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Nonlocal order in elongated dipolar gases
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Dipolar particles in an elongated trap are expected to undergo a quantum phase transition from a linear to
a zigzag structure with decreasing transverse confinement. We derive the low-energy effective theory of the
transition showing that in the presence of quantum fluctuations the zigzag phase can be characterized by a
long-ranged string order, while the local Ising correlations decay as a power law. This is also confirmed using
density matrix renormalization group calculations on a microscopic model. The nonlocal order in the bulk gives
rise to zero energy states localized at the interface between the ordered and disordered phases. Such an interface
naturally arises when the particles are subject to a weak harmonic confinement along the tube axis. We compute
the signature of the edge states in the single-particle tunneling spectra pointing to differences between a system
with bosonic versus fermionic particles. Finally we assess the magnitude of the relevant quantum fluctuations in
realistic systems of dipolar particles, including ultracold polar molecules as well as alkali atoms weakly dressed
by a Rydberg excitation.
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I. INTRODUCTION

The realization of ultracold dipolar gases opens new
directions for investigation of quantum many body physics.
Relevant systems currently under investigation include degen-
erate gases of atoms with large magnetic dipole moments,
such as Cr1 or of heteronuclear molecules with a large
permanent electric dipole.2 Another promising proposal is to
use degenerate alkali atoms which are weakly dressed with a
Rydberg excitation by optical pumping.3

The long-range dipolar interactions in these systems can be
strong enough to drive interesting structural phase transitions.
But, not so strong as to make the kinetic energy negligible.
The balance between kinetic and interaction terms results in
strong quantum fluctuations, which provide a fertile ground
for the formation of novel phases.4,5

In this paper we shall specifically consider the zigzag
instability of a chain of repulsive particles in an elongated
trap, shown schematically in Fig. 1. The dipoles are assumed
to be polarized by an external electric field perpendicular to the
trap axis. When the transverse confinement is lowered below
a critical value, the repulsive interactions between dipoles
overcome the confinement, leading to a staggered distortion of
the chain. A classical analysis along these lines6 explains the
zigzag distortion observed in chains of trapped ions.7 In the
classical description of either the Coulomb or dipolar crystal,
the zigzag distortion is associated with breaking of the Z2

reflection symmetry about the midplane of the trap. However,
because the dipolar interactions are much weaker, the effect
of quantum fluctuations in the particle positions is greatly
enhanced compared to the ions. We shall see that this leads to
an interesting change of the zigzag phase and phase transition.

One effect of quantum fluctuations is to allow single-
particle tunneling between an up and down displacement in
the zigzag. It is convenient to think of distortion of a particle,
up or down as an Ising spin variable. The tunneling then acts to
disorder the zigzag in the same way that a transverse field acts
to disorder a one-dimensional Ising model inducing transitions
between the up and down state of the spin. This class of

fluctuations and a mapping to an Ising model were recently
discussed.8,9

Another mode of quantum fluctuation, which has not been
considered in this context so far, is the axial motion of
the dipolar particles. In one dimension these longitudinal
fluctuations lead to disordering of the crystal and at the
same time they restore the Z2 symmetry of the staggered
configuration. What is then the fate of the phase transition
and of the broken symmetry phase in the presence of the
fluctuations?

To answer this question we derive a long wavelength theory,
which describes both the gapless longitudinal fluctuations and
the transverse distortion. Let us briefly summarize the main
results of this analysis. First, we show that the zigzag state
remains a distinct phase in the presence of the fluctuations,
however, the zigzag order becomes nonlocal and is described
by a string order parameter. The longitudinal density fluctu-
ations (breathing modes of the zigzag) remain gapless in the
zigzag phase, while single-particle excitations induce domain
walls in the string order and are therefore gapped. We further
show that the presence of string order in the bulk implies the
existence of a zero energy single-particle state localized at
each edge. These states are represented by localized Majorana
modes in the low-energy theory. We compute the local
tunneling spectra into the edge and identify the signatures of
the localized zero energy states. Finally we point to interesting
differences in these signatures depending on whether the
dipolar particles are of a bosonic or a fermionic species.

Before proceeding we note previous analysis done in the
context of electronic quantum wires,10–12 which also identify a
quantum phase transition, of the same universality class as we
consider here, into a zigzag chain. While the nonlocal nature of
the order parameter is implicit in these studies, this nonlocality
has not been emphasized, and in particular its implications on
the edge structure have not been discussed. We also note earlier
studies on bosonic13 and fermionic14,15 ladders, where a state
similar to the zigzag is identified as an out of phase charge
density wave between the two legs of the ladder.
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FIG. 1. (Color online) (a) One of the two broken symmetry zigzag
states of the classical system. (b) Longitudinal quantum fluctuations
affect a continuous distortion from one zigzag configuration to the
other, which restores the Z2 symmetry of the ground state in the bulk.

The rest of the paper is organized as follows. In Sec. II we
identify the important scales in the problem of dipolar particles
in an elongated trap and derive an effective Hamiltonian of
the particles in first quantized form. A quantum mean-field
approximation is then formulated in Sec. III in order to estimate
the transition point and assess the importance of quantum
fluctuations within the interaction range relevant to ultracold
dipolar molecules or Rydberg atoms. In Sec. IV we derive
an effective long-wavelength theory of the zigzag transition
starting from the microscopic Hamiltonian of the dipolar chain.
Using the long-wave description we discuss the nature of the
critical point and the nonlocal order parameter associated with
the zigzag phase. The low energy edge states imposed by the
nonlocal order in the bulk are discussed in Sec. V. In particular
we predict direct signatures of the zero energy edge states in
local tunneling spectra. In Sec. VI we demonstrate the key
properties of the zigzag chain, in particular the presence of
string order, in a numerical calculation using the density matrix
renormalization group (DMRG) method. Finally, Sec. VII
provides a summary and discussion of the results.

II. MODEL HAMILTONIAN

We consider a dipolar quantum gas tightly confined in a
tube-shaped trapping potential. The particles of the gas may
be either fermionic or bosonic and we assume that their dipoles
are polarized by a large electric field (or magnetic field in the
case of atoms with a large magnetic dipole moment) in the
direction ẑ perpendicular to the tube axis. Such a setup is
described by the Hamiltonian,

H =
∑

i

(
P 2

i

2m
+ mω2

⊥
2

r2
i

)

+ d2
∑
j>i

(
1

|Ri − Rj |3 − 3
((Ri − Rj ) · ẑ)2

|Ri − Rj |5
)

, (1)

where Pi , Ri , and ri are the first quantized momenta, position,
and transverse radial coordinates of the particles in the trap.
ω⊥ is the transverse harmonic confinement frequency m is the
mass and d the dipole moment of the particles.

