn1 (x,z)]

+ϕ±(x,z) [δnn1 Qn2m(z, y) ∓ δnn2 Qn1m(z, y)]}, (21b)

and in particular,

δQn1n2 (x, y) =
∫

d z [ϕ±(x,z) Qn2n2 (z, y)

−Qn1n1 (x,z) ϕ±(z, y)]. (21c)

The Lagrange multiplier field �̃ transforms as Q does, on
account of the bilinear coupling between the two. Of the three
terms in the action [Eqs. (12)], the second one is invariant

under these transformations, but A0 and Aint are not. Focusing
on noninteracting electrons for the time being, we find A0 →
A0 + δA0 with

δA0 =
∑
k,q

[
i�n1−n2 + k · q/me

]
tr Gn2n1 (k; q)

×ϕ±(k − q/2,k + q/2). (22)

Here G is the inverse of the Green’s operator defined in
Eq. (12c).

A Ward identity can now be derived by standard
techniques.7 We introduce a matrix source field J for the Q,
consider the generating functional

Z[J ] =
∫

D[Q,�̃] eA0+Tr (�̃T Q)+Tr (JQ), (23)

perform the infinitesimal rotation defined by ϕ±, differentiate
with respect to J , and put J = 0. This way we obtain a Ward
identity 〈

δA0 Qn1n2 (x, y)
〉
A0

+ 〈
δQn1n2 (x, y)

〉
A0

= 0. (24)

From Eqs. (22) and (24) we see that this relates correlation
functions of the structure 〈tr GQ〉 to 〈Q〉. The former can be
rewritten in terms of 〈QQ〉 by generalizing the generating
functional given in Eq. (23). Since the Q are isomorphic to
B [Eq. (8)], we can write the source term JQ = xJQ +
(1 − x)JB with an arbitrary real number x. The generating
functional then becomes

Z[J ] =
∫

D[Q,�̃] e
1
2 Tr ln[G−1+i(1−x)J T ]+x Tr (JQ)+Tr (�̃T Q).

(25)
Note that this is independent of x and that by choosing x = 1
we recover Eq. (23). By differentiating with respect to J ,
choosing x = 0 and x = 1, respectively, and putting J = 0
we obtain an identity:

〈Gn2n1 (x2,x1)〉 = −2i 〈Qn1n2 (x1,x2)〉. (26a)

Differentiating twice with respect to J we find

〈Gn2n1 (x2,x1) Qn3n4 (x3,x4)〉
= −2i 〈Qn1n2 (x1,x2) Qn3n4 (x3,x4)〉. (26b)

We now differentiate Eq. (24) with respect to φ in Eq. (19d).
This yields two identities, one for ϕ+ and one for ϕ−. Adding
them yields the Ward identity in its final form:

Dn1n2,n3n4 (k, p; q)

≡ 〈0
0Qn1n2

(k; q) 0
0Qn3n4

( p; q)
〉

= i

8
δk, p δn1n3 δn2n4

×
〈
0
0Qn1n1

(k − q/2)
〉− 〈

0
0Qn2n2

(k + q/2)
〉

i�n1−n2 + k · q/me
. (27)

B. Soft modes in noninteracting electron systems

Let us discuss the Ward identity for noninteracting electrons
[Eq. (27)]. By using Eq. (26a) we see that the right-hand side
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of Eq. (27) is determined by

−2i 〈Qnn(k ± q/2)〉 = 〈Gnn(k + q/2)〉 = 1

iωn − ξk±q/2

→ ∓iπ δ(ξk±q/2) − 1/ξk±q/2. (28)

Here ξk = k2/2me − μ, and the last term on indicates the
limiting value of the Green’s function as ωn approaches zero
from above or below, respectively. We see that if n1 and n2

have opposite signs, then the numerator on the right-hand side
of Eq. (27) goes to zero as �1−2 → 0 and q → 0, as does the
denominator, whereas the numerator remains finite if n1 and
n2 have opposite signs. In the latter case, the leading term for
small �1−2 and small q is〈

0
0Qn1n2

(k; q) 0
0Qn1n2

( p; −q)
〉

= δk, p
1

16

2πi δ(ξk) sgn �n1−n2

i�n1−n2 + k · q/me
+ O(1). (29)

We see that there is an infinite number of soft modes that can
be obtained by taking all possible moments of Eq. (29) with
respect to the center-of-mass wave vector k. This identifies the
matrix elements Qnm with nm < 0 as soft degrees of freedom,
whereas the Qnm with nm > 0 are massive. Physically, the soft
modes are particle-hole excitations with a linear frequency-
momentum relation. In the absence of interactions they are
massless at nonzero temperature as well as at T = 0.

Equation (29) is a generalization of the Ward identity
derived in Ref. 16, which corresponded to the zeroth moment
at q = 0, 〈

0
0Q

(0)
n1n2

(q) 0
0Q

(0)
n1n2

(−q)
〉∣∣∣

q=0
= πNF

8|�n1−n2 |
. (30)

Here Q(0)(q) = ∑
k Q(k; q) is defined in analogy to B(0)

[Eq. (10a)] and NF is the free-electron DOS per spin at the
Fermi level. Equation (30) is the clean analog of an identity that
has been discussed before for disordered electrons.9,10,36–38 In
the presence of quenched disorder this is the only soft mode; all
higher moments acquire a mass (see Appendix A). This is the
reason why it is much harder to construct a soft-mode theory
for clean electrons than for disordered ones: In the former case
there are many more soft modes.

The Ward identity shows only that the matrix elements
0
0Qnm

with nm < 0 are soft. However, it is easy to see that
the same statements holds for the i

rQ with arbitrary values of
i and r . The reason is that the 〈irQ i

rQ〉 correlation functions
are related to 〈0

0Q
0
0Q〉 by means of symmetries that are not

broken. This argument is identical to the one given in Ref. 16
and we do not repeat it here.

C. Interaction effects

We now need to address the question of what happens if the
electron-electron interactions are taken into account. To this
end we need to add the variation of the interacting part of the
action, δAint, under the transformation given in Eqs. (19), to
Eq. (24). δAint is quadratic in Q, and the Ward identity now
relates the 2-point function on the left-hand side of Eq. (27)
to a 1-point function and a 3-point function. The technical
details are cumbersome and have been derived in Ref. 16, but
to show that the particle-hole excitations identified in Eq. (27)

remain soft it suffices to discuss the structure of the generalized
Ward identity, as was shown in Ref. 39. In what follows we
recapitulate and adapt the argument give there. Equation (27)
gets generalized to

−8i
(
i�n1−n2 + k · q/m∗

e

)
Dn1n2,n3n4 (k, p; q)

= δn1n3 δn2n4 δk, p Nn1n2 (k,q) − Wn1n2,n3n4 (k, p; q). (31a)

Here m∗
e is the effective electron mass that is renormalized by

the Fermi-liquid parameter F 1
s , and

Nn1n2 (k,q) = π Zk δ(ξk) sgn �n1−n2 , (31b)

with Zk the quasiparticle weight that reflects the change from
free-electron Green’s functions to physical ones. W is the
contribution from δAint. General considerations show that
there are two contributions to D that are characterized by
different frequency structures,

Dn1n2,n3n4 (k, p; q) = δn1n3 δn2n4 D(dc)
n1n2

(k, p; q)

+ δn1−n2,n3−n4 D(c)
n1n2,n3n4

(k, p; q), (32)

and analogously for W . Here the superscripts (dc) and (c) refer
to the disconnected and connected contributions, respectively,
in a representation in terms of fermionic diagrams. These
contributions must respect the Ward identity separately, and
either one diverging in the limit of small frequencies and waves
numbers will ensure the existence of soft modes. It therefore
suffices to discuss D(dc). The Ward identity for the latter
reads

−8i
(
i�n1−n2 + k · q/m∗

e

)
D(dc)

n1n2
(k, p; q)

= δk, p Nn1n2 (k,q) − W (dc)
n1n2

(k, p; q). (33)

Now analytically continue to real frequencies � ∈ R,
i�n1−n2 → � + i0, and consider the limit � → 0, q → 0.
The only way for D(dc) at t = 0 to remain finite in this limit
is for N and W (dc) at � = q = 0 to cancel. However, this
is, in general, not possible: N approaches a nonzero limit
for � → 0, q → 0, and vanishing interactions, whereas W

vanishes for noninteracting electrons. These two objects are
thus different functions of the interaction, and their values at
zero frequency and wave number can vanish at most for special
values of the interaction. Notice that no such a cancellation is
necessary to give D(dc) a mass at nonzero temperature. For
simplicity, consider the zeroth moment with respect to k and
p only, and put q = 0. Then we have

− 8i�D(dc) = N − W (dc). (34)

Now let

D(dc) ∝ 1

� + i/τφ

, (35)

with 1/τφ a phase relaxation rate. As long as �τφ � 1 for
T → 0 and � → 0, the right-hand side of Eq. (34) can be
expanded in powers of 1/�τφ , with the leading contribution
being a constant. As long as 1/τφ → 0 for T → 0 such a
regime always exists.

We conclude that the soft modes identified in Sec. III A,
namely, the Qnm with nm < 0, remain soft in the presence
of interactions. The Ward identity shows this for the matrix
elements 0

0Q in the spin-quaternion basis, but additional
symmetries of the action ensure that it is true for all of the
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i
rQ.16 This is consistent with both perturbation theory and
with Fermi-liquid theory, which ensures that the number and
nature of the soft modes cannot change as long as the system
remains in a Fermi-liquid phase. The symmetry is broken, and
the Goldstone modes exist, as long as there is a nonvanishing
quasiparticle weight Zk. The only way the soft-mode spectrum
can change is for the quasiparticle weight to vanish, which is
to say that the system enters a non-Fermi-liquid state. We note
that these considerations do not preclude using the soft-mode
theory to study a breakdown of the Fermi liquid, which is
signalized by a vanishing quasiparticle weight. They just
indicate that a non-Fermi-liquid phase, where the symmetry
is restored, has different properties and requires a different
effective theory than the Fermi-liquid phase, but the theory
we are about to construct will be valid everywhere in the
latter, up to any possible transition where the quasiparticle
weight vanishes. This is important for certain applications of
the theory.30

We finally note that while the right-hand side of Eq. (29)
resembles the structure of the Lindhard function, the soft
modes are not related to particle-number conservation and
are not restricted to the density channel. Indeed, the density
susceptibility cannot even be constructed from the left-hand
side as doing so would require three independent frequencies,
rather than two, as can be seen from Eq. (18a). Rather,
the infinitely many soft modes are the Goldstone modes of
a spontaneously broken continuous symmetry, namely, the
rotations in frequency space expressed by Eqs. (19).

