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Temperature and voltage probes far from equilibrium
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We consider an open system of noninteracting electrons consisting of a small sample connected to several
reservoirs and temperature or voltage probes. We study the nonlinear system of equations that determines the
probe parameters. We show that it has a unique solution, which can be computed with a fast converging iterative
algorithm. We illustrate our method with two well-known models: the three-terminal system and the open
Aharonov-Bohm interferometer.
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I. INTRODUCTION

Thermodynamic quantities such as entropy, temperature,
or chemical potential play a fundamental role in our under-
standing of equilibrium phenomena. They are given sound
microscopic meanings within the framework of equilibrium
statistical mechanics. The concept of local thermal equilibrium
allows us in principle to define these quantities in interacting
systems close to equilibrium. However, extending these defi-
nitions far from equilibrium and/or to noninteracting systems
where local equilibrium does not make sense is a much more
delicate issue (see the discussions in Refs. 1–3). In this paper,
we shall consider an operational point of view, giving to local
intensive parameters the values measured by external probes.

Such an experimental approach is well known in the
mesoscopic community: in the description of electric transport
in a multiterminal system, in which all the terminals have the
same temperature (typically T = 0), one often introduces a
voltage probe4 to sense the local electrochemical potential by
connecting an additional electronic reservoir under the zero
electric current condition; the chemical potential of the probe
is tuned so that there is no net average electric current into it. In
the same spirit, setting all the terminals to the same chemical
potential, a temperature probe is obtained by requiring that the
temperature of the corresponding reservoir is tuned such that
there is no average heat current into it.5

In the scattering approach of Landauer and Büttiker (see
Sec. II), the existence and uniqueness of such parameters
are usually accepted on physical grounds, but we think it is
important and interesting to obtain a rigorous mathematical
foundation for these fundamental parameters. In the linear
response regime, a rigorous proof has recently been given.6

Here, we shall extend these results to the far-from-equilibrium
regime and furthermore provide an efficient numerical method
for computing their values. More explicitly, this paper is
organized as follows: in Sec. II, we describe the framework, in
Secs. III and IV, we present our main results and their proofs.
Finally, in Sec. V, we illustrate our method by considering two
well-known models: the three-terminal system and the open
Aharonov-Bohm interferometer.

II. FRAMEWORK

We consider a multiterminal mesoscopic system, that is, a
small system S connected through leads to several infinitely

extended particle reservoirs (see Fig. 1). We assume that the
transport properties of this system can be described within the
Landauer-Büttiker framework. More precisely, we consider N

reservoirs in equilibrium at inverse temperature βi = 1/(kBTi)
and chemical potential μi (i = 1, . . . ,N). The corresponding
Fermi-Dirac distributions are

fi(E) = f (E,βi,μi) = [1 + eβi (E−μi )]−1. (1)

For simplicity, here and in what follows, we set the Boltzmann
constant kB, the Planck constant h, and the elementary charge
e to unity.

In the Landauer-Büttiker formalism, one neglects all inter-
actions among the particles and considers the small system as
a scatterer for the particles emitted by the reservoirs. Thus, the
small system is completely characterized by the one-particle
on-shell scattering matrix S(E) = [Sij ;mn(E)], where the in-
dices i,j ∈ {1, . . . ,N} label the outgoing/incoming terminals
and for each pair (i,j ) the indices m ∈ {1, . . . ,Mi(E)} and
n ∈ {1, . . . ,Mj (E)} label the open channels in terminals i and
j , respectively. The matrix element Sij ;mn(E) is the probability
amplitude for a particle with energy E incident in channel n

of terminal j to be transmitted into channel m of terminal i.
The corresponding total transmission probability tij (E) that a
particle with energy E goes from terminal j to terminal i is
given by7

tij (E) =
Mi (E)∑
m=1

Mj (E)∑
n=1

|Sij ;mn(E)|2. (2)

The unitarity of the scattering matrix immediately yields the
following identities:

N∑
i=1

tij (E) = Mj (E),
N∑

j=1

tij (E) = Mi(E). (3)

The expected stationary electric and heat currents in lead
i ∈ {1, . . . ,N} are given by the celebrated Landauer-Büttiker
formulas8,9

Ii =
N∑

j=1

∫
[tj i(E)fi(E) − tij (E)fj (E)]dE, (4)

Ji =
N∑

j=1

∫
[tj i(E)fi(E) − tij (E)fj (E)](E − μi)dE. (5)
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FIG. 1. A multiterminal system: The sample is connected through
leads to N = Np + Nt particle reservoirs. The reservoirs 1, . . . ,Np

are probes and the reservoirs Np + 1, . . . ,Np + Nt are thermostats
driving the system out of equilibrium.