A simple way to analyze the Hamiltonian (1) is through a
classical mean-field theory. This approach consists of minimiz-
ing the potential energy while neglecting the kinetic terms that
induce fluctuation in the positions. A zigzag transition is cap-
tured by a Landau-like expansion of the configuration energy in
powers of the staggered distortion r of the particles.6 For trans-
verse confinement frequency ω⊥ below the critical frequency

ωc =
√

279ζ (5)d2ρ5
0/8m, the classical energy is minimized

by a nonvanishing distortion r = κ ρ−1
0

√
1 − (ω⊥/ωc)2, where

κ = √
186ζ (5)/3175ζ (7) ≈ 0.245, ζ (n) is the Riemann zeta

function, and ρ0 is the particle density. In reality, this criterion
only marks the characteristic frequency around which a local
zigzag distortion begins to develop. Quantum fluctuations
allow the zigzag to twist and turn and may ultimately destroy
the long-range order.

To describe the soft fluctuations of the zigzag we assume
that each particle is distorted off the axis of the trap by the
fixed classical value r , but is free to rotate around the axis
by the angle ϕ. All our expansions below are valid when the
distortion r is small compared to the interparticle distance,
that is, r̃ ≡ rρ0 should be taken to be a small dimensionless
parameter. In Sec. III we will see that in the relevant range of
parameters for dipolar molecules this is always satisfied near
the zigzag quantum phase transition.

The effective Hamiltonian which describes the linear
motion of particles along the trap axis, rotations around the axis
at a fixed radius r , and dipolar interactions between particles
is given by

H =
∑

i

[
p2

i

2m
+

∑
j>i

d2

|xi − xj |3 + L2
i

2I
+

∑
j>i

Jij

(
cos(ϕi − ϕj )

+1

2
cos(ϕi + ϕj ) − ν

2
cos 2ϕi

)]
. (2)

Here pi and xi are the linear momenta and position operators
and Li and ϕi are the angular momenta (along the axis)
and its conjugate angle operator of the ith particle. The
first two terms in the Hamiltonian (2) describe the particle
motion and interactions along the trap axis, which give rise to
density fluctuations. The rest of the Hamiltonian describes the
fluctuations that drive the Ising transition. Apart from the last
term, the angular part of the Hamiltonian looks like a quantum
xy model. The dipolar interaction, through the cosine coupling
favors a staggered arrangement of the molecules off the axis,
while the angular kinetic energy delocalizes the angle and
thereby acts to disorder the zigzag. The last term breaks the
U (1) angle symmetry down to Z2 by favoring the up and
down (0 and π ) distortions of the particles. If the trap potential
has cylindrical symmetry then the preferred axis is set only
by the external electric field which polarizes the dipoles. In
this case we have ν = 1. It is possible to change ν by tuning
the ratio between the transverse trap frequencies parallel and
perpendicular to the electric field.

The other coupling constants appearing in the effective
Hamiltonian (2) are calculated directly from the full Hamilto-
nian (1). They are given by Jij = J/(ρ0|xi − xj |)5 where J =
6d2r2ρ5

0 and I = mr2. Note that the strength of the coupling
Jij depends on the particles’ positions such that it produces
a coupling between the angular and longitudinal degrees of
freedom. At this point it is convenient to express J and I in
terms of two important dimensionless parameters that can be
independently tuned in the system: (i) r̃ ≡ rρ0 is the ratio of the
classical distortion radius to the average interparticle distance,
and (ii) the dimensionless dipolar interaction strength Rs =
d2ρ0m/h̄2 is the ratio of the typical dipolar energy εd = d2ρ3

0
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to the typical kinetic energy ε0 = h̄2ρ2
0/m. Rs can be varied, for

example, by changing the dipole moment d using an external
electric field, while r̃ is tuned by varying the transverse trap
frequency ω⊥. We can express the Hamiltonian parameters
using these dimensionless numbers as J = 6Rsr̃

2ε0 and I =
h̄2r̃2/ε0.

III. ESTIMATION OF THE TRANSITION POINT

Within a classical analysis6 the zigzag transition takes
place at a critical value of the transverse trap frequency
given by ωc = 6.014

√
Rsε0/h̄. Quantum fluctuations driven

by the kinetic energy in the Hamiltonian (1) or (2) will
lead to a transition at a smaller value of the transverse trap
frequency. With increasing strength of interaction Rs the
relative importance of the kinetic energy decreases and we
expect the critical ω⊥ to approach the classical value.

We shall now formulate a quantum mean-field theory of
the effective Hamiltonian (2) in order to estimate the value
of the parameters at the transition point and to asses the
importance of quantum fluctuations. For this purpose we freeze
the axial degrees of freedom and focus on the angular part of
the Hamiltonian (2). In addition, since Jij decays rapidly with
distance, we consider only nearest neighbor interactions.

The mean-field approximation consists of decoupling the
interaction term in the Hamiltonian (2) to get the local
Hamiltonian,

HMF =
∑

i

[
L2

i

2I
− J

(
3 σ cos ϕi + ν

2
cos 2ϕi

)]
. (3)

This is supplemented by the self-consistency condition,

σ = 〈cos ϕi〉MF . (4)

Note that the Hamiltonian (3) is fully quantum mechanical in
the sense that the noncommuting variables ϕi and Li are both
present in it, in the interaction and kinetic terms, respectively.
Furthermore the transition is a result of competition between
these two terms, and not driven by interaction alone as in the
classical zigzag instability. On the other hand this local mean-
field scheme neglects the spatial structure of the fluctuations
and hence cannot capture the universal critical behavior close
to the transition. Below we estimate the fluctuation region in
which the mean-field theory fails.

Within the mean-field approximation, the system develops a
nonzero order parameter σ at the critical value of the couplings
IJ = α(ν). For example, we find α(1) = 0.31, α(0.5) = 0.33,
and α(2) = 0.28. While larger values of the eccentricity can
be achieved in experiment, our quantum rotor representation
is not suited to describe them quantitatively.