IV. EFFECTIVE SOFT-MODE THEORY

A. Saddle-point solutions

We now return to the action [Eqs. (12) and (13)] and
consider saddle-point solutions. There are many saddle-point
solutions that have different symmetry properties and describe
different physical states. Here we give just two examples. The
first one is a saddle point that describes a Fermi liquid, and the
second one reproduces the Stoner theory of ferromagnetism.
Saddle points that describe superconducting states, magnetic
states with non-s-wave order parameters, or, if a nontrivial
band structure is taken into account, antiferromagnetic states
can be constructed analogously.

1. Fermi-liquid saddle point

The saddle-point equations are obtained by minimizing the
action with respect to �̃ and Q. They read

0 = − i

2

(
Gsp

mn( y,x)
)T + Qsp

nm(x, y), (36a)

0 = �̃sp
nm(x, y) + δ

δQnm(x, y)

∣∣∣∣
Qsp

Aint[Q]. (36b)

To find a saddle-point solution that describes a Fermi liquid
we make an ansatz,

Qsp
nm(x, y) = (τ0 ⊗ s0) δnm Qn(x − y),

(37)
�̃sp

nm(x, y) = (τ0 ⊗ s0) δnm �n(x − y).

Performing the derivative in Eq. (36a) and going into Fourier
space we find Qn and �n as the solution of the equations

Qn(k) = i

2

1

iωn − ξk − i�
, (38a)

�n(k) ≡ � = −4�(0)
s

1

V

∑
p

T
∑
m

eiωm0 Qm( p). (38b)

We see that −2iQn(k) equals the saddle-point Green’s
function, in agreement with Eq. (26a), with � the self-
energy. The latter represents the spin-singlet interaction �(0)

s
in Hartree-Fock approximation. The factor eiωm0 in Eq. (38b)
is the usual convergence factor that resolves the ambiguity
inherent in the equal-time Green’s function.4 This Hartree-
Fock saddle-point solution is a generalization of the saddle-
point solution considered in Ref. 16 to a nonlocal Green’s
function.

2. Stoner saddle point

To illustrate the existence of other saddle points, and the
general versatility of the theory, we now consider a saddle-
point ansatz

Qsp
nm(x, y) = δ12[(τ0 ⊗ s0) Gn(x − y)

+ (τ3 ⊗ s3) Fn(x − y)], (39a)

�̃sp
nm(x, y) = δnm[−(τ0 ⊗ s0) i�n(x − y)

+ (τ3 ⊗ s3) i�n(x − y)]. (39b)

The saddle-point equations (36) now yield

Gn(k) = i

4
[G+

n (k) + G−
n (k)], (40a)

Fn(k) = i

4
[G+

n (k) − G−
n (k)], (40b)

�n(k) ≡ � = −4i�(0)
s

1

V

∑
p

T
∑
m

eiωm0 Gm( p), (40c)

�n(k) ≡ � = −4i�
(0)
t

1

V

∑
p

T
∑
m

eiωm0 Fm( p). (40d)

Here

G±
n (k) = 1

iωn − ξk ± � − �
(41)

are Green’s functions whose self-energy contributions describe
the particle-hole spin-triplet and spin-singlet interactions in
Hartree-Fock approximation. This saddle-point solution is the
clean limit of the one considered in Ref. 40, generalized to the
case of nonlocal Green’s functions. It is equivalent to Stoner
theory, which can be seen as follows. Gn(k) and Fn(k) obey
the equations

(iωn − ξk − �)Gn(k) + �Fn(k) = 1, (42a)

(iωn − ξk − �)Fn(k) + �Gn(k) = 0. (42b)

If we absorb the constant spin-singlet self-energy � into a
redefinition of the chemical potential we obtain from Eqs. (42)
the equation of state in a form that is familiar from Stoner
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theory,41

1 = −2�
(0)
t T

∑
n

1

V

∑
k

1

(iωn − ξk)2 − �2
, (43)

which allows for a nonzero magnetization (which is propor-
tional to �) provided NF�

(0)
t > 1.

B. Expansion about the saddle point

In the remainder of this paper we consider fluctuations
about the Fermi-liquid saddle point derived in Sec. IV A1; an
application of the theory to magnetically ordered states will be
discussed elsewhere.42

1. Gaussian fluctuations

We first consider Gaussian fluctuations about the Fermi-
liquid saddle point. If we write Q = Qsp + δQ and �̃ = �̃sp +
δ�̃, an expansion of the action [Eqs. (12) and (13)] yields

A[Q,�̃] = Asp + A(2) + �A, (44)

whereAsp is the saddle-point action,A(2) denotes the Gaussian
fluctuations, and �A denotes the contributions that are of cubic
or higher order in the fluctuations. For the Gaussian part we
find

A(2) = 1
4 Tr (Gsp δ�̃ Gsp δ�̃) + Tr (δ�̃T δQ) + Aint[δQ].

(45)
Here

(Gsp)nm(k, p) = (τ0 ⊗ s0) δnm δk, p Gn(k), (46a)

with

Gn(k) = 1

iωn − ξk − i�
, (46b)

where � is the solution of Eqs. (38), is the Green’s function
in saddle-point approximation. With our local interaction
amplitude � amounts only to a constant shift of the chemical
potential, so Gn(k) can be taken to be the free-electron Green’s
function.

We can decouple δ�̃ and δQ at the Gaussian level by
defining a field δ�̄ by

i
r (δ�̄)12 = 1

2 φ12
i
r (δ�̃)12 + i

r (δQ̄)12. (47a)

Here we have defined (δ�̄)12 ≡ (δ�̄)n1n2 ( p1, p2), and analo-
gously for other fields, as well as

i
r (δQ̄)12 = i

r (δQ)12

⎛
⎜⎝

+
+
+
−

⎞
⎟⎠

r

⎛
⎜⎝

+
−
+
−

⎞
⎟⎠

i

(47b)

and

φ12 = G1 G2 ≡ Gn1 ( p1) Gn2 ( p2)

≡
{
�12 if (n1 + 1/2)(n2 + 1/2) > 0,

ϕ12 if (n1 + 1/2)(n2 + 1/2) < 0.
(47c)

The frequency-restricted objects �12 and ϕ12 will be useful
later. We also define

(δQ)‡12 = (δQ)n1n2 (− p1, − p2), (47d)

and analogously for δ�. In terms of ¯δ� and δQ the Gaussian
action then takes the form

A(2) = −4
∑
r,i

⎛
⎜⎝

+
−
+
−

⎞
⎟⎠

r

∑
12

i
r (δQ)12

1

φ12

i
r (δQ)‡12

+ 4
∑
r,i

⎛
⎜⎝

+
−
−
+

⎞
⎟⎠

r

∑
12

i
r (δ�̄)12

1

φ12

i
r (δ�̄)‡12

+Aint[δQ]. (48)

Note that the Gaussian δ�̄ propagator equals minus the δQ

propagator43 for noninteracting electrons,

〈δ�̄12 δ�̄34〉A(2) = −〈δQ12 δQ34〉A(2)
0

, (49)

with A(2)
0 the first two terms in Eqs. (45) or (48). This will be

important for the structure of the effective soft-mode theory
and the loop expansion.

2. The fluctuation action in terms of independent variables

To go beyond Gaussian fluctuations we expand the Tr ln
term in the action [Eq. (12)] in powers of δ�̃ and express
the result in terms of δ�̄ and δQ̄ by means of Eq. (47a). We
find

�A = −
∞∑

m=3

im

2m
Tr (Gsp δ�̃)m ≡

∞∑
m=3

�A(m)

= 4i

3

∑
1,2,3

G−1
1 G−1

2 G−1
3 tr[(δ�̄12 − δQ̄12)(δ�̄23

− δQ̄23)(δ�̄31 − δQ̄31)]

− 2
∑

1,2,3,4

G−1
1 G−1

2 G−1
3 G−1

4 tr[(δ�̄12 − δQ̄12)(δ�̄23

−δQ̄23)(δ�̄34 − δQ̄34)(δ�̄41 − δQ̄41)] + · · · . (50)

Notice that the vertices are given in terms of products of inverse
Green’s functions, which are well behaved in the limit of small
frequencies of wave numbers. This is thus a local field theory,
in contrast to the formulation in terms of density modes in
Ref. 16.

We now recall two features of the theory. First, all of the ma-
trix elements of Q and � are not independent. We can choose
the Qnm with n � m as the independent ones and express
those with n < m in terms of them by means of Eqs. (14).
Second, we recall from Sec. III that the Qnm are massive
degrees of freedom if n and m have the same sign, and soft
ones if n and m have opposite signs. We express these facts in
our notation by choosing as independent matrix elements

(δQ̄)12 =
{
P̄12 if n1 � n2 ∧ (n1 + 1/2)(n2 + 1/2) > 0,

q12 if n1 � 0 ∧ n2 < 0,

(51a)

(δ�̄)12 =
{
�12 if n1 � n2 ∧ (n1 + 1/2)(n2 + 1/2) > 0),
λ12 if n1 � 0 ∧ n2 < 0.

(51b)
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In what follows we absorb the frequency restrictions into the
fields, so writing, for example, q12 implies that n1 � 0 and
n2 < 0, etc. For the Gaussian action we obtain

A(2) = −8
∑
r,i

⎛
⎜⎝

+
−
−
+

⎞
⎟⎠

r

∑
12

1

φ12

[
i
rq12

i
rq

‡
12 + I12

i
r P̄ 12

i
r P̄

‡
12

− i
rλ12

i
rλ

‡
12 − I12

i
r�12

i
r�

‡
12

]+ 16T �(0)
s

V

×
∑
r=0,3

∑
1,2
3,4

δ1−2,3−4
[

0
r q12

0
r q

‡
34 + I12

0
r P̄ 12

0
r P̄

‡
34

+0
r q12

0
r P̄

‡
34 + 0

r P̄ 12
0
r q

‡
34

]
, (52)

where I12 = 1 − δn1n2/2. Here we keep only the particle-
hole spin-singlet interaction; the other interaction channels

provide analogous contributions to the Gaussian action.
Notice that the massless and massive degrees of freedom are
decoupled in the noninteracting part of the action, but are
coupled by the interaction via terms that are bilinear in q

and P̄ .
The contributions to �A can also be expressed in terms

of P̄ , q, �, and λ. Simple combinatorics yield for the cubic
term

�A(3) = −4i[Tr[G−1 (P̄ − �) G−1 (P̄ + P̄ + − � − �+)

×G−1 (P̄ − �)+] + Tr[G−1 (P̄ + P̄ + − � − �+)