From a phenomenological point of view, these expressions
can be easily understood: tj i(E)fi(E) is the average number
of particles with energy E that are transmitted from terminal i

to terminal j , and tij (E)fj (E) is the same but from terminal j

to terminal i. Therefore, Ii (Ji) is the net average electric (heat)
current in lead i, counted positively from the ith terminal to the
system. Mathematical derivations of these formulas (including
existence of a stationary regime) rest on the assumption that
the leads are infinitely extended and act as reservoirs.10,11

Considerable interest has been devoted to electric transport
in which all the terminals have the same temperature. In this
context, an important concept emerged: the voltage probe.4

A voltage probe is a large physical component used in
mesoscopic experiments to sense the local electrochemical
potential. Theoretically, such a probe is modeled as a reservoir
under the zero electric current condition: the chemical poten-
tial of the probe is tuned so that there is no net average electric
current into it. If all the terminals have the same temperature,
then in general there will also be a heat current into the probe.
In this case, we will consider this heat current as dissipation. In
the same spirit, setting all the terminals to the same chemical
potential, a temperature probe is obtained by requiring that the
temperature of the corresponding reservoir is tuned such that
there is no average heat current into it. Note that in this case,
there may be some charge dissipation into the temperature
probe.

Let us decompose the N terminals as follows: the first
Np reservoirs are temperature or voltage probes and the
remaining Nt reservoirs are the thermostats maintaining the
system out of equilibrium (see Fig. 1). In the voltage-probe
configuration, all the reservoirs are at the same inverse
temperature β = β1 = · · · = βN , the chemical potentials of
the thermostats �μt = (μNp+1, . . . ,μNp+Nt ) are given and we
have to determine the probe parameters �μp = (μ1, . . . ,μNp )

such that �Ip = (I1, . . . ,INp ) = �0. Similarly, in the temperature-
probe configuration, all reservoirs are at the same chemical
potential μ = μ1 = · · · = μN , the thermostat inverse tem-
peratures �βt = (βNp+1, . . . ,βNp+Nt ) are fixed, and we have to

determine the probe parameters �βp = (β1, . . . ,βNp ) in order to

satisfy �Jp = (J1, . . . ,JNp ) = �0.
To our knowledge, no result is available on these two

problems beyond the linear approximation around global
equilibrium [i.e., linear response theory (see Ref. 5)]. The same
remark applies to other approaches to the determination of
local intensive thermodynamic parameters (see,e.g., Refs. 12
and 13).

III. RESULTS

Note that in both configurations, the self-consistency con-
dition �Ip(β, �μt; �μp) = �0, or �Jp(μ, �βt; �βp) = �0, is a system of Np

nonlinear equations with Np unknown. From a mathematical
perspective, it is not at all obvious that such a system admits
a solution. Moreover, if a solution exists, it may not be
unique. Our main result ensures existence and uniqueness of
reasonable solutions to these equations.

We shall make the following general assumptions on the
lead Hamiltonians and scattering matrix:

(a) There exists a constant E0 such that Mj (E) = 0 for all
E � E0 and j ∈ {1, . . . ,N}.

(b) Mj (E) � C(1 + |E|)η for some constants C and η and
all E and j ∈ {1, . . . ,N}.

(c) For every j ∈ {1, . . . ,Np}, there exists a set Ej ⊂ R of
positive Lebesgue measure such that

M̃j (E) =
Np+Nt∑
i=Np+1

tij (E) > 0

for all E ∈ Ej .
Condition (a) merely asserts that the lead Hamiltonians are

bounded below. Condition (b) limits the growth of the number
of open scattering channels as a function of the energy and
is satisfied by any physically reasonable lead Hamiltonian.
Finally, condition (c) can be roughly rephrased as follows: any
probe is connected through an open scattering channel to some
thermostat.

To formulate our main result, let us denote

μ = min
{
μNp+1, . . . ,μNp+Nt

}
,

μ = max
{
μNp+1, . . . ,μNp+Nt

}
,

the minimal/maximal chemical potential of the thermostats
and define in the same way β and β.

Theorem 1. Under the above assumptions, the following
hold:

(1) The self-consistency condition �Ip(β, �μt; �μp) = �0 has a
unique solution �μp = �μp(β, �μt) in the set {(μ1, . . . ,μNp ) | μj ∈
[μ,μ]}.