Using the relations IJ = 6Rsr̃
4 and r̃ = κ

√
1 − (ω⊥/ωc)2

we infer a phase boundary,

Rcrit
s = 46 α(ν)

[
1

1 − (ω⊥/ωc)2

]2

. (5)

The phase diagram is presented in Fig. 2 for the case of
a symmetric trap (ν = 1). We see that the transition point
indeed approaches the classical value of ωc in the strong
interaction limit.16 Reasonable values for the dimensionless
interaction Rs expected in real systems can be estimated from
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FIG. 2. (Color online) Phase diagram of polar molecules in an
elongated trap in the space of the dimensionless interaction constant,
Rs = d2mρ0, and transverse confinement ω⊥/ωc, ωc is the critical
transverse frequency in the classical limit. The solid curve marks
the zigzag transition (5) computed within the local mean-field
approximation for ν = 1, that is, for isotropic transverse confinement.
The dashed line corresponds to the Ginzburg criterion below which
we expect the mean-field approximation to break down. Realistic
values of Rs range between 0.05 and 130 as marked by the gray
band. Note that the quantum disordered zigzag and the linear chain
are not sharply distinct. There is a smooth crossover between the two
regimes.

the typical dipolar moments ranging from d � 0.05 D for
magnetic moments through d � 0.5 D for polarized molecules
and up to d � 10 D for atoms weakly dressed with Rydberg
excitations. Assuming densities of ρ0 ∼ 104 cm−1, we get Rs

between 0.05 and 130. From the phase diagram (Fig. 2) it
is clear that in this regime quantum fluctuations shift the
transition to ω

QC
⊥ far below the classical value ωc. This implies

a huge effect of quantum fluctuations on the transition in the
relevant parameter regime.

We assess the accuracy of the quantum mean-field approx-
imation used to compute the transition point by applying the
appropriate Ginzburg criterion 〈δσ 2〉/〈σ 〉2 ∼ 1. The shift of
the mean-field transition line from the line on which the
Ginzburg criterion is satisfied (black short-dashed line in
Fig. 2) estimates the error in determination of the critical point.
In terms of the dimensionless coupling α = IJ the Ginzburg
criterion is satisfied at α ≈ 0.4 (for ν = 1) compared to the
mean-field transition found at α = 0.31.

IV. LONG WAVELENGTH THEORY

To capture the universal properties of the zigzag transition
and the effects of the low-energy longitudinal fluctuations,
we derive an effective long wavelength description of the
Hamiltonian (2). The longitudinal modes are treated in a
standard way. We replace the particle position xj with the
smooth displacement field φρ(xj ) and the particle momenta
by the conjugate field 1

π
∂xθρ(xj ). These replacements allow

one to take the continuum limit of the first line in Eq. (2) to
obtain

Hρ = h̄ uρ

2π

∫
dx

[
Kρ(∂xθρ)2 + 1

Kρ

(∂xφρ)2

]
, (6)
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where Kρ = π/
√

12Rs and uρ = √
12Rs(h̄ρ0/m). From here

on we rescale the coordinate x by the interparticle distance
ρ−1

0 and rescale energies by the typical kinetic energy
ε0 = h̄2ρ2

0/m. After this transformation the velocity becomes
dimensionless uρ = √

12Rs .
The long wavelength limit of the angular Hamiltonian

should be taken with more care. Because the angle ϕi has
a staggered arrangement it cannot be directly replaced by
a continuum field ϕ(xi). Instead we must make a staggered
transformation,

φσ,i = (ϕi + πNi) mod 2π, (7)

where Ni = ∑
j �(xi − xj ) counts the number of particles to

the left of the ith particle. Thus the new variable is slowly
varying in space, with the price of being a nonlocal operator.
Now we take the continuum limit through the substitution
φσ,j → φσ (xj ) and Lj → 1

πρ0
∂xθσ (xj ). In addition, noting that

Ni → πρ0x − φρ(x) we can express the original local Ising
distortion as a composite of the two slowly varying fields
σ̂ (x) = r cos(ϕ(x)) = r cos(φσ (x) + φρ(x) − πρ0x).

The long wavelength Hamiltonian in the angular sector,
including only the most relevant terms, is given by

Hσ = uσ

2π

∫
dx

[
Kσ (∂xθσ )2 + 1

Kσ

(∂xφσ )2

]

+
∫

dx(−g1 cos 2φσ + g2 cos 2θσ ), (8)

Hc = −λ
2ρ0

π2

∫
dx ∂xφρ(1 − cos 2φσ ). (9)

Here again we have rescaled the coordinate x → xρ0 and
energies ε → ε/ε0 in order to work with dimensionless
coefficients. The term g1 originates directly from the last term
in Eq. (2), from which its (bare) value can be estimated to be
g1 = J = 6Rsr̃

2. The term g2 accounts for the compactness
of the original angle variable. The value of the coefficient
is the fugacity of kink-anti-kink pairs in φσ . It is estimated
from the action associated with tunneling between the two po-
tential minima φσ = 0 and π through the barrier J cos 2θσ .17

Within the WKB approximation we obtain g2 ≈ I−1 e−8
√

IJ =
r̃−2 exp(−8

√
Rsr̃4). In addition, we extract from (2) the bare

value of the Luttinger parameter K−1
σ = π

√
IJ = π

√
6r̃4Rs

and the velocity uσ = uρ/
√

2 = √
6Rs .

Finally the term (9) describes the coupling between the
longitudinal phonons and the zigzag degrees of freedom.
It is generated because the energy gain associated with a
zigzag arrangement, proportional to Jij , is modulated with
the distance xi − xj between neighboring atoms along the
chain. The field ∂xφ which couples to the zigzag energy in
(9) is simply the long wavelength limit of xi − xj . The value
of the coupling constant is again extracted directly from (2),
λ = 15πRsr̃

2. Other coupling terms between the two sectors
have been omitted since they turn out to have lower scaling
dimension at the critical point which describes the zigzag
transition.

We note that our derivation of the field theory was
carried out in the strongly interacting limit Rs � 1, where
the particles almost form a Wigner crystal. In this case the
low-energy Hamiltonian is essentially independent of the

statistics (bosonic or fermionic) of the constituent particles.
As we shall see later, the differences due to particle statistics
arise when we try to probe the system by inserting or extracting
single particles to it.