×G−1 (/q G−1 /q+ + /q+ G−1 /q)]], (53)

or, schematically,

�A(3) ∝ G−3 [(P̄ − �)3 + (P̄ − �)/q2], (4.18′)

and for the quartic one

�A(4) = −2 Tr[4 G−1 (P̄ − �) G−1 (P̄ − �) G−1 (P̄ − �) G−1 (P̄ − �)+ + 4 G−1 (P̄ − �)+ G−1 (P̄ − �)+ G−1 (P̄ − �)+

×G−1 (P̄ − �) + 3 G−1 (P̄ − �) G−1 (P̄ − �) G−1 (P̄ − �)+ G−1 (P̄ − �)+ + 3 G−1 (P̄ − �) G−1 (P̄ − �)+

×G−1 (P̄ − �)G−1 (P̄ − �)+] − 8 Tr [G−1(P̄ + P̄ + − � − �+) G−1 (P̄ + P̄ + − � − �+) G−1 (/q G−1 /q+

+ /q+ G−1 /q) + G−1 (P̄ + P̄ + − � − �+) G−1 /q G−1 (P̄ + P̄ + − � − �+) G−1 /q+]

− 4 Tr [G−1 /q G−1 /q+ G−1 /q G−1 /q+], (54)

or, schematically,

�A(4) ∝ G−4 [(P̄ − �)4 + (P̄ − �)2 /q2 + /q4]. (4.19′)

Here we have defined

q/ = q − λ, (55)

and G−1P̄ , etc., denote matrix products with the matrix
elements of G given by G12 = δ12 G1 (τ0 ⊗ s0). The matrix
elements of P̄ are i

r P̄ n1n2
( p1, p2) [see the left-hand side of

Eq. (14c)], and those of P̄ + are⎛
⎜⎝

+
+
+
−

⎞
⎟⎠

r

⎛
⎜⎝

+
−
−
−

⎞
⎟⎠

i

i
r P̄ n2n1

(− p2, − p1)

[see the right-hand side of Eq. (14c)]. The matrix elements of
�, �+, q, q+, and λ, λ+, respectively, are given by analogous
expressions. This implies for the expansion of the various
matrices in the spin-quaternion basis,

P̄12 =
3∑

r=0

3∑
i=0

i
r P̄ 12 (τr ⊗ si), (56a)

P̄ +
12 =

3∑
r=0

3∑
i=0

i
r P̄

‡
21 (τ+

r ⊗ s+
i ), (56b)

where
i
r P̄

‡
12 = i

r P̄ n1n2
(− p1, − p2), (r = 0,3), (56c)

in the particle-hole channel, and

i
r P̄

‡
12 = −i

r P̄ n1n2
(− p1, − p2), (r = 1,2), (56d)

in the particle-particle channel. τ+
r and s+

i are the Hermitian
conjugates of τr and si , respectively. Analogous relations hold
for �, q, and λ and their adjoints. In all cases the frequency
ordering restrictions explained after Eqs. (51) apply.

Expressions for the higher-order terms in �A in terms of
P , q, �, and λ can be constructed analogously. For instance,
�A(5) contains terms that have the schematic structures

�A(5) ∝ G−5 [(P̄ − �)5 + (P̄ − �)3q/2 + (P̄ − �) q/4].

(57)

C. Integrating out the massive modes

We now recall that P̄ and � represent massive fluctuations,
whereas q and λ represent soft ones, and our goal is to construct
an effective theory in terms of the latter. We cannot simply
neglect P̄ and � since they couple to q and λ; rather, we
need to integrate them out in an approximation that respects
the Ward identity discussed in Sec. III. We let ourselves
be guided in this process by an analysis of the O(2) φ4

theory in Appendix B. The procedure used below for our
matrix theory is analogous to the one explained for the O(2)
model in the context of Eqs. (B11). To avoid unnecessary
notational complexity, from here on we restrict ourselves to a
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model with only one interaction amplitude, �(0)
s ≡ �, in the

particle-hole spin-singlet channel. The spin-triplet (i = 1,2,3)
and particle-particle (r = 1,2) degrees of freedom then just
represent noninteracting electrons, and in the remainder of
this paper we neglect them. That is, we keep only matrix
elements with r = 0,3 and i = 0. It will be obvious how to
generalize the theory to the presence of interactions in other
channels.44

1. Screening of the interaction

It is advantageous to first eliminate the coupling between
P̄ and q at the Gaussian level. We see from Eq. (52) that this
can be achieved by a simple shift of P̄ . We define

0
rP 12 = 0

r P̄ 12 − 2T �

V

∑
3,4,5,6

M−1
12,34 δ3−4,5−6

0
r q56. (58a)

Here

M−1
12,34 = δ13δ24�12 + δ1−2,3−4

× 2(T/V )� �12�34

1 − 2T � 1
V

∑
5,6 δ1−2,5−6�56

(58b)

is the inverse of

M12,34 = δ13δ24�
−1
12 − 2T �

V
δ1−2,3−4. (58c)

Due to the frequency restrictions inherent in �12 [see
Eq. (47c)], the frequency sum in the denominator of Eq. (58b)
has no hydrodynamic content and can be replaced with
minus the static electron density susceptibility in Hartree-
Fock approximation, χst, which in turn we can replace
with NF:

− T

V

∑
5,6

δ1−2,5−6 �56 ≈ χst ≈ NF. (58d)

Equation (58a) thus simplifies to

0
rP 12 = 0

r P̄ 12 − 2T γ �12
1

V

∑
3,4

δ1−2,3−4
0
r q34 (59a)

≡ 0
r P̄ 12 − 0

r (�̂γ̂ q)12, (59b)

with

γ = �/(1 + 2NF�) (59c)

the statically screened interaction amplitude and operators

γ̂12,34 = (τ0 ⊗ s0) 2(T/V )γ δ1−2,3−4, (59d)

�̂12,34 = (τ0 ⊗ s0) δ13 δ24 �12. (59e)

Analogously we define �̂ and ϕ̂. These operators are all self-
adjoint with respect to the matrix adjoint, that is, (γ̂ q)+ =
γ̂ q+, etc.

In addition to decoupling P̄ and q in the Gaussian action,
this procedure introduces a new term quadratic in q that
combines with the q2 term in Eq. (52) to change the interaction
amplitude � to γ . That is, the bilinear coupling between the
massive modes and the soft ones leads to the screening of the
interaction. The Gaussian action in terms of P , �, q, and λ

now reads

A(2) = −8
∑
r=0,3

∑
1,2
3,4

[
0
r q12

(
δ13δ24

1

ϕ12
− δ1−2,3−4

2T γ

V

)

× 0
r q

‡
34 − δ13δ24

1

ϕ12

0
r λ12

0
r λ

‡
34

]
− 8

∑
r=0,3

∑
1,2
3,4

I12

×
[

0
rP 12

(
δ13δ24

1

�12
− δ1−2,3−4

2T �

V

)

× 0
rP

‡
34 − δ13δ24

1

�12

0
r�12

0
r�

‡
34

]
. (60)

The cubic and quartic parts, respectively, of the fluctuation
action have the schematic form

�A(3) ∝ G−3[(P − � + �̂γ̂ q)3

+ (P − � + �̂γ̂ q)(q − λ)2], (61a)

�A(4) ∝ G−4[(P − � + �̂γ̂ q)4

+ (P − � + �̂γ̂ q)2(q − λ)2 + (q − λ)4]. (61b)

More explicit expression are obtained by substituting
Eqs. (59) into Eqs. (53) and (54).

2. Integrating out the massive modes

We now integrate out P and � in a saddle-point approxima-
tion while keeping q and λ fixed. This procedure is analogous
to the one explained in Appendix B for deriving the O(2)
nonlinear σ model. In the current context it leads to an effective
soft-mode theory that is related to, but has a different structure
than, a σ model.

The saddle-point equations read

0 = −16 I12
[

0
r (�̂−1P )‡12 − 0

r (�̂P )
‡
12

]+ δ�A/δ0
rP 12, (62a)

0 = 16 I12
0
r (�̂−1�)

‡
12 − δ�A/δ0

rP 12. (62b)

Here we have used δ�A/δP = −δ�A/δ�, and �̂P is defined
in analogy to γ̂ q in Eq. (59b). From Eqs. (62) we immediately
obtain the useful identities

(P − �)12 = (�̂�̂P )12 = (�̂γ̂�)12. (63)

P is thus given in terms of �, which in turn can be expressed
in terms of q and λ by solving Eq. (62b). We determine the
action explicitly to O(q4),45 which requires � to O(q2). From
Eqs. (62b) and (61a) (or, more explicitly, from Eqs. (53) and
(59); note that only �A(3) contributes to � to this order) we
find

�12 = −2i(q/G−1 q/+ + q/+ G−1 q/)12 − 2i [((�̂γ̂ q)

×G−1 (�̂γ̂ q+))12+ ((�̂γ̂ q+) G−1 (�̂γ̂ q))12

+ ((�̂γ̂ q) G−1 (�̂γ̂ q))12] + O(q3). (64)

Terms of higher order in q can be obtained by means of an
obvious iteration procedure.
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Fluctuations about this saddle point yield measure terms
that reflect the Jacobian due to the change from integrating over
δQ and δ�̃ to obtain the partition function to integrating over
q and λ. For the O(2) nonlinear σ model this is demonstrated
in Appendix B. While they are structurally important for
preserving the symmetry of the action, these terms are not
of practical importance for a loop expansion near the lower
critical dimensionality d−

c of the problem. The reason is that
they lead to loop integrals that are less infrared divergent
than those that result from the terms we have derived so far.
In the O(2) nonlinear σ model they carry no gradients [see
Eq. (B12)] and hence are less infrared divergent near d−

c = 2
by two degrees than the terms contained in the nonlinear
σ model without the measure terms. The same statement is
true for the generalized nonlinear σ model that describes
the Anderson-Mott metal-insulator transition in the disordered
interacting fermion problem, which also has d−

c = 2.12,14 For
the current problem the lower critical dimension is d−

c = 1, the
dimension at and below which the Fermi liquid is not stable
for any parameter values. This reduction of d−

c compared
to the disordered case is a consequence of the soft modes
having a ballistic dispersion relation, as opposed to a diffusive
one. For the same reason the measure terms will lead to loop
integrals that, near d−

c = 1, are less divergent by one power of
momentum than the ones we keep. For the sake of simplicity
we ignore these measure terms in what follows; it is clear how
to derive them if that is desirable.

D. Effective action

1. Effective action to O(q4)

We are now in a position to write the effective action in
terms of the soft modes q and λ only. The relation between
�̂P and γ̂ � in Eq. (63) makes it possible to write the Gaussian
action [Eq. (60)],

A(2) = −8
∑
r=0,3

∑
1,2
3,4

[
0
r q12

(
δ13δ24

1

ϕ12
− δ1−2,3−4

2T γ

V

)
0
r q

‡
34

− δ13δ24
1

ϕ12

0
r λ12

0
r λ

‡
34 + 0

r�12

2T γ

V
δ1−2,3−4

0
r�

‡
34

]
.