(2) The self-consistency condition �Jp(μ, �βt; �βp) = �0 has a
unique solution �βp = �βp(μ, �βt) in the set {(β1, . . . ,βNp ) | βj ∈
[β,β]}.

(3) In both cases, the solution can be computed by means
of a rapidly convergent algorithm (see the next sections
for details).

Remarks. (i) The restriction on the solution is physically
reasonable. We do not expect a temperature probe to measure
a value below the smallest thermostat temperature or above
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the highest one. The same remark applies to voltage probes.
(ii) An alternative approach to probing local intensive pa-
rameters is to adjust both �βp and �μp in such a way that the
electric and heat currents vanish: �Ip = �Jp = 0. Such probes
thus measure simultaneously the temperature and the chemical
potential. Note that in this case there is no dissipation at all into
the probes. Our method does not apply directly to this situation
basically because the function f (E,β,μ) − f (E,β ′,μ′) does
not preserve its sign as E varies if β �= β ′and μ �= μ′. To
our knowledge, no result is available for such dual probes
beyond the linear approximation around global equilibrium
(see Refs. 6 and 14).

IV. PROOFS

Let us discuss first the voltage-probe configuration. Using
the relations (3), the self-consistency condition may be
written as

Ii =
N∑

j=1

∫
f (E,β,μj )[Mj (E)δij − tij (E)]dE = 0 (6)

for i = 1, . . . ,Np. Under assumptions (a) and (b),

μ �→ Xj (μ) =
∫

f (E,β,μ)Mj (E)dE (7)

defines a strictly increasing continuous function. We shall
denote by X �→ μj (X) the reciprocal function. The key
idea of our approach is to work with the variable �X =
[X1(μ1), . . . ,XNp (μNp )] instead of �μp.

Let �F : RNp → RNp be defined as

Fi( �X) =
Np∑
j=1

∫
f [E,β,μj (Xj )]tij (E)dE

+
Np+Nt∑

j=Np+1

∫
f (E,β,μj )tij (E)dE.

Then, we can rewrite the self-consistency condition (6) as a
fixed-point equation

�F ( �X) = �X. (8)

Set Xj = Xj (μ), Xj = Xj (μ) and denote

� = { �X = (
X1, . . . ,XNp

) ∣∣Xj ∈ [
Xj,Xj

]}
.

Notice that the condition �X ∈ � is equivalent to μj ∈ [μ,μ]
for all j ∈ {1, . . . ,Np}.

Lemma 2. �F (�) ⊂ �.
Proof. Let �X ∈ �. The monotony of μ �→ f (E,β,μ)

implies f [E,β,μj (Xj )] � f (E,β,μ) for j = 1, . . . ,Np and
f (E,β,μj ) � f (E,β,μ) for j = Np + 1, . . . ,Np + Nt. The
identities (3) yield

Fi( �X) �
∫

f (E,β,μ)Mi(E)dE = Xi.

Proceeding similarly, one shows

Fi( �X) �
∫

f (E,β,μ)Mi(E)dE = X i. �

Under conditions (a) and (b), the function �F is continuous.
Since � is compact and convex, it follows from Lemma 2
and the Brouwer fixed-point theorem that (8) has a solution
�X� ∈ �. We shall use condition (c) to ensure uniqueness of
this solution. In the next lemma, we use the norm ‖ �X‖ =∑Np

j=1 |Xj |.
Lemma 3. Under assumptions (a)–(c), there exists a constant

θ < 1 such that

‖ �F ( �X) − �F ( �X′)‖ � θ‖ �X − �X′‖ (9)

for any �X, �X′ ∈ �.
Proof. Denote by D( �X) the derivative of the map �F at �X.

Then, one has

�F ( �X) − �F ( �X′) =
∫ 1

0
D[t �X + (1 − t) �X′]( �X − �X′)dt.

Since � is convex, the estimate (9) holds for any �X, �X′ ∈ �

with

θ = max
�X∈�

‖D( �X)‖,

where the matrix norm is given by

‖D( �X)‖ = max
1�j�Np

Np∑
i=1

|Dij ( �X)|.

A simple calculation yields

Dij ( �X) = ∂Fi

∂Xj

( �X) =
∫

g[E,β,μj (Xj )]tij (E)dE∫
g[E,β,μj (Xj )]Mj (E)dE

,

where the function g(E,β,μ) = ∂μf (E,β,μ) is strictly posi-
tive. It follows that

Np∑
i=1

|Dij ( �X)| � 1 −
∫

M̃j (E)g[E,β,μj (Xj )]dE∫
Mj (E)g[E,β,μj (Xj )]dE

,

and hence

θ � 1 − min
μ∈[μ,μ]
1�j�Np

∫
M̃j (E)g(E,β,μ)dE∫
Mj (E)g(E,β,μ)dE

.