Having derived the effective field theory we are now in a
position to discuss the resulting quantum phases and phase
transitions. Let us start with the phases. The Hamiltonian Hσ

of the angular degrees of freedom describes a competition
between two cosine terms in a regime where they are both
relevant with respect to the quadratic part of the Hamiltonian.
In the zigzag ordered phase the term g1 is dominant. The field
φσ is then pinned to one of the two minima at 0 or π , and the
Ising-like order parameter 〈cos φσ (x)〉 takes a nonvanishing
value +1 or −1. On the other hand when g2 becomes dominant
the dual variable θσ is pinned, leading to proliferation of phase
slips in φs and disordering of the Ising field.

The representation of the order parameter in terms of the
bosonic field φσ conceals the fact that the order in the zigzag
phase is nonlocal. It consists of an infinite string operator
when written in terms of the actual particle distortion σ̂ (x) =
r cos ϕ(x),

〈r cos φσ (x)〉 = 〈
eiπ

∫ x

−∞ ρ(x ′) dx ′
σ̂ (x)

〉
, (10)

where ρ(x) is the particle density. The string order parameter
captures the fact that the phase of the zigzag, namely an
up or down distortion, is alternating in the particle frame
but is not fixed to a position in the laboratory frame. The
direct correlation function of the transverse distortions σ̂ (x) =
r cos ϕ(x) decays as a power law along the chain due to
disordering of the positional order:

〈σ̂ (x)σ̂ (0)〉 → r2 cos(πρ0x)〈cos φσ 〉2|x|−Kρ . (11)

Let us move on to discuss the critical point separating the
zigzag from the disordered phase. If we ignore for the moment
the coupling λ between the zigzag degrees of freedom and the
longitudinal phonons, then by symmetry considerations the
effective Hamiltonian (8) is expected to describe an Ising
critical point. When Kσ = 1 the problem becomes particularly
simple, since we can immediately express Hσ as a model of
two independent Majorana fermions or alternatively a single
Dirac fermion:18,19

Hσ =
∫ ∑

η=±
dx ξη

[
−i

ũσ

2
∂x τ z + �η τy

]
ξη. (12)

Here ũσ = uσ , ξη = ( ξ
η

R , ξ
η

L )T is a Majorana spinor in the
chiral basis, and τ y,z are Pauli matrices that act in this basis.
The masses of the two Majorana modes are given by �± =
π (g2 ± g1). The transition at g1 = g2 is then described by a
single massless Majorana mode ξ−, while the other gapped
mode can be ignored. This is precisely the critical theory of
the transverse field Ising model.20 The relation between the
low-energy Majorana mode and the bosonic fields in the low-
energy limit is

ξ−
R = −

√
ρ0/π : sin (θσ − φσ ) : (13)

ξ−
L =

√
ρ0/π : cos (θσ + φσ ) : (14)

From the mean-field analysis presented in Sec. III we expect
the transition to occur at a bare value of Kσ close to, but
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not necessarily precisely, one. A deviation from Kσ = 1 (see
Appendix A) gives rise to an interaction that couples the two
sectors of Majorana fermions,

H(I )
σ = V

∫
dx ξ−

R ξ+
L ξ+

R ξ−
L , (15)

where V = 2πuσ (K−1
σ − Kσ ). In addition, there is an increase

in the velocity of the Majorana modes, which now becomes
ũσ = uσ

2 (K−1
σ + Kσ ).

Because the interaction couples the critical modes to a
gapped excitation it is perturbatively irrelevant at the critical
point. In other words the double sine-Gordon model (8) flows
under renormalization to the self-dual (Ising) point Kσ = 1.
The residual effect of the interaction is to shift the transition
away from the point g1 = g2. This shift can be estimated using
a mean-field decoupling of ξ−

R ξ−
L from ξ+

L ξ+
R in Eq. (15). From

here on we consider only the low-energy mode ξ− and omit
the η = − superscript.

So far we have ignored the coupling λ between the Ising
degrees of freedom and the longitudinal phonons. The effect of
this coupling, which a priori breaks the conformal invariance
and Lorentz symmetry of the Ising critical point, was addressed
in Ref. 12 using a perturbative renormalization group analysis
in λ. To one loop order, λ was found to be irrelevant if the
sound velocity uρ is initially larger than the velocity of the
Majorana mode ũσ . The slow flow toward λ = 0 has a peculiar
effect on the fixed point. The ratio between the two velocities
ũσ /uρ approaches unity, thereby restoring Lorentz symmetry
at the fixed point. However, at the same time the velocities
themselves flow to zero. In the opposite regime, ũσ > uρ the
coupling λ is relevant. The nature of the transition in this case
is not well understood and furthermore corrections beyond
one loop can change the picture. We would like to point out,
however, that a perturbative expansion in λ is justified for the
bare values of the parameters dictated by our system. The
small parameter of the expansion is λ

√
Kρ/(ũσ uρ), which in

our case scales as 1/
√

Rs � 1.
An experiment can in principle explore both of the above

regimes by tuning the ratio ũσ /uρ . We have shown in Sec. III
that changing the eccentricity of the transverse confinement
leads to change of the critical value of Rsr̃

2 and therefore also
of the bare Luttinger parameter Kσ near the transition point.
For Kσ = 1 the ratio ũσ /uρ = 1/

√
2 < 1, while by changing

(bare) Kσ the ratio can be tuned above 1.
Finally, it is interesting to note the difference between

our model of the zigzag transition and the problem of a
two-leg fermion ladder discussed in Ref. 14. As we have
mentioned above, such a fermion model should not be

essentially different from ours in the strong interaction limit.
However, Ref. 14 assumes the weak coupling perspective,
taking the Fermi energy to be much larger than both the
interaction and the splitting between the two sub-bands. This
leads after bosonization (using our conventions) to a double
sine-Gordon model similar to (8) in the “spin” (antisymmetric)
sector, but with the term g2 cos 2θ replaced by a cos 4θ term,
which corresponds to Cooper pairing. Accordingly the phase
competing with the zigzag in the weak coupling limit is a
superconductor (i.e., quasi-long-range order in the pairing
field), while in our case the competing phase is unpaired. The
critical theory which describes the transition into the paired
phase is different from the transition to the unpaired state
found in our case. Note in particular that the self-dual point
of the double sine-Gordon model with the pairing term is at
Kσ = 2 rather than Kσ = 1 in our case.

V. ZERO ENERGY EDGE STATES

The nonlocal order has interesting consequences for the
physics of the edge. Let us consider a physical model of the
edge as an interface between the string-ordered zigzag phase
and the disordered phase, created by a spatially dependent gap
parameter �(x) that changes sign on the interface. This is in
fact a realistic model for dipolar particles in a harmonic trap
(see Fig. 3). The density which slowly decreases away from
the center along the trap is a tuning parameter for the zigzag
instability. Therefore, the dense middle section may be in the
zigzag phase, the wings of the cloud are in the disordered
phase, and there is necessarily an interface between the two
regions.