(65)

This can be written more compactly:

A(2) = −2 Tr [q(ϕ̂−1 − γ̂ )q+] + 2 Tr (λ ϕ̂−1 λ+)

−2 Tr (� γ̂ �+). (66)

Here � is given in terms of q and λ by Eq. (64). Similarly, the
other terms in the action, �A(3), �A(4), etc., can be expressed
in terms of q and λ by means of Eqs. (59), (63), and (64). The
resulting action is the desired effective action in terms of the
soft modes q and λ.

Note that this is a local field theory; that is, all vertices are
finite in the limit of small wave numbers and small frequencies.
This can be seen most easily from Eqs. (61) and their
generalizations: The terms with the highest power of Green’s
functions in �A(n) has the structure G−n�n(γ q)n ∼ Gn(γ q)n.
Since G ∼ 1/� and γ q ∼ �q, this vertex is of O(1), and all
other vertices scale as a positive power of the frequency.

One might consider analyzing this theory by means of a
loop expansion in terms of both q and λ. However, this is not
desirable. The reason is that the origin of λ is a hard (i.e.,
δ function) constraint that constrains the q to soft bilinear
fermion modes. Treating λ perturbatively relaxes this hard
constraint, which effectively introduces spurious soft modes.
(We note that no such difficulty arises for �, which enforces a
constraint for massive modes.) It therefore is desirable to treat
λ exactly. This can be achieved by eliminating λ in favor of
diagram rules for an action that is formulated entirely in terms
of q and q/. To see this let us consider the terms quadratic in
q and λ, that is, the first two terms in Eq. (65) or (66). The
Gaussian q and λ propagators are obtained by inverting the
corresponding vertices. We see that the λ propagator is minus
the noninteracting part of the q propagator, which is given
by ϕ, and that q and λ are not coupled in the Gaussian action.
This implies that whenever q/ is contracted with q/, the resulting
propagator is effectively equal to the interacting part of the q

propagator, whereas contracting q/ with λ results in the full q

propagator, as does contracting q with q.46 λ can thus formally
be integrated out, despite the fact that it is a soft fluctuation,
without causing undesirable features of the effective theory,
such as nonlocality. The reason is that the only effect of λ

is to cancel well-defined contributions from other soft fluc-
tuations. We thus arrive at the following effective soft-mode
action:

Aeff = A(2)
eff + �A(3)

eff + �A(4)
eff + O(q5). (67a)

with a Gaussian part,

A(2)
eff = −2 Tr [q(ϕ̂−1 − γ̂ )q+] ≡ −8

∑
r=0,3

∑
1,2
3,4

0
r q12

(
δ13δ24

1

ϕ12
− δ1−2,3−4

2T γ

V

)
0
r q

‡
34, (67b)

and non-Gaussian parts �A(n)
eff that each contain terms of O(qn). The first two we obtain from Eqs. (53), (54), and (59b) as

follows47:

�A(3)
eff = −4i Tr[G−1 (�̂γ̂ q + �̂γ̂ q+) G−1 (q/G−1 q/+ + q/+ G−1 q/)] − 4i Tr [G−1(�̂γ̂ q) G−1 (�̂γ̂ q + �̂γ̂ q+) G−1 (�̂γ̂ q+)],

(67c)

�A(4)
eff = −4Tr[G−1 q/G−1 q/+ G−1 q/G−1 q/+] − 4iTr [G−1 (�̂γ̂� + �̂γ̂�+) G−1 (q/G−1 q/+ + q/+ G−1 q/)]

− 2Tr (�γ̂�+) − 8Tr [G−1(�̂γ̂ q + �̂γ̂ q+) G−1 (�̂γ̂ q + �̂γ̂ q+) G−1 (q/G−1 q/+ + q/+ G−1 q/)

+G−1 (�̂γ̂ q + �̂γ̂ q+) G−1 q/G−1 (�̂γ̂ q + �̂γ̂ q+) G−1 q/+] − 4iTr [G−1 (�̂γ̂�) G−1 (�̂γ̂ q + �̂γ̂ q+) G−1 (�̂γ̂ q+)

125126-12



EFFECTIVE SOFT-MODE THEORY OF STRONGLY . . . PHYSICAL REVIEW B 85, 125126 (2012)

+G−1 (�̂γ̂ q)G−1(�̂γ̂� + �̂γ̂�+) G−1 (�̂γ̂ q+) + G−1 (�̂γ̂ q) G−1 (�̂γ̂ q + �̂γ̂ q+) G−1 (�̂γ�+)]

− 2Tr [4 G−1 (�̂γ̂ q) G−1 (�̂γ̂ q) G−1 (�̂γ̂ q) G−1 (�̂γ̂ q+) + 4 G−1 (�̂γ̂ q+) G−1 (�̂γ̂ q+) G−1 (�̂γ̂ q+) G−1 (�̂γ̂ q)

+ 3 G−1 (�̂γ̂ q+) G−1 (�̂γ̂ q+) G−1 (�̂γ̂ q) G−1 (�̂γ̂ q) + 3 G−1 (�̂γ̂ q+) G−1 (�̂γ̂ q) G−1 (�̂γ̂ q+) G−1 (�̂γ̂ q)].

(67d)

Here � is given by Eq. (64), which we restate for completeness:

� = −2i(q/G−1 q/+ + q/+ G−1 q/) − 2i[(�̂γ̂ q) G−1 (�̂γ̂ q+)

+ (�̂γ̂ q+) G−1 (�̂γ̂ q) + (�̂γ̂ q+) G−1 (�̂γ̂ q+)].

(67e)

For the effective action to O(q4), � is needed only to O(q2).
This action needs to be augmented by a prescription for the

role of q/. From the above discussion it follows that contractions
of q/ with q are given by the q propagator as it follows from
A(2)

eff ,〈
0
r q12

0
s q

‡
34

〉 = 〈
0
r q/12

0
s q

‡
34

〉 = 〈
0
r q12

0
s q/

‡
34

〉 = 1

16
δrs

×
[
δ13δ24 ϕ12 + 2γ T

V
δ1−2,3−4

ϕ12 ϕ34

1 + 2γχ
(0)
1−2

]
,

(68a)

while contractions of q/ with q/ are given by〈
0
r q/12

0
s q/

‡
34

〉 = γ T

8V
δ1−2,3−4

ϕ12 ϕ34

1 + 2γχ
(0)
1−2

. (68b)

Here we have defined

χ
(0)
1−2 = −T

V

∑
34

δ1−2,3−4 ϕ34. (69)

Physically, χ (0) is the hydrodynamic part of the density
susceptibility per spin in Hartree-Fock approximation (see the
discussion below).

Equations (67) through (69) completely specify the ef-
fective theory for the purposes of a loop expansion for
q-correlation functions.48 They are the central formal result
of the present paper. Their derivation makes is clear how to
derive the effective action to any desired power in q.

2. Gaussian propagators

In order to make the theory suitable for actual calculations
we need to explicitly evaluate the correlation function χ (0)

defined in Eq. (69). If we absorb the Hartree-Fock self-energy
into the chemical potential, as explained in Sec. IV B, the
integral that defines χ (0) reads explicitly

χ (0)(k,i�n) = −T

n−1∑
m=0

1

V

∑
p

1

iωm − ξ p+k/2

× 1

iωm − i�n − ξ p−k/2
. (70)

The integral can be performed exactly. However, this is not
necessary for most purposes, as the crucial hydrodynamic
structure of χ (0) is preserved in the well-known approximation,
valid for small values of k ≡ |k| and |�n|, that performs the
radial part of the momentum integral by means of a contour

integration over the interval −∞ < ξ p < ∞, which makes the
frequency sum trivial.3 Within this scheme, which we refer to
as the AGD approximation, we are left with an angular integral
only,

χ (0)(k,i�n) = −NF
G�n

k
ϕd (Gi�n/k), (71a)

where

ϕd (z) = −i

Sd−1

∫
d� p

1

p̂ · k̂ − z
(71b)

is a causal function of the complex frequency z. G is a coupling
constant whose bare value is

G = 1/vF. (71c)

It constitutes the natural coupling constant for a loop expan-
sion. Sd−1 = 2πd/2/�(d/2) with �(x) the � function is the
surface area of the unit (d − 1)-sphere, and d� p is the angular
integration measure for the unit vector p̂ for fixed unit vector
k̂ in d dimensions. For general dimensions d > 1 the latter
takes the form49,50∫

d� p = 2πε/2

�(ε/2)

∫ 1

−1

dη

(1 − η2)1−ε/2
, (ε = d − 1 > 0),

(72a)
where ε = d − 1 and η = cos θ with θ = �( p̂,k̂). The limiting
expression for d → 1 is∫

d� p =
∫ ∞

−∞
dη [δ(η + 1) + δ(η − 1)], (d = 1). (72b)

From Eqs. (71b) and (72) we obtain

ϕd (z) = i

z
2F 1(1,1/2,d/2; 1/z2), (73)

where 2F 1 is Gauss’s hypergeometric function. In d =
1,2,3 this reduces to the familiar expressions for the
hydrodynamic part of the Lindhard function in these
dimensions:

ϕd=1(z) = −iz/(1 − z2), (74a)

ϕd=2(z) = sgn (Im z)/
√

1 − z2 ≡ i/
√

z + 1
√

z − 1, (74b)

ϕd=3(z) = −i

2
ln

(
1 − z

−1 − z

)
. (74c)

The Gaussian propagators [Eqs. (68)] are now explicitly
specified.

3. The Goldstone propagator and the density susceptibility

From the preceding two subsections we see that the
Goldstone modes are given by the propagator ϕd (z) [Eq. (73)]
which determines the density susceptibility in saddle-point
(i.e., Hartree-Fock) approximation via Eq. (71a). This
is just the hydrodynamic part of the familiar Lindhard
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function [see Eqs. (74)]. It is illustrative to also consider the
density susceptibility in the Gaussian approximation to the
effective field theory. From Eq. (18a) we see that the density
susceptibility χ is given by a 〈q q〉 correlation function plus
terms that result from the coupling of q to P̄ . Eliminating that
coupling by the shift that was discussed in Sec. IV C1 leads
to Fermi-liquid corrections. Using Eq. (68a) we obtain for the
density susceptibility in Gaussian approximation

χ (k,i�n) = 1

(1 + 2NF�)2

2χ (0)(k,i�n)

1 + 2γχ (0)(k,i�n)
. (75)

We recognize this as the random-phase approximation (RPA)
for the density susceptibility51 with additional Fermi-liquid
corrections. One of its characteristic features is the collective
mode known as zero sound that results from a real root of the
denominator. To see this we define another causal function,

ϕ
(s)
d (z) = 1

ϕ−1
d (z) + i2NFγ z

. (76)

χ can be expressed in terms of this as

χ (k,i�n) = −2NF

(1 + 2NF�)2

G�n

k
ϕ

(s)
d (Gi�n/k). (77)

From Eq. (71a) we see that, apart from the Fermi-liquid
corrections, ϕ

(s)
d relates to ϕd the same way χ relates to χ (0).