Condition (c) clearly implies that θ < 1. �
It follows from Lemmas 2 and 3 and the Banach fixed-point

theorem that (8) has a unique solution �X� in �. Moreover, the
sequence of iterates �Xn = �F ( �Xn−1) converges to �X� for any
initial value �X0 ∈ � with the estimate

‖ �Xn − �X�‖ � θn‖ �X0 − �X�‖.
In the temperature-probe configuration, one may proceed in a
completely similar way in terms of the functions

β �→ Yj (β) =
∫

f (E,β,μ)(E − μ)Mj (E)dE, (10)

their reciprocal Y �→ βj (Y ), and

Gi( �Y ) =
Np∑
j=1

∫
f [E,βj (Yj ),μ](E − μ)tij (E)dE

+
Np+Nt∑

j=Np+1

∫
f (E,βj ,μ)(E − μ)tij (E)dE.
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A natural set � can then be defined as before. The crucial
observation is that the function ∂βf (E,β,μ)(E − μ) has a
constant sign.

Remark. Strictly speaking, Lemma 3 does not hold at zero
temperature because the Fermi function f is not positive in this
case. Nevertheless, one easily shows that, under assumptions
(a)–(c), the estimate

‖ �F ( �X) − �F ( �X′)‖ < ‖ �X − �X′‖
holds for �X, �X′ ∈ �, �X �= �X′ provided [μ,μ] ⊂ ∩jEj . The

uniqueness of the fixed point �X� immediately follows.
Moreover, it also follows that the sequence of iterates
�Xn = �F ( �Xn−1) converges to �X� for any choice of �X0 ∈
�, although without a priori control on the speed of
convergence.

V. EXAMPLES

As a first example, let us consider the one-channel three-
terminal system represented in Fig. 2, where two thermostats
(2 and 3) drive the system (a perfect lead) out of equilibrium
and a probe (1) is connected to the system by a 3 × 3 scattering
matrix S.

Let us consider the energy-independent scattering matrix
introduced in Ref. 15:

S =

⎛
⎜⎝

−(a + b)
√

ε
√

ε√
ε a b√
ε b a

⎞
⎟⎠ , (11)

where a = 1
2 (

√
1 − 2ε − 1), b = 1

2 (
√

1 − 2ε + 1), and ε ∈
(0, 1

2 ]. Here, ε = 0 corresponds to the uncoupled situation
(which is excluded) and ε = 1

2 to the maximally coupled one.
Let us set T = T1 = T2 = T3 and define the energy interval in
Eqs. (4) and (5) as [0,∞). If T = 0, then in the linear regime
one can compute analytically the self-consistent parameter μ∗

1
(Refs. 7 and 14):

μ∗
1(T = 0,μ2,μ3,ε) = μ2 + μ3

2
+ O(|μ2 − μ3|2). (12)

We have checked that our numerical results are consistent
with the relation (12). In the nonlinear regime, we made the
following observations: Let T > 0, μ2,μ3 ∈ R be fixed, then
the sequence {Fn(X0)}∞n=0, with X0 ∈ �, converges and gives
rise to a value μ∗

1 independent of ε and conveniently written
as

μ∗
1(T ,μ2,μ3,ε) = μ2 + μ3

2
+ N (T ,μ2,μ3), (13)

2 3

1

FIG. 2. A one-channel system with two thermostats (2 and 3) and
one probe (1).
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FIG. 3. The temperature dependence of N (T ,μ2 = 0,μ3 = 100).

where the function N (T ,μ2,μ3) measures the nonlinearity.
Note, in particular, that the weak-coupling limit ε → 0 does
not lead to a different value of μ∗

1. Since μ∗
1(T ,μ2,μ3,ε) must

be in [min{μ2,μ3}, max{μ2,μ3}] by Theorem 1, one deduces
that N (T ,μ2,μ3) ∈ [−
μ/2,
μ/2], with 
μ = |μ2 − μ3|.
In Figs. 3 and 4, we have plotted the temperature and potential
dependence of N (T ,μ2,μ3), respectively. Let us recall that
N (T ,μ2,μ3) = 0 corresponds to the linear case.