The Hamiltonian (12) is formally identical to a one-
dimensional superconductor of spinless fermions. This model
has a zero-energy Majorana mode localized at the interface,
where the gap function changes sign.21 The zero mode has a
particularly simple structure if � changes abruptly across the
interface from �0 to −�0 (see Appendix B). It is then given
by the Majorana operator,

γ0 =
√

1

2 l

∫
dx e− |x|

2l (ξL(x) + ξR(x)), (16)

where l = ũσ /4�0 is the correlation length. Bulk states of (12)
are above the gap �0.

Here we should remark on the difference between the
Majorana edge modes of the zigzag phase and those found
in two other one-dimensional systems. Consider first the
transverse field Ising model. The representation of this model
in terms of Jordan-Wigner fermions shows Majorana zero
modes localized at the two edges. But when mapped back to

Zigzag (String order) Disordered (Linear) Disordered (Linear) 

Zero modes 

FIG. 3. (Color online) States of dipolar particles along an elongated trap with soft harmonic confinement. The inhomogeneous density
along the trap acts as a tuning parameter of the zigzag transition. Here the particles in the dense middle section are in the zigzag phase while the
wings of the cloud are in the disordered phase. Majorana zero modes are exponentially localized near the interfaces between the two phases.
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the original Ising degrees of freedom, these two modes simply
span the Hilbert space of the two broken symmetry states in
the bulk. In our case, because there is no broken symmetry in
the bulk the zero modes are truly localized at the edge, as we
will show explicitly below.

There is also an important difference between the Majorana
edge modes discussed here and those of a spinless fermion
model in which the fermions are the local degrees of freedom.
In our case, the Majorana modes appear only in the spin sector,
where they describe a double degeneracy of the spectrum for
a given charge parity of the zigzag. For even parity, the two
states can be understood as either a zigzag that starts with an
up distortion and ends down, or the opposite configuration.
For odd parity the two states correspond to a zigzag with an
up or down distortion at both ends. However, in a system
with an interface, where the parity is not well defined, all four
states should exist and may be combined into completely local
excitations. This is in contrast to the nonlocal nature of the
edge modes in the fermionic wire.21

We shall look for physical signatures of the edge states in
the local tunneling density of states (DOS).14 Consider a probe
that can tunnel particles into or out of the system at a desired
point x and energy ω. Such local probes have been proposed,22

and are now becoming a reality in cold atomic systems.23,24 We
also assume that the position of the tunneling tip is asymmetric
with respect to the tube axis so that it can insert a particle
either displaced up or (s = ↑) down (s = ↓) in the tube. The
tunneling rate is proportional to the local spectral function,

As(ω,x) = Im

[
i

π

∫
dt eiωt�(t)〈[ �s(t,x) , �†

s (0,x) ]±〉
]

.

(17)

where the ± subscript denotes anticommutator and
commutator for fermions and bosons, respectively. To
find the low-energy behavior of the spectral function we seek
the representation of the particle field operators in terms of
the bosonic density modes φρ and θρ and the low-energy
Majorana fermion ξ . This will depend in a crucial way on the
species, that is, bosonic or fermionic, of the dipolar particles.
In what follows we separately treat each of these cases.

Bosonic particles. Let us start from the standard bosoniza-
tion identity for bosonic particles in two chains labeled by
s = ↑(+),↓(−),

�
†
B,s � √

ρ0e
−i θs

∞∑
m=−∞

e−i2m(φs+πρ0x). (18)

We now canonically transform to a representation in terms
of symmetric (“charge”) and antisymmetric (“spin”) fields
through θs = θρ + s θσ and φs = (φρ + s φσ )/2. Keeping the
most relevant terms m = 0, ± 1 and using the bosonized form
(13) and (14) of the Majorana operators we obtain

�
†
B,s � β0

√
ρ0 e−i θρ e−i s θσ + β1 e−i θρ (ei(φρ+2πρ0x) ξL

− i s e−i(φρ+2πρ0x) ξR), (19)

where β0 and β1 are nonuniversal coefficients. The first
row in the operator (19) corresponds to the long-wavelength
components of the boson. The second row describes the
components with wavelength comparable to the interparticle

spacing. In both terms insertion of a boson must cause a
disruption in the zigzag order. In the first case the operator
e±i θσ creates a kink in the Ising order parameter, while in the
second case the disruption is affected by the Majorana operator.

Since we are interested in the low-energy contributions
near the interface we can further simplify the Bose operator.
First the factor e±i θσ can be replaced by its expectation value,
which decays exponentially with distance from the interface
in the ordered side (recall that 〈ei θσ 〉 is the “dual Ising order
parameter”). Second, the Majorana operators ξL,R can be
replaced by the contribution to them from the zero energy edge

mode, ξL,R ∼ e− 2�0
v

|x|γ0. From here we can easily compute the
local spectral function at low energies (see Appendix D):

A(E,x) ≈
(

B0

1 + e x/l
+ B1 e−|x|/l |E|Kρ

)
|E| 1

4Kρ
−1

, (20)

where B0,1 are nonuniversal constants. The leading (first)
term originates from the long wavelength contribution to the
Bose operator. Only the subleading term B1 stems from the
Majorana zero mode.

Fermionic particles. Unlike with bosonic particles, we
cannot access the zigzag phase of fermions starting from
weakly coupled Luttinger liquids. A better starting point
to obtain the low-energy limit of the fermion field is a
two-band model, including the ground state and first transverse
excitation in the tube.10–12 Details of the formulation are left
to Appendix C, however, the end result is simple. A fermion
inserted into the lower band is described by

ψ
†
0 � α0

√
ρ0

∑
r=R,L

e−i rkF xei (rφρ−θρ )e−i r θσ . (21)

This is directly analogous to the first term in Eq. (19), except
that the fermion is not inserted at zero momentum but rather
at the Fermi points of the Luttinger liquid that describes the
breathing modes of the zigzag. Insertion of a fermion must be
accompanied by creation of a kink in the zigzag order, which is
implemented by the factor e±i θσ . Because on both sides of the
transition there is a gap to a second band, the fermion can also
be inserted at zero momentum above the gap. This “second
band” fermion is directly proportional to the Majorana modes
(see Appendix C):

ψ
†
1 � α1

e i π
4√
2

(ξR − i ξL) e−i θρ . (22)

A fermion distorted up or down in the tube is now described by
a superposition of the symmetric and antisymmetric transverse
states so that �F,s = (ψ0 + s ψ1)/

√
2.