Using Eqs. (73) and (74) in Eq. (76) one finds that in d = 1
the spectrum of ϕ

(s)
d is exhausted by the zero-sound poles. In

d > 1 a particle-hole continuum emerges, but the zero-sound
poles outside of the continuum remain. This is illustrated in
Fig. 1. Note that the zero-sound modes are collective density
fluctuations that are the result of particle-number conservation,
whereas the Goldstone modes result from the spontaneously
broken continuous symmetry discussed in Sec. III and are
not related to a conservation law. This manifests itself, for
instance, in the fact that the Goldstone modes acquire a mass at
nonzero temperatures, whereas the zero-sound mode does not.

Equation (77) provides an important identity that makes it
possible to identify the thermodynamic density susceptibility
∂n/∂μ in terms of the parameters of the field theory. For
simplicity we consider the case d = 1. Using Eqs. (74a) and
(76) in (77) yields

χ (k,i�n) = −2NF

1 + 2NF�

�2

(1 + 2NF�)k2/G2 + �2
(d = 1).

(78a)

The compressibility sum rule,51

∂n/∂μ = −χ (k = 0,i�n), (78b)

then yields

∂n

∂μ
= 2NF

1 + 2NF�
. (79)

This is consistent with another argument. ∂n/∂μ is related
to the zero-sound speed s by s2 = (n/m)/(∂n/∂μ).3 From
Eq. (78a) we see that s2 = (1 + 2NF�)/G2, which also yields
Eq. (79).

While we have derived this relation from the Gaussian
theory, it is expected to be an exact identity that remains

FIG. 1. The spectrum ϕ
(s)′′
d (ω) = Re ϕ

(s)
d (z = ω + i0) for

2NFγ = 0.5 as a function of the frequency ω in dimensions
d = 1, d = 1.5, and d = 3. The vertical lines denote δ-function
contributions to the spectrum.

true if ∂n/∂μ and � are replaced with their renormalized
counterparts. This is because the structure of the density
susceptibility, which is governed by particle-number
conservation, must stay the same. This is an important point
since it is known from perturbation theory that ∂n/∂μ is not
singularly renormalized near d = 1.52

E. Density formulation of the effective field theory

As we have mentioned after Eqs. (50) and (66), the current
theory explicitly keeps all of the soft modes that were identified
by the Ward Identity in Sec. III and hence is local. This
is in contrast to the theory formulated in Ref. 16, which
was a formulation in terms of s wave (� = 0) modes only.
Technically, this is achieved by constraining Bnm(x,x), whose
spatial Fourier transform is given by Eq. (10a), to a local matrix
Qnm(x) by means of a Lagrange multiplier field �̃nm(x),
and formulating the theory in terms of Q(x) and �̃(x). This
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amounts to integrating out the modes in the higher angular
momentum channels, and since these are soft the result is
a nonlocal field theory. While this is undesirable for many
purposes, for certain calculations it may be advantageous since
it makes it easier to see which loop integrals are infrared
divergent and which are not. The nonlocality, on the other
hand, makes no difference in practice unless one is explicitly
interested in angular momentum channels with � � 1 or wishes
to calculate nonlocal correlation functions. In the remainder
of the section we therefore present the theory in such a density
formulation.

The Fermi-liquid saddle-point solution is the same as
in Sec. IV A1, except that the saddle-point value of Q

is a position-independent object Qn given by Eq. (38a)
summed over the wave vector k. The further development
proceeds as in the phase-space formulation, except that the
various products of Green’s functions or their inverses get
replaced with products of convolutions of Green’s functions
in wave-vector space and inverses of such convolutions.
The frequency structure of the theory remains unchanged.
The Gaussian action, after decoupling P̄ and q, then
reads

A(2) = −8
∑
r=0,3

∑
1,2
3,4

1

V

∑
k

[
0
r q12(k)

(
δ13 δ24

1

ϕ12(k)
− δ1−2,3−42T γ

)
0
r q34(−k) − δ13 δ24

1

ϕ12(k)
0
r λ12(k)0

r λ34(−k)

]

− 8
∑
r=0,3

∑
1,2
3,4

I12
1

V

∑
k

[
0
rP 12(k)

(
δ13 δ24

1

�12(k)
− δ1−2,3−42T �

)
0
rP 34(−k) − δ13 δ24

1

�12(k)
0
r�12(k)0

r�34(−k)

]
.

(80)

This replaces Eq. (60). In this section, 1 ≡ n1, etc., represents Matusbara frequency labels only, in contrast to the notation used
in the other parts of this paper. We have defined

φ12(k) = 1

V

∑
p

Gn1 ( p) Gn2 ( p − k) ≡
{
�12(k) if (n1 + 1/2)(n2 + 1/2) > 0,

ϕ12(k) if (n1 + 1/2)(n2 + 1/2) < 0,
(81a)

which replaces Eq. (47c). Similarly, the products of inverse Green’s functions in the higher terms in the fluctuation expansion get
replaced with more complex expressions, which involve convolutions of Green’s functions, with the same net power of Green’s
functions. To account for this, we define

φ
(m)
1...m(k1, . . . ,km) = 1

V

∑
p

Gn1 ( p) Gn2 ( p − k1 − k2) · · · Gnm
( p − k1 − · · · − km)

≡
{

�
(m)
1...m(k1, . . . ,km) if n1 through nm all have the same sign,

ϕ
(m)
1...m(k1, . . . ,km) if n1 through nm do not all have the same sign.

(81b)

The cubic and quartic terms, instead of Eqs. (53) and (54), now take the form

�A(3) = −4i

V 2

∑
1,2,3

∑
k1,k2,k3

δk1+k2+k3,0

× {
�

(3)
123(k1,k2) �−1

12 (k1) �−1
23 (k2) �−1

31 (k3) {tr [(P̄ − �)12(k1)(P̄ + P̄ + − � − �+)23(k2)(P̄ + − �+)31(k3)]

+ϕ
(3)
123(k1,k2) �−1

12 (k1) ϕ−1
23 (k2) ϕ−1

31 (k3) tr [(P̄ + P̄ + − � − �+)12(k1)(q/23(k2)q/+
31(k3) + q/+

23(k2)q/31(k3))]
}
, (82a)

�A(4) = �A(4,0) + �A(2,2) + �A(0,4), (82b)

with

�A(4,0) = −2

V 3

∑
1,2,3,4

∑
k1,k2,k3,k4

δk1+k2+k3+k4,0 �
(4)
1234(k1,k2,k3) �−1

12 (k1) �−1
23 (k2) �−1

34 (k3) �−1
41 (k4)

× [4 tr [(P̄ − �)12(k1)(P̄ − �)23(k2)(P̄ − �)34(k3)(P̄ − �)+41(k4)]

+ 4tr [(P̄ − �)+12(k1)(P̄ − �)+23(k2)(P̄ − �)+34(k3)(P̄ − �)41(k4)]

+ 3 tr [(P̄ − �)12(k1)(P̄ − �)23(k2)(P̄ − �)+34(k3)(P̄ − �)+41(k4)]

+ 3 tr [(P̄ − �)12(k1)(P̄ − �)+23(k2)(P̄ − �)34(k3)(P̄ − �)+41(k4)]], (82c)
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�A(2,2) = −8

V 3

∑
1,2,3,4

∑
k1,k2,k3,k4

δk1+k2+k3+k4,0 ϕ
(4)
1234(k1,k2,k3)

{
�−1

12 (k1) �−1
23 (k2) ϕ−1

34 (k3) ϕ−1
41 (k4)

× tr [(P̄ + P̄ + − � − �+)12(k1)(P̄ + P̄ + − � − �+)23(k2)(q/34(k3) q/+
41(k4) + q/+

34(k3) q/41(k4))]

+�−1
12 (k1) ϕ−1

23 (k2) �−1
34 (k3) ϕ−1

41 (k4) tr [(P̄ + P̄ + − � − �+)12(k1) q/23(k2)(P̄ + P̄ + − � − �+)34(k3) q/+
41(k4)]

}
,

(82d)

�A(0,4) = −4

V 3

∑
1,2,3,4

∑
k1,k2,k3,k4

δk1+k2+k3+k4,0 ϕ
(4)
1234(k1,k2,k3) ϕ−1

12 (k1) ϕ−1
23 (k2) ϕ−1

34 (k3) ϕ−1
41 (k4)

× tr [q/12(k1) q/+
23(k2) q/34(k3) q/+

41(k4)]. (82e)

The relation between P̄ and P is

0
rP 12(k) = 0

r P̄ 12(k) − �12(k) 2γ T
∑
3,4

δ1−2,3−4
0
r q34(k), (83)

which replaces Eq. (59a). Note that the vertices in Eqs. (82) are invariant under cyclic permutations of the frequency and wave
vector indices. Also note that these vertices are in general not finite in the hydrodynamic limit of small wave vectors and
frequencies, since the n-point susceptibility ϕ

(n)
12,...,n(k1, . . . ,kn) diverges in this limit.16 This formulation therefore does not yield

a local field theory.
P and � can now be eliminated in analogy to Sec. IV C2. The identities (63) turn into

(P − �)12(k) = �12(k) (�̂P )12(k) = �12(k) (γ̂ �)12(k), (84a)

with

(�̂P )12(k) = 2T �
∑
3,4

δ1−2,3−4 P34(k). (84b)

(γ̂ �) is defined analogously, and so is (γ̂ q). � in terms of q takes the form

�12(k) = −2i
∑

3

1

V

∑
p

ϕ
(3)
132( p,k − p) ϕ−1

13 ( p) ϕ−1
32 (k − p)[q/13( p) q/+

32(k − p) + q/+
13( p) q/32(k − p)]

−2i
∑

3

1

V

∑
p

�
(3)
132( p,k − p)[(γ̂ q)13( p) (γ̂ q+)32(k − p) + (γ̂ q+)13( p)(γ̂ q)32(k − p)

+ (γ̂ q)13( p)(γ̂ q)32(k − p)] + O(q3), (85)

which replaces Eq. (64).
Note that here, and in Eqs. (86) below, γ̂ q always arises from a P̄ that was shifted by means of Eq. (83), and therefore carries

the same implicit frequency restrictions as P and �. That is, (γ̂ q)12(k) implies (n1 + 1/2)(n2 + 1/2) > 0. A related remark is
that the notation ϕ

(3)
123, ϕ

(4)
1234, etc., just specifies that the convolution has hydrodynamic content, that is, that all of the frequencies

do not have the same sign, but not which frequencies are positive or negative. This information, which is necessary for calculating
physical quantities, can be obtained by an inspection of the matrix fields that multiply the convolution.