Note that the curve in Fig. 4 reaches a constant value
N∞(T ) = limμ3→∞ N (T ,μ2 = 0,μ3) as μ3 increases. Inter-
estingly, this is also the case for other values of T and we
observed the following scaling law:

N∞(λT ) = λN∞(T ), ∀λ > 0. (14)

If we attach more probes to the lead and describe all the
connection points in terms of the same scattering matrix S (see
Ref. 14 for the construction of the global scattering matrix),
then we found that all the probes measure the same value,
as if all the probes were connected to the same point, but
in general this value does not coincide with the one-probe
measurement (since adding more probes somehow perturbs
the system). This phenomenon can be easily understood:
for example, if two probes are attached to the lead, then
one can compute analytically the global 4 × 4 transmission

10
−2

10
0

10
2

10
4

10
−6

10
−4

10
−2

10
0

μ
3

N
(T

=
1,

μ 2=
0,

μ 3)

FIG. 4. The potential dependence of N (T = 1,μ2 = 0,μ3).
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FIG. 5. The open AB interferometer. A magnetic flux φ crosses
the ring and a QD is placed in the upper branch of the ring. The
terminals 1 to 12 are voltage probes and the terminals L and R are
thermostats. kT , kP , and kD are the hopping constants coupling the
ring to the thermostats, the probes, and the QD. The energy levels of
the dot are V , V + U , and V + 2U .

matrix {tij (E)}, and one finds that it is symmetric and that
t31(E) = t32(E) = t41(E) = t42(E). This means that the two
probes are equally coupled to the left and right thermostats
and, consequently, that μ∗

1 = μ∗
2. Note, however, that this is

not true in general.
As a second example, we consider an Aharonov-Bohm

(AB) ring threaded by a magnetic flux φ and with a quantum
dot (QD) embedded in one of its arms. This system has been
subject to intensive investigations both in the independent elec-
tron approximation12,16 and including interaction effects.17–19

We shall study a discrete (tight-binding) independent electron
model closely related to the work by Aharony et al.20 (see
Fig. 5). This theoretical model is supposed to imitate an
experimental setup.21 It is assumed that a gate voltage V

is applied on the QD, allowing to vary the energies of its
eigenstates. Let us write tQD = √

TQDeiαQD for the transmission
amplitude of the QD. At fixed energy E, the total transmission
probability tLR from the reservoirs L to R depends on
the gate voltage V and is a periodic function of the AB
flux φ. Expanding this function as a Fourier series, one
gets

tLR(V,φ) = A(V ) + B(V ) cos[φ + β(V )] + · · · . (15)

It is well known that in the absence of dissipation (i.e., for
a closed interferometer in the terminology of Ref. 20), the
Onsager-Casimir reciprocity relations12 imply that the phase
β(V ) can only take the values 0 and π . Hence, as the gate
voltage V varies, the phase β(V ) makes abrupt jumps between
these two values. However, dissipation can change this picture.
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0.8

1

β

α
QD

V

α Q
D

  a
nd

  β

FIG. 6. (Color online) The “intrinsic” phase αQD (blue dashed
line) and the “experimental” phase β (red solid line) as a function
of the gate voltage V applied on the QD. This corresponds to the
setup of Fig. 5 with a three-level QD, all temperatures equal to zero,
the chemical potential of the thermostats are μL = 0 and μR = 0.2.
The couplings to the thermostats, probes, and QD are kT = 0.5, kP =
0.5 kT , and kD = 0.01 kT , respectively (the parameter kP plays a
role similar to Jx in Ref. 20). All remaining parameters are set as in
Ref. 20.

By adding purely absorbing reservoirs (i.e., allowing
only outgoing currents) along the branches of the ring,
Aharony et al.20 found criteria as to when the “experimental”
phase β(V ), which depends on the details of the opening (i.e.,
coupling the absorbing reservoirs), is a good approximation
of the “intrinsic” phase αQD(V ) of the QD. Here, we present
some numerical results showing that one may capture the main
properties of αQD without introducing any charge dissipation
in the absorbing reservoirs, i.e., that β behaves essentially
as αQD even if one replaces the absorbing reservoirs of
Ref. 20 by voltage probes, which we recall allow only heat
dissipation. However, instead of considering the expansion
(15), we tried to be closer to actual experimental measurements
by extracting the “experimental” phase β from the Fourier
expansion of the steady electric current between the two
thermostats:

IL = −IR = Î0(V ) + Î1(V ) cos[φ + β(V )] + · · · .

The results are shown on Fig. 6. One sees that the curve β(V )
follows relatively closely αQD(V ), and in particular reproduces
accurately the successive jumps of αQD(V ) from 1 to 0 (the
values have been normalized, thus 1 corresponds to π in
Ref. 20).
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