With the fermion operators at hand we are now in a position
to compute the local spectral function related to the tunneling
rate of up or down distorted fermions into a point x. The result
is again a power law

A(E,x) ≈
(

A0

1 + e x/l
|E|Kρ + A1 e−|x|/l

)
|E| 1

4Kρ
−1

. (23)

As in the bosonic case, the first term describes the “penetra-
tion” of the disorder parameter into the ordered phase near the
interface. The second term is the contribution of the Majorana
mode. Note, however, that contrary to the bosonic case, here
the Majorana mode gives the dominant contribution to the
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low-energy tunneling rate near the interface. It is interesting
to note that Eq. (23) shows the same leading behavior with E

as found in Ref. 14 for tunneling into the edge of the zigzag
phase in the weak coupling limit. This is in spite of the very
different modeling and physical picture of the edge in the two
scenarios. From our analysis it is clear that this behavior stems
from a robust zero energy state with topological origin.

VI. NUMERICAL RESULTS

We now turn to a numerical calculation of a concrete
microscopic model using DMRG25 and verify that the long-
range correlations are indeed well described by the field
theoretical analysis presented above. For this purpose we
consider a lattice model which describes similar physics as
the original Hamiltonian (2). Specifically we take a model of
hard-core bosons on a two-leg ladder at low incommensurate
filling [see Fig. 4(a)]:

HLadder =
L∑

i=1

[
−t‖

∑
a=1,2

(b†i,abi+1,a + H.c.) − t⊥(b†i,1bi,2 + H.c.)

+
∑
a=1,2

V‖ni,ani+1,a + V⊥ni,1ni,2

]
, (24)

where b
†
i,a create a (hard-core) boson on site i of leg a =

1,2. The two legs of the ladder represent the preferred up
and down distortion of a particle. The corresponding Ising
variable is the relative density σ̂i = ni,1 − ni,2. The repulsive
interaction V‖ between particles on the same leg favors a
zigzag arrangement to minimize the interaction energy, just
as the dipolar interaction does in the original system. At the
same time the hopping on a rung t⊥ counters that ordering
tendency. The latter is directly related to the tunneling matrix
element between the two favored states of the rotor φσ = 0
and π . Tuning t⊥ to drive the phase transition is analogous to
varying the transverse trap frequency in the original model.
The hopping t‖ along the ladder drives the longitudinal
quantum fluctuations. At incommensurate filling, just as in the
continuum, these fluctuations prevent crystalline order from
forming. Finally we fix a large repulsion V⊥ (�V‖,t‖,t⊥) to
suppress double occupation of a rung.

To characterize the ground state we compute the staggered
Ising correlation function and string correlation function,
which are defined respectively as

CI (ri − rj ) = cos(πρ0(ri − rj ))〈σ̂i σ̂j 〉,
(25)

Cstr(ri − rj ) = 〈
σ̂ie

i π
∑i

l=j nl σ̂j

〉
.

Results of two calculations which differ only by the value of
the tuning parameter t⊥ are presented in Fig. 4. The lattice
size in both cases is L = 256 unit cells (rungs), the filling
is ρ0 ≈ 1/3 per unit cell, and V‖ = t‖ = 1. The transverse
hopping is chosen to be t⊥ = 0.05 in one calculation [Fig. 4(b)]
and t⊥ = 0.8 in the other [Fig. 4(c)], so that the system is in the
zigzag-ordered phase in the first and in the disordered phase in
the second calculation. As anticipated, the Ising correlations
decay like a power law of distance in the ordered phase while
the string correlation saturates to a finite value. When the

FIG. 4. (Color online) DMRG calculation of correlations in the
two-leg ladder model (24). The two legs of the ladder illustrated
in panel (a), correspond to the up and down distortion. V⊥ is taken
to be the largest energy scale to exclude double occupancy of a
rung, and the zigzag transition is tuned by varying the ratio t⊥/V‖.
(b) The component with spatial frequency πρ0 of the Ising (red
dashed) and string (blue solid) correlation functions in the ordered
phase on a log-log plot. The string correlations display true long-range
order while the Ising correlations decay as a power law. (c) The same
correlation functions calculated in the disordered phase plotted on a
log-linear plot, where both are seen to decay exponentially.

transverse tunneling is increased to t⊥ = 0.8 both correlations
decay exponentially with distance.

VII. CONCLUSION

The zigzag transition observed in chains of trapped ions7

is a mechanical distortion that occurs when the ion chain is
compressed or the transverse confinement decreased beyond a
critical point. The transition is well described by a classical the-
ory neglecting all quantum (as well as thermal) fluctuations.6

In this paper we have shown how the analogous transition
takes place in an elongated trap of ultracold dipolar particles,
where quantum fluctuations are greatly enhanced compared to
the ion system.

Quantum fluctuations are found to have a profound effect
on the transition and on the nature of the ordered phase. In
particular, the Z2 symmetry of the system, which is broken
in the classical zigzag phase, is restored by the quantum
fluctuations of particle positions along the trap. Instead, the
quantum zigzag phase is characterized by a nonlocal, Ising
string order parameter. We also find zero energy edge states,
localized at interfaces between the zigzag phase and the
disordered (linear) phase, that are a direct consequence of
the nonlocal order in the bulk. It is notable that such nontrivial
correlations are found in the most natural setting for polar
molecules with no need for special engineering of interactions.