The effective action analogous to Eqs. (67) then reads

Aeff = A(2)
eff + �A(3)

eff + �A(4)
eff + O(q5), (86a)

with a Gaussian part

A(2)
eff = −8

∑
r=0,3

∑
1,2
3,4

1

V

∑
k

0
r q12(k)

(
δ13δ24

1

ϕ12(k)
− δ1−2,3−4 2T γ

)
0
r q34(−k) (86b)

and nonlinearities

A(3)
eff = −4i

V 2

∑
1,2
3

∑
k1,k2

k3

δk1+k2+k3,0
{
ϕ

(3)
123(k1,k2) ϕ−1

23 (k2) ϕ−1
31 (k3)tr [(γ̂ q + γ̂ q+)12(k1) (q/23(k2) q/+

31(k3) + q/+
23(k2) q/31(k3))]

+�
(3)
123(k1,k2) tr [(γ̂ q)12(k1) (γ̂ q + γ̂ q+)23(k2) (γ̂ q+)31(k3)]

}
, (86c)
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A(4)
eff = − 4

V 3

∑
1,2
3,4

∑
k1,k2
k3,k4

δk1+k2+k3+k4,0 ϕ
(4)
1234(k1,k2,k3) ϕ−1

12 (k1) ϕ−1
23 (k2) ϕ−1

34 (k3) ϕ−1
41 (k4) tr [q/12(k1) q/+

23(k2) q/34(k3) q/+
41(k4)]

− 4i

V 2

∑
1,2
3

∑
k1,k2

k3

δk1+k2+k3,0 ϕ
(3)
123(k1,k2) ϕ−1

23 (k2) ϕ−1
31 (k3) tr [(γ� + γ�+)12(k1) (q/23(k2) q/+

31(k3) + q/+(k2) q/31(k3))]

−2
∑

12

1

V

∑
k

tr [�12(k) γ̂ �+
21(k)] − 8

V 3

∑
1,2
3,4

∑
k1,k2
k3,k4

δk1+k2+k3+k4,0 ϕ
(4)
1234(k1,k2,k3)

×{ϕ−1
34 (k3) ϕ−1

41 (k4) tr [(γ̂ q + γ̂ q+)12(k1) (γ̂ q + γ̂ q+)23(k2) (q/34(k3)q/+
41(k4) + q/+

34(k3) q/41(k4))]

+ϕ−1
23 (k2) ϕ−1

41 (k4) tr [(γ̂ q + γ̂ q+)12(k1) q/23(k2) (γ̂ q + γ̂ q+)34(k3) q/+
41(k4)]}

− 4i

V 2

∑
1,2
3

∑
k1,k2

k3

δk1+k2+k3,0 �
(3)
123(k1,k2,k3) {tr [(γ̂ �)12(k1) (γ̂ q + γ̂ q+)23(k2) (γ̂ q+)31(k3)]

+ tr [(γ q)12(k1) (γ̂ � + γ̂ �+)23(k2) (γ̂ q+)31(k3)] + tr [(γ̂ q)12(k1) (γ̂ q + γ̂ q+)23(k2) (γ̂ �+)31(k3)]}
− 2

V 3

∑
1,2
3,4

∑
k1,k2
k3,k4

δk1+k2+k3+k4,0 �
(4)
1234(k1,k2,k3)

{
4 tr [(γ̂ q)12(k1) (γ̂ q)23(k2 (γ̂ q)34(k3) (γ̂ q+)41(k4)]

+ 4 tr [(γ̂ q+)12(k1) (γ̂ q+)23(k2 (γ̂ q+)34(k3) (γ̂ q)41(k4)] + 3 tr [(γ̂ q)12(k1) (γ̂ q)23(k2 (γ̂ q+)34(k3) (γ̂ q+)41(k4)]

+ 3 tr [(γ̂ q)12(k1) (γ̂ q+)23(k2 (γ̂ q)34(k3) (γ̂ q+)41(k4)]}, (86d)

where � in terms of q is given by Eq. (85). The rules about treating q/ are the same as in the phase space formulation, and the
Gaussian contractions are

〈0
r q12(k) 0

s q34(−k)
〉 = 〈0

r q12(k) 0
s q/34(−k)

〉 = 〈0
r q/12(k) 0

s q34(−k)
〉 = V

16
δrs

[
δ13 δ24 ϕ12(k) + 2γ T δ1−2,3−4

ϕ12(k) ϕ34(k)

1 + 2γχ
(0)
1−2(k)

]
,

(87a)

〈
0
r q/12(k) 0

s q/34(−k)
〉 = V

8
γ T δ1−2,3−4

ϕ12(k) ϕ34(k)

1 + 2γχ
(0)
1−2(k)

, (87b)

where

χ
(0)
1−2(k) = −T

∑
34

δ1−2,3−4 ϕ34(k). (87c)

The above expressions provide all of the information
necessary for one-loop renormalizations of 2-point correlation
functions in the density formalism.

V. A SIMPLE APPLICATION: PERTURBATION THEORY
FOR THE DENSITY OF STATES

As a simple demonstration of how the formalism developed
above works, let us consider the DOS. We first use the phase-
space formalism from Sec. IV D. From Eq. (17) we see that
the DOS is given by

N (ω) = NF + Re Q(iωn → ω + i0) ≡ NF + δN(ω), (88a)

where NF is the DOS at the Fermi level including the
interaction in Hartree-Fock approximation, and

Q(iωn) = 4

π

1

V

∑
p

〈0
0P nn

( p, p)
〉
. (88b)

We next observe, from Eq. (63),

〈P11〉 = 〈�11〉 + �11
2γ T

V

∑
2

〈�22〉. (89)

The second contribution to 〈P 〉 is proportional to the first
one with an additional frequency integration which decreases
the effects of the soft modes. The leading hydrodynamic
contribution to Q is therefore given by Eq. (88b) with P

replaced with �. Using Eq. (64) we can express Q in terms
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of a loop expansion in terms of the q-correlation functions. To
one-loop order the expression for � in Eq. (64) suffices.
Of the two contributions to 〈�11〉, the second one has
no hydrodynamic content due to the frequency restrictions
inherent in � or γ̂ q. From the first contribution we obtain

Q(iωn1 ) = −2i

πV

∑
p1

∑
3

G−1
3 tr 〈q/13 q/+

31〉, (90)

where we neglect two-loop contributions and less divergent
terms. Inserting the Gaussian propagator [Eqs. (68)] and
choosing n1 > 0, we find

Q(iωn1 ) = −2iγ

π

1

V

∑
k

T
∑
m<0

ϕ(3) ++,−
n1,n1,m

(0,k)

× 1

1 + 2γχ
(0)
n1−m(k)

. (91)

Here ϕ(3) ++,− is given by Eq. (81b), and we have explicitly
indicated that the first two frequency arguments are positive
while the third one is negative, and χ (0) is given by Eq. (87c).
The same result is obtained if we realize that δN is given
by 〈Pnn( p)〉 in the density formalism of Sec. IV E and use
Eqs. (84a), (85), and (87b).

To find the leading hydrodynamic contribution to Q or δN

we can calculate ϕ(3) in the AGD approximation, whence it
depends only on n1 − m. Performing the integral at T = ω = 0
in d = 1 + ε dimensions, we obtain

δN (ω = 0)/NF = −1

ε
[1 + O(ε)]

G

π
f
(
As

0

)+ O(G2),

(92a)
where G is the loop expansion parameter from Eq. (71c),

f (x) = 1 − x/2√
1 − x

− 1, (92b)

and

As
0 = 2NFγ = 2NF�

1 + 2NF�
(92c)

is the singlet s-wave Landau scattering amplitude in the
particle-hole channel.

There are several interesting aspects of this result. The 1/ε

singularity reflects the instability of the Fermi-liquid against
a Luttinger liquid in d = 1.19,53–55 The current formalism
emphasizes that this is a result of the Goldstone fluctuations
getting so strong that they destroy the ordered phase. In fixed
dimension 1 < d < 3 as a function of the imaginary frequency
the corresponding result is

(Q(iωn) − Q(i0))/NF = cd fd

(
As

0

)
ωd−1

n , (93a)

where cd > 0 interpolates smoothly between cd ∝ 1/(d − 1)
for d → 1 and cd ∝ 1/(3 − d) for d → 3. fd is a function
that continuously evolves to f given in Eq. (92b) as d → 1, is
positive definite for 1 < d � 3, and has the property fd (x →
0) ∝ x2. For d = 3 one finds

(Q(iωn) − Q(i0))/NF = c̃3 f3
(
As

0

)
ω2

n log(1/ωn) + O
(
ω2

n

)
,

(93b)

with c̃3 > 0.

After analytically continuing to the real axis these results
imply for the leading nonanalytic frequency correction to the
DOS

δN(ω)/NF = nd (2 − d) |ω|d−1 (94a)

for 1 < d < 3, and

δN(ω)/NF = −ñ3 ω2 log(1/|ω|) (94b)

for d = 3. nd is positive definite and interpolates smoothly
between nd ∝ 1/(d − 1) for d → 1 and nd ∝ 1/(3 − d) for
d → 3, and ñ3 > 0.

Note that to one-loop order there is no |ω| contribution to
the DOS in d = 2, in agreement with earlier results obtained
with diagrammatic techniques.22,56–58 Equations (92a), (93),
and (94) are analogous to the Coulomb or zero-bias anomaly
in a disordered Fermi liquid.14,59,60 There, the singularity
at zero frequency is proportional to 1/(d − 2), and the
nonanalytic frequency dependence is |ω|(d−2)/2. The exponents
of the respective frequency nonanalyticities reflect the scale
dimensions of the least irrelevant operator at the disordered
and clean Fermi-liquid fixed point, which are −(d − 2) and
−(d − 1), and the corresponding dynamical exponents, which
are z = 2 and z = 1, respectively.16,19,54 If we denote the least
irrelevant operator by u, this leads to a homogeneity law in the
clean case,

δN (ω) = δN (ω b,u b−(d−1)), (95)

which immediately leads to the frequency dependence re-
flected in Eq. (94a). The sign of the effect at zero frequency
[Eq. (92a)] reflects the fact that a repulsive interaction will
lead to a decrease of the DOS at the Fermi level.