We have calculated the experimental signatures of the edge
states that are expected to be seen in tunneling experiments.
It would also be interesting to observe the bulk string order
directly using in situ detection of the particle positions.26 From
the fundamental perspective, our analysis provides another
example of a rather rare class of systems which exhibit
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topological order (or at least nonlocal string order) in a gapless
phase. Other examples in this class include the Haldane phase
of spin-3/2 chains and a Haldane liquid phase predicted
to occur for two-component dipolar fermions in an optical
lattice.27 The zigzag phase is somewhat special in this class in
that it occurs in the presence of full (continuous) translational
symmetry rather than in a lattice.
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APPENDIX A: RE-FERMIONIZATION OF THE DOUBLE
SINE-GORDON MODEL

Here we review the re-fermionization scheme for the double
sine-Gordon model18,19,28(8). Let us start by rewriting the
Hamiltonian (8) as follows:

Hσ = uσ

2π

1 + K2
σ

2Kσ

∫
dx[(∂xθσ )2 + (∂xφσ )2]

+ uσ

2π

1 − K2
σ

2Kσ

∫
dx[−(∂xθσ )2 + (∂xφσ )2]

−
∫

dx(g1 cos 2φσ + g2 cos 2θσ ). (A1)

Using the identities,√
ρ0/π : e−i(θσ −φσ ) :� ξ+

R + i ξ−
R , (A2)√

ρ0/π : e−i(θσ +φσ ) :� ξ−
L + i ξ+

L , (A3)

we find that the re-fermionized version of the first and third
terms in this Hamiltonian (A1) give the quadratic Majorana
model,

H(0)
σ =

∫
dx

∑
η=±

ξη

[
−i

ũσ

2
∂xτ

z + �ητ
y

]
ξη, (A4)

where ξ± = ( ξ±
R , ξ±

L )T , ũσ = uσ (1 + K2
σ )/2Kσ , and �± =

π (g2 ± g1)/ρ0. The re-fermionized version of the second term
in Eq. (A1) has the form of an interaction,

H(I )
σ = V

∫
dx ξ−

R ξ+
L ξ+

R ξ−
L , (A5)

where V = 2πuσ (1 − K2
σ )/2Kσ . As explained in Sec. IV this

interaction is irrelevant in the renormalization group sense and
therefore not expected to alter the critical properties. It can,
however, affect a shift of the critical point from the naive value
�− = 0. As explained in the text this shift can be estimated
by decoupling the interaction term V so that the renormalized
values of �+ and �− become mean-field parameters to be
determined self-consistently. If V is small compared to �+
the shift in �− can be easily obtained perturbatively by
substituting ξ+

R ξ+
L in the interaction term by their expectation

value in the unperturbed ground state,

−i〈ξ+
R ξ+

L 〉 = �+
ρ0ũσ

log

[
ρ0ũσ

�+
+

√(
ρ0ũσ

�+

)2

+ 1

]
. (A6)

Then the renormalized value of �− is �̃− = �− − i〈ξ+
R ξ+

L 〉V .
In the limit �+ � ρ0ũσ this approaches �̃− = �− + V .

APPENDIX B: THE MAJORANA EDGE STATE

In this Appendix we solve the Bogoliubov-deGennes (BdG)
equations in the presence of an edge and show that there is a
single zero energy solution. For simplicity we take a sharp
change in the mass term,

�−(x) =
{

�0 x < 0 ⇒ disorderd

−�0 x > 0 ⇒ ordered
. (B1)

When Kσ = 1 the critical point of the Ising model (8) is at
�− = 0, therefore, Eq. (B1) defines a boundary between an
ordered phase for x > 0 and a disordered one for x < 0. The
BdG equations for this situation are given by[

− i
uσ

2
∂xτ

z + �−(x)τ y

]
χE(x) = E χE(x), (B2)

where χE(x) = {uE(x),vE(x)}T is the eigenstate of Eq. (B2)
with energy E . The physical solutions of (B2) are at energies
above the gap (E > �0) except for the single zero energy
solution,

χ0(x) =
√

2�0

uσ

e− 2�0
uσ

|x|
(

1

−1

)
. (B3)

The solution of the BdG equations immediately gives us the
quasiparticle operators,

γE =
∫

dx [uE(x) ξR(x) − vE(x) ξL(x)] , (B4)

γ
†
E =

∫
dx [u∗

E(x) ξR(x) − v∗
E(x) ξL(x)], (B5)

and especially the localized Majorana operator,

γ0 = γ
†
0 =

√
2�0

uσ

∫
dx e− 2�0

uσ
|x| (ξ−

R + ξ−
L ). (B6)

APPENDIX C: LOW-ENERGY LIMIT FOR FERMIONIC
DIPOLES

In case of fermions it is simpler to derive the bosonization
identities starting from the weak coupling picture considered
in Refs. 10–12. Here we will review the derivation of
the low-energy theory in this case and draw analogies to
the field theory derived above (8) starting from strongly
coupled dipolar particles. Guided by this low-energy theory
we will give a phenomenological expression for the field
operators.

In Ref. 12 the two lowest sub-bands of the transverse
confining potential are considered. The zigzag transition takes
place when the chemical potential is placed at the bottom
of the second sub-band. At this point the group velocity of
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the second sub-band is zero and the bosonization procedure
cannot be carried out. However, we can still bosonize the first
sub-band. The Hamiltonian of the two sub-bands can be written
as follows:

H = u0

2π

∫
dx

[
K(∂xθ0)2 + 1

K
(∂xφ0)2

]

+
∫

dx ψ
†
1

(
− ∂2

x

2m
+ δ

)
ψ1

+
∫

dx

[
− g

π
∂xφ0ψ

†
1ψ1 + u1

2
(ei 2θ0ψ1∂xψ1 + H.c.)

]
,

(C1)

where δ is the difference between the energy of the second
sub-band and the chemical potential, δ = ε1 − μ. The field
operator ψ1 belongs to the second sub-band and the first sub-
band has been bosonized,

ψ0 =
∑

r=R,L

Ur lim
ρ0→∞

√
ρ0

2π
ei rkF xe−i (rφ0−θ0), (C2)

where Ur is the appropriate Klein factor. The density-density
interaction g and the pairing u in the Hamiltonian (C1)
originate in the Coulomb interaction.11

In order to decouple the pairing term in the Hamiltonian
(C1) the authors of Ref. 12 apply the unitary transformation,

U = ei
∫

dx ′ θ0ψ
†
1ψ1 , (C3)

such that the transformed operators are given by

ψ̃0 = U †ψ0U

∼
∑

r=R,L

ei rkF xe−i (rφ0−θ0)e−r i π
2

∫
dx ′sgn(x−x ′)ψ†

1ψ1 , (C4)

and

ψ̃1 = U †ψ1U = e−iθ0ψ1. (C5)

The Hamiltonian (C1) then assumes the form,

H = u0

2π

∫
dx

[
K(∂xθρ)2 + 1

K
(∂xφρ)2

]

+
∫

dx ξ

[
− i

u1

2
∂xτ

z + 2 δ τ y

]
ξ

−
∫

dx
λ

π
∂xφρψ

†
1ψ1 . (C6)

Here the curvature of the second sub-band has been neglected
compared to the linear pairing term u. We have also switched
the notations here such that ∂xφρ = ∂xφ0 + πψ

†
1ψ1 is the

fluctuation in the total density, and θρ = θ0 is the conjugate
phase. We would also like to note that one can recover the
Majorana theory (12) by decomposing ψ̃1 into its real and
imaginary parts as follows:

ψ̃1 = ei π
4√
2

(ξR + i ξL) . (C7)

The Hamiltonian (C6),(6),(8) and (9) are identical. They
both consist of two sectors, a Luttinger liquid and single
nonchiral massive Majorana field. Therefore, we identify our
theory as the strong coupling limit of this one.

(a)

(b)

(c)

FIG. 5. (Color online) (a) and (b) A chain with a soliton that is
created by a defect in the s = ↑ and s = ↓ state respectively. (c) In
both cases the field φσ is shifted by −π due to the soliton.

Apparently, the expressions for the single-particle operators
(C4) and (C5) are sufficient to express the fermion operators in
the s =↑ , ↓ state in the zigzag. However, the operator (C4) is
written in an inconveniently nonlocal form. We can overcome
this inconvenience by replacing (C4) with a phenomenological
expression. As shown in Fig. 5 the insertion of a particle both
into the s =↑ and s =↓ states in the zigzag shifts the field φσ

by ±π . The operator that shifts φσ by ±π is e±i θσ . Therefore,
we replace the nonlocal string with θσ :

ψ0 ∼
∑

r=R,L

ei rkF xe−i (rφρ−θρ )eri θσ . (C8)

This operator creates a soliton in the σ sector in addition
to a plasmonic excitation in the charge sector. Similarly, the
operator ψ1 has the form of a spinon multiplied by the factor
e i θρ that inserts a charge at zero momentum.

We can now write expressions for second quantized fermion
operators inserted to the up and down positions in the tube
s =↑ , ↓ as the appropriate superpositions of fermions from
the symmetric and antisymmetric sub-bands,

�F,s = 1√
2

(ψ0 + s ψ1). (C9)

APPENDIX D: TUNNELING DOS ON THE EDGE

1. Bosons

The low-energy limit of the second quantized Bose operator
is (19)

�
†
B,s � β0

√
ρ0 e−i (θρ+s θσ ) + β1

√
2π�0

uσ

e− 2�0
uσ

|x|

× e−i θρ [ei(φρ+2πρ0x) − i s e−i(φρ+2πρ0x)]γ0. (D1)

The Bose operator is used to compute the single-particle
Green’s function in the effective field theory (6) and (8). The
contribution of the first term in the Bose operator is found
by noting that the disorder parameter e±iθσ has an expectation
value in the disordered side of the interface that penetrates to
the ordered side and decays there as e−x/l (l = ũσ /4�0 is the
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correlation length in the ordered phase). We can therefore
replace the operator e±iθσ by this expectation value. The
contribution from the second component of the Bose operator
is computed using the form of the zero mode (B3) and the
Luttinger liquid which describes the density modes. Putting
all this together we have

GB(τ,x) = −〈Tτ�B,s(τ,x)�†
B,s(0,x)〉

� −|β0|2 ρ0

√
1

1 + 2ρ0 l

e−x/l

1 + e−x/l

(
1

ρ0uρ |τ |
) 1

4Kρ

− |β1|2 π

2l
e−|x|/l

(
1

ρ0uρ |τ |
)Kρ+ 1

4Kρ

, (D2)

where we have used the fact that

〈Tτγ0(τ )γ0(0)〉 = 1
2 sgn(τ ). (D3)

To obtain the retarded Green’s function we analytically
continue the function (D2),

GB(t,x)

= ��(t)

[
sin

π

8Kρ

√
ρ2

0

1 + 2ρ0 l

|β0|2 e−x/l

1 + e−x/l

(
1

ρ0uρt

) 1
4Kρ

+ π |β1|2
2l

sin

[
π

2

(
Kρ + 1

4Kρ

)]
e−|x|/l

×
(

1

ρ0uρt

)Kρ+ 1
4Kρ

]
. , (D4)

The imaginary part of the Fourier transformed version of this
function gives the local DOS:

AB(ω,x) � B0 |ω| 1
4Kρ

−1

1 + e x/l
+ B1 e|x|/l |ω|Kρ+ 1

4Kρ
−1

, (D5)

where

B0 � |β0|2 ρ0

√
π/2

(1 + 2ρ0 l)

1

�[1/4Kρ]

(
1

ρ0uρ

) 1
4Kρ

,

and

B1 � |β1|2 1

2l

√
π3/8

�[Kρ + 1/4Kρ]

(
1

ρ0uρ

)Kρ+ 1
4Kρ

.

The leading contribution to the local DOS stems from the
penetration of the disorder field into the ordered phase. The
subleading contribution originates from the Majorana edge
state.

2. Fermions

The low-energy limit of the fermion operator was found
above and is given by

�F,s � 1√
2

[
α0

∑
r=R,L

√
ρ0e

i rkF xe−i (rφρ−θρ )eri θσ

+ s α1 i

√
�0

4uσ

ei θρ e
uσ
�0

|x|
γ0

]
. (D6)

We use this operator in the effective low-energy theory (6)
and (8) to obtain the imaginary time Green’s function in
the same way as discussed above for the bosonic case. This
gives

GF (τ,x) � −sgn(τ )

×
[ |α0|2ρ0√

1 + 2ρ0 l

e−x/l

1 + e−x/l

(
1

ρ0uρ |τ |
)Kρ+ 1

4Kρ

+ |α1|2 π

2l
e−|x|/l

(
1

ρ0uρ |τ |
) 1

4Kρ
]
. (D7)

To obtain the low-energy local DOS we analytically con-
tinue this expression and the imaginary part in Fourier
space,

AF (ω,x) � A0 |ω|Kρ+ 1
4Kρ

−1

1 + e x/l
+ A1 e|x|/l|ω| 1

4Kρ
−1

, (D8)

where

A0 � |α0|2ρ0

√
1

1 + 2ρ0 l

√
π/2

�[Kρ + 1/4Kρ]

(
1

ρ0uρ

)Kρ+ 1
4Kρ

,

and

A1 � |α1|2 1

2l

√
π3/8

�[1/4Kρ]

(
1

ρ0uρ

) 1
4Kρ

.

In this case the leading contribution comes from the local-
ized Majorana fermion, and the subleading one stems from
the penetration of the disorder parameter into the ordered
phase.
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