The dependence of the anomaly on the interaction ampli-
tude also warrants a comment. The function f (x) [Eq. (92b)]
is positive definite for 0 < x < 1, and f (x → 0) ∝ x2. The
effects of the soft modes thus appear only at second order in
the interaction, whereas Eq. (90) or (91) naively suggest an
effect at first order. The technical reason is that the integral
in Eq. (91) vanishes if one puts γ = 0 in the denominator of
the integrand. This is consistent with many-body perturbation
theory, as it must be: The diagram in Fig. 2(a), which is the only
contribution to the DOS to first order in the interaction (Hartree
diagrams have been absorbed into the Green’s function), does
not allow for a mixing of retarded and advanced degrees

FIG. 2. Diagrammatic contributions to the DOS at (a) first and (b)
second order in the interaction amplitude. (c) A ladder resummation
of the diagram in (a) plus the first diagram in (b), which is identical
with Eq. (91).
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of freedom and hence has no hydrodynamic content. The
first diagram in Fig. 2(b) does, and its hydrodynamic part is
identical with Eq. (91) to second order in γ . The hydrodynamic
part of its ladder resummation [Fig. 2(c)] is identical with the
full Eq. (91). The other contribution to second order in the
interaction, that is, the second diagram in Fig. 2(b), represents a
particle-particle channel contribution. In the present formalism
it will appear if a particle-particle interaction amplitude is
added to Eqs. (4b) or (13).42 Note that the effective theory
picks out only the hydrodynamic parts of these diagrams,
whereas the many-body diagrams contain nonhydrodynamic
pieces as well. Also note that the current theory, at any given
order in the loop expansion, in valid to all orders in the
interaction amplitude, whereas many-body perturbation theory
by necessity involves an expansion in powers of the interaction.

In addition to the above discussion, there are other interest-
ing aspects of the DOS that include the behavior in the case of
a long-ranged Coulomb interaction,56,61 as well as the 2-point
correlation function of the local DOS. These effects will be
discussed elsewhere.42

VI. SUMMARY, DISCUSSION, AND OUTLOOK

A. Summary and discussion

We have derived an effective field theory that describes
the soft modes, and their effects on observables, in electron
systems without quenched disorder. The soft modes have been
identified by means of a Ward identity; they are particle-hole
excitations with a linear frequency-momentum relation. They
are the Goldstone modes of a continuous symmetry, namely,
a rotation in Matsubara frequency space that relates retarded
and advanced degrees of freedom and is spontaneously broken
whenever the quasiparticle spectral weight is nonzero. This
identifies a Fermi liquid as an ordered phase with the quasi-
particle spectral weight as the order parameter and the soft
particle-hole excitations the corresponding Goldstone modes.
A nonzero temperature the Goldstone modes acquire a mass,
and so do subsets of them in the presence of a magnetic field
or other symmetry-breaking external fields. Quenched disorder
restricts the Goldstone modes to the s wave or � = 0 channel,
whereas all higher angular momentum channels become
massive. This is the reason why the clean theory is more com-
plicated than the corresponding one for disordered electrons:
There are many more soft modes to take into account in clean
systems. It is important to remember that the Goldstone modes
are not density excitations, and their existence is not related
to particle-number conservation; the density susceptibility is
characterized by zero-sound excitations regardless of whether
the symmetry is broken and at any temperature.

Technically, we have borrowed heavily from techniques and
concepts developed by Wegner8 for disordered noninteracting
electrons and generalized by Finkelstein12 to the interacting
disordered case. However, the resulting effective field theory
in the clean case does not take the form of a generalized
nonlinear σ model, as it does in the disordered case, but
is significantly more complex. This complexity reflects the
presence of many more soft modes. One manifestation of this
complexity is the fact that the effective action contains terms to
higher than linear order in the interaction amplitude, whereas

in the disordered case only linear terms appear. The reason
is that in the clean case the Green’s function is soft, and the
additional powers of the frequency that accompany higher
powers of the interaction are compensated by multiplicative
Green’s functions. In the disordered case, in contrast, the
Green’s function is massive because of the elastic relaxation
rate, and terms of higher than linear order in the interaction
are irrelevant in a renormalization-group sense.

We have followed Wegner8 and later work based on his
ideas9–11,14,16 in bosonizing the theory by introducing classical
matrix fields that are isomorphic to bilinear products of
fermion fields. Technically, this is done by introducing a
Lagrange multiplier constraint and integrating out the
fermions. This approach is very different from that of
Shankar,24 who applied renormalization-group techniques
directly to the fermionic theory to derive Landau Fermi-liquid
theory. The Lagrange multiplier field, whose expectation value
plays the role of a self-energy, is soft and needs to be kept to all
orders to avoid introducing spurious soft modes. This has been
achieved in terms of diagram rules for the effective theory,
with the role of the Lagrange multiplier being to eliminate
the noninteracting part of certain propagators. The effective
action has not been given in closed form, but an explicit
method has been devised to construct it to any desired power in
the fundamental soft-mode field. This allows for a systematic
loop expansion, with the inverse Fermi velocity playing the
role of the bare loop expansion parameter. The interaction, by
contrast, is not treated perturbatively. Order by order in a loop
expansion, the theory thus produces the leading hydrodynamic
(i.e., long-wavelength and low-frequency) effects to all orders
in the interaction, and the interaction is not required to be
weak in any sense. This, together with its ability to isolate
the hydrodynamic contributions to any desired observable,
sets the current theory apart from many-body perturbation
theory which expands in powers of the interaction, with
any resummations to all orders in the interaction being
opportunistic and not controlled.

A related feature of the current theory that is even
more important is its amenability to renormalization-group
techniques. Since it is formulated in terms of an infinite power
series in the fundamental field, with each term characterized
by an n-point vertex and a corresponding correlation function,
the structure of which is dictated by symmetry, the bare theory
also suggests the structure of the corresponding renormalized
theory, which many-body perturbation theory cannot do. This
feature has been exploited extensively in the disordered case
to describe, inter alia, the Anderson-Mott metal-insulator
transition,13,14,62 which had proven very hard to do by means
of many-body theory.

Certain aspects of the present theory had already been
present in the theory put forward in Ref. 16. However, since
the latter focused on disordered systems, it was formulated in
terms of s-wave variables, with the higher angular momentum
modes effectively being integrated out. In an application to
the clean case, this led to a nonlocal theory; that is, the
3-point and higher vertices did not exist in the hydrodynamic
limit of small frequencies and wave numbers. In addition, no
complete separation of soft and massive modes was achieved
in that theory for the clean case. Both of these points have
been remedied in the present formulation. The issue of the
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higher-angular-momentum modes is handled by formulating
the theory in terms of phase-space variables, which explicitly
keeps all angular momentum channels, and the separation of
soft and massive modes has been achieved by expressing the
massive modes in terms of the soft ones in a power-series
expansion, albeit not in a closed form, in contrast to the
disordered case. The relation to the formulation in terms of
s-wave variables, which is still useful for certain calculational
purposes, is explained in Sec. IV E.

B. Outlook

Formalism for formalism’s sake is not very useful, and a
crucial test for the present theory will be any physical problems
it can solve more easily than other methods. We conclude this
paper by listing several applications that we plan to pursue
in the near future, many of which we already have obtained
preliminary results for.

The DOS calculation in Sec. V is meant only as an
illustration of how the loop-expansion-based perturbation
theory works within the present context; it does not achieve
anything that cannot easily be done with many-body diagrams.
It nevertheless has some important advantages and points
to some crucial future developments. For instance, as was
shown in Ref. 16, the Fermi-liquid state is represented by
a stable renormalization-group fixed point, and the leading
irrelevant operators with respect to that fixed point can be easily
identified. This shows that the nonanalytic energy or frequency
dependence of the DOS near the Fermi level, Eqs. (93), is
qualitatively exact; there cannot be any contributions with
a lower power of the frequency. This would be impossible
to establish within many-body theory. A related point is
that the field theory, in contrast to many-body perturbation
theory, is not perturbative in the interaction; the results at
any order in the loop expansion are valid to all orders in
the interaction. Other observables will also display universal
nonanalytic behavior in the Fermi-liquid phase that can be
understood as corrections to scaling at the Fermi-liquid fixed
point, and they can be identified by the same techniques. One
interesting quantity is the 2-point correlation function of the
local DOS. Since the DOS is the (zeroth moment of) the order
parameter for the Fermi liquid, this plays the role of the order
parameter susceptibility and it is expected to be long-ranged,
that is, to exhibit a universal divergence for small wave
numbers, everywhere in the Fermi-liquid phase. This expected
phenomenon is analogous to a well-known feature of the
magnetic susceptibility in the ordered phase of a Heisenberg
ferromagnet.6 In Ref. 30 we have used scaling arguments
combined with a preliminary version of the current theory
to predict that the DOS-DOS correlation function diverges as
T/k3−d for small wave numbers k. We will revisit this problem,
together with other aspects of the DOS, in more detail shortly.

In addition, the effective theory suggests the existence of a
critical fixed point that describes a transition from a Fermi
liquid to a non-Fermi-liquid state. This will be analogous
in many respects to the critical fixed points that describe
various versions of the Anderson-Mott transition.14 The basic
physical idea is that the fluctuations in a Fermi liquid that
are represented by the Goldstone modes become stronger with
decreasing dimensionality and increasing interaction strength

and ultimately give rise to an instability of the Fermi liquid
since the system can lower its free energy by going into
a state that restores the symmetry and thus eliminates the
Goldstone modes. A scaling theory for such a transition has
been developed in Ref. 30, and arguments have been given that
suggest that the corresponding fixed point will appear in the
present theory at two-loop order. The loop expansion will then
allow for a controlled description of the transition in d = 1 + ε

dimensions.
The theory can also be applied to magnetic phenomena,

that is, order in the spin-triplet channel. In Sec. IV A2
we have constructed a saddle-point solution that reproduces
the Stoner theory of ferromagnetism. By expanding about
that saddle point, analogously to the expansion about the
Fermi-liquid saddle point in Sec. IV B, one can construct a
systematic theory for quantum Heisenberg ferromagnets that
improves upon and replaces the Hertz-Millis theory.63,64 Such
a theory has been developed in Ref. 65, and it has been
shown to have very interesting consequences, including the
fact that the phase transition at sufficiently low temperatures
in a Heisenberg ferromagnet is generically of first order, in
agreement with experimental observations. This theory was
based on a phenomenological treatment of the fermionic
degrees of freedom combined with symmetry arguments, and
it does not have the correct limiting behavior as d → 1. The
current theory will allow for a systematic derivation valid in
any dimension d > 1 that will serve as an important check and
will probably point to new developments. It can also be applied
to ferromagnets, the quantum aspects of which have not been
considered so far. Finally, if one considers band electrons
instead of the nearly free electron model we have employed for
simplicity, the theory can also describe antiferromagnetism.

Treatments of the spin-triplet channel are not restricted to
s-wave order. By keeping a triplet interaction amplitude in the
p-wave channel [see Eq. (13d)] one can describe a magnetic
nematic or p-wave ferromagnet. In Ref. 29 we have shown
that the quantum phase transition from a Fermi liquid to such
magnetic state is generically of first order, for reasons that are
similar to those for the analogous statement for the s-wave
ferromagnetic transition. This is in contrast to Hertz-type
theories28 that predict a continuous transition. This result was
also based on a preliminary version of the current theory,
and the present complete formulation will allow for more
detailed studies of exotic magnetic states. The same is true for
superconducting states, in either the s-wave or higher angular
momentum channels.

All of the above examples involve phenomena that crucially
rely on the coupling of some order parameter to fermionic
soft modes. The present effective theory provides a general
framework for describing the universal aspects of ordered
phases, and the quantum phase transitions between them, of
clean electron systems.
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APPENDIX A: EFFECTS OF QUENCHED DISORDER

In this appendix we show that quenched disorder modifies
the Ward identity we discussed in Sec. III such that only density
or � = 0 modes remain soft.

Consider a static random potential u(x) that couples to the
electron number density and has a Gaussian distribution with
a second moment

{u(x) u( y)}dis = U (x − y)/πNF, (A1)

where {· · · }dis denotes the disorder average and U is dimen-
sionally an energy density. We then need to add to Eq. (13a) a
contribution

Adis = −1

2πNF

∑
q

′
U (q)

∑
k

tr (Q(k; q)) tr (Q( p; −q))

+ 1

πNF

∑
q

′ ∑
k, p

U (k − p) tr (Q(k; q) Q( p; −q)) .

(A2)

The trace now includes tracing over replica indices to handle
the disorder average. Now we anticipate that the center-of-
mass momenta k and p will be pinned to the Fermi surface
and expand U (k − p) in Legendre polynomials. We then can
write the disorder part of the action

Adis = −1

2πNFτ1

∑
q

′
tr (Q0,0(q)) tr (Q0,0(−q))

+ 1

πNF

∞∑
�=0

1

τ
(�)
rel

1

k2�
F

�∑
m=−�

(−)m
∑

q

′

× tr (Q�,m(q) Q�,−m(−q)). (A3a)

Here we have expanded the Q matrices in spherical harmonics
Ym

� ,

Q
�,m
12 (q) =

∑
k

k� Ym
� (�k) Q12(k; q), (A3b)

and have defined relaxation rates 1/τ1 = U (q = 0) and

1

τ
(�)
rel

= 2π

∫ 1

−1
dη P�(η) U (kF

√
2(1 − η)) (A3c)

in the angular momentum channels.
The derivation of the Ward identity as in Sec. III now still

yields Eq. (30) (note Q0,0 ≡ Q(0)), but it gives no information
about the angular momentum channels with � > 1. This
is consistent with the results of perturbation theory. The
Fermi-liquid saddle-point solution from Sec. IV A1 needs to
be augmented by a disorder-induced self-energy and becomes
identical with the saddle point considered in Ref. 16. An
expansion about the saddle point to Gaussian order yields〈
δQ

�,m
12 (q = 0) Q

�,m
12 (q = 0)

〉
i�n1−n2 →0 ∝ πNF

1/τ
(�=0)
rel − 1/τ

(�)
rel

.

(A4)

In order for the theory to be stable we need to require
1/τ

(�=0)
rel > 1/τ

(�>0)
rel , which will generically be the case. If

it is not one needs to choose a saddle point in the angular-
momentum channel that has the largest value of 1/τ

(�=0)
rel . We

see that all correlation functions other than the one for � = 0
are massive, which is consistent with the information obtained
from the Ward identity.

APPENDIX B: AN ILLUSTRATIVE EXAMPLE: SOFT
MODES IN THE CLASSICAL O(2) VECTOR MODEL

In this appendix we discuss a classical O(2) vector model
as an illustrative example of how to separate soft and massive
modes. Consider a two-component classical field φ(x) =
(π (x),σ (x)) and an action

A =
∫

dx
[

r

2
φ2(x) + c

2
(∇φ(x))2 + u

4
(φ2(x))2

]
, (B1)

with (∇φ)2 = ∂iφj ∂
iφj . The partition function is

Z =
∫

D[φ] e−A[φ] . (B2)

The saddle-point equations for homogeneous field configura-
tions (π,σ ) read

rπ + uπ3 + uπσ 2 = 0, (B3a)

rσ + uσ 3 + uσπ2 = 0. (B3b)

For r < 0, a solution that minimizes the free energy is

πsp = 0, (B4a)

σsp =
√

−r/u ≡ φ0. (B4b)

Alternatively, we can choose πsp to have any value with |πsp| <

φ0. Then

σ 2
sp = φ2

0

(
1 − π2

sp

/
φ2

0

)
(B5)

also solves the saddle-point equations. This reflects the O(2)
rotational symmetry of the model.

Now consider fluctuations about the saddle point, σ =
φ0(1 + δσ ), and redefine π → φ0π so that δσ and π are both
dimensionless. Then the action takes the form

A = Asp + Aπ [π ] + Aδσ [δσ ] + Aint[π,δσ ], (B6a)

where

Aπ [π ] = c

2
φ2

0

∫
dx (∇π )2 + u

4
φ4

0

∫
dx π4, (B6b)

Aδσ [δσ ] = uφ4
0

∫
dx (δσ )2 + c

2
φ2

0

∫
dx (∇δσ )2

+uφ4
0

∫
dx (δσ )3 + u

4
φ4

0

∫
dx (δσ )4, (B6c)

Aint[π,δσ ] = uφ4
0

∫
dx π2 δσ + u

2
φ4

0

∫
dx π2(δσ )2.

(B6d)

Here δσ and π are functions of x. A graphic representation of
the terms that depend on δσ is shown in Fig. 3.

It is well known that the transverse fluctuation, that is,
the field π , is the soft mode in this model.7 π is the
Goldstone mode that reflects the spontaneously broken O(2)
invariance, and it is governed by a Ward identity that ensures
that the homogeneous transverse susceptibility diverges. The
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FIG. 3. Graphic representation of the contributions Aδσ and Aint

to the action. Dashed and solid lines represent the fields δσ and π ,
respectively.

effective soft-mode theory is a nonlinear σ model with an
action

ANLσM = c

2
φ2

0

∫
dx[(∇π )2 + (∇

√
1 − π2)2] (B7a)

and a partition function

Z =
∫

D[π ]√
1 − π2

e−ANLσM[π]. (B7b)

Notice that the functional integration measure has changed by
switching to π as the only field. This is important to preserve
the symmetry of the problem. Technically, terms arising from
the measure cancel spurious mass terms that get generated in
perturbation theory.

In this simple case the nonlinear σ model can be derived in
closed form by writing φ as a representation of O(2) rotations,

φ(x) =
(√

1 − π2(x) π (x)
−π (x)

√
1 − π2(x)

) (
0

ρ(x)

)
, (B8)

and integrating out the massive ρ fluctuations in saddle-point
approximation [i.e., replacing ρ(x) with its saddle-point value
φ0; see Ref. 7]. For the more complicated matrix field theory
we are interested in no closed-form derivation of the effective
soft-mode theory has been found so far, but one can still
derive the latter perturbatively order by order in powers of
the soft modes. To guide that derivation it is useful to consider
the analogous process for the O(2) model. In what follows,
we thus pretend that the nonlinear σ model is not known
and construct an effective soft-mode theory perturbatively
by considering Eqs. (B6) and systematically integrating
out δσ .

Returning to Eqs. (B6) we see that at the Gaussian level
π is indeed massless and δσ is massive. However, the π4

term in Eq. (B6b) does not carry any gradients. If we were to
simply neglect δσ this term would generate a mass for π at
the one-loop level. This mass violates the Ward identity and
is spurious; it gets canceled if one properly integrates out δσ .
The coupling between δσ and π is thus crucial and needs to be
kept. Formally integrating out δσ leads to an effective action
in terms of π only,

Aeff[π ] = Aπ [π ] + �Aπ [π ], (B9a)

where

�Aπ [π ] = − ln
∫

D[δσ ] e−Aδσ [δσ ]−Aint[π,δσ ]. (B9b)

We can now perform the δσ integral perturbatively.

FIG. 4. (a) Tree-level and (b) one-loop contributions to the term
of O(π 4) in �Aπ [π ] in an expansion in δσ loops. (c) Tree-level
contribution to the term of O(π 6).

Let us first integrate out δσ in a straightforward manner.
The resulting loop expansion is an expansion in powers of
1/φ0. The tree-level and one-loop diagrams that contribute to
O(π4) are shown in Fig. 4. The tree diagram yields

�Aπ [π ] ≈ −u

4
φ4

0

∫
dx π4 + c

8
φ2

0

∫
dx (∇π2)2. (B10)

Combining Eq. (B10) with Eq. (B6b) we see that the offending
π4 term cancels, and the gradient terms agree with the
expansion of the nonlinear σ model [Eq. (B7a)] to order π4.
Terms of higher order in π can be constructed analogously
[see Fig. 4(c)].

Alternatively, we can evaluate the integral in Eq. (B9b)
by means of a saddle-point approximation for δσ for fixed
π . The saddle-point equation is shown graphically in Fig. 5.
Analytically, we obtain

0 = 1

2
π2(x) +

(
1 + 1

2
π2(x)

)
δσsp(x)

− c

2uφ2
0

∇2δσsp(x) + 3

2
(δσsp(x))2 + 1

2
(δσsp(x))3.

(B11a)

In a gradient expansion, and keeping terms up to O(∇2), this
is solved by

δσsp(x) =
√

1 − π2(x) − 1

+ g

1 − π2(x)
∇2
√

1 − π2(x) + O(g2∇4), (B11b)

with g = c/2uφ2
0 . Note that higher powers of g are ac-

companied by higher powers of gradients. Substituting this

FIG. 5. Saddle-point equation for δσ for fixed π .
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result back into the action [Eqs. (B6)], we obtain the action of
the nonlinear σ model [Eq. (B7a)].

In contrast to the δσ -loop expansion above, this second
method does not require knowledge of the δσ propagator.
It also involves only solving an algebraic equation; no
integrals need to be performed. In contrast to the standard
derivation of the nonlinear σ model, which uses Eq. (B8),
it requires no explicit knowledge of the symmetry group
and its representations. If no closed-form solution of the
saddle-point equation could be found, one could still solve
Eq. (B11a) iteratively, since it is inhomogeneous. In this way
one obviously can construct the effective action perturbatively,
order by order, in powers of π . For an analysis of the effective
action to any given order in a loop expansion this would be
sufficient. This is the procedure we follow for the matrix field
theory in Sec. IV C.

Finally, we need to worry about the change of the integration
measure mentioned after Eqs. (B7). In the present formalism,
this is generated by the Gaussian fluctuations about δσsp. If
we write δσ (x) = δσsp(x) + τ (x) and integrate out τ (x) in
Gaussian approximation we obtain an additional contribution
to the effective action. The complete effective action then is

Aeff = 1

2G

∫
dx [(∇π )2 + (∇

√
1 − π2)2]

+ Tr ln
√

1 − π2 + O(G), (B12)

with G = 1/cφ2
0 the coupling constant. This is the

nonlinear σ model including the measure terms
[see Eqs. (B7)].
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