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Ferromagnetism and nonlocal correlations in the Hubbard model
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We study the possibility and stability of band ferromagnetism in the single-band Hubbard model for the simple
cubic (sc) lattice. A nonlocal self-energy is derived within a modified perturbation theory. Results for the spectral
density and quasiparticle density of states are shown with special attention to the effects of k dependence. The
importance of nonlocal correlations for the fulfillment of the Mermin-Wagner theorem is our main result. A phase
diagram showing regions of ferromagnetic order is calculated for the three-dimensional lattice. Besides, we show
results for the optical conductivity and prove that the renormalized one-loop contribution to the conductivity
already cancels the Drude peak exactly in case of a local self-energy which is not true anymore for a nonlocal
self-energy.
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I. INTRODUCTION

Band ferromagnetism is bound to the existence of perma-
nent magnetic moments belonging to itinerant electrons in a
partially filled conduction band.1 Archetypical representatives
are the classical 3d ferromagnets Fe, Co, Ni. The micro-
scopic interpretation of band ferromagnetism is one of the
most fundamental and also most complicated many-particle
problems in condensed matter physics. It is expected to be due
to the interplay between ordinary, spin-independent Coulomb
interaction (strong and strongly screened) and kinetic energy
in the frame determined by the Pauli principle.

A minimal model for the investigation of band ferromag-
netism was proposed independently by Hubbard,2 Kanamori,3

and Gutzwiller.4 Despite its simple appearance, the Hubbard
model Hamiltonian forms a highly nontrivial many body
problem that cannot be treated rigorously for the general case.

A big step forward in the understanding of correlation
effects in the Hubbard model was the invention of the
dynamical mean field theory (DMFT), which becomes an exact
theory in the limit of infinite lattice dimensions.5–7 The DMFT
maps the lattice problem onto an effective single-impurity
Anderson model (SIAM) which can be solved numerically,
essentially exactly by use of, for example, quantum Monte
Carlo methods.8

One shortcoming of the otherwise highly successful DMFT
is the locality (wave-vector independence) of the electronic
self-energy strictly valid only for d = ∞. So it may be
questionable, for example, whether such a self-energy is
sufficient to describe angle-resolved photoemission results.
Recent efforts have therefore been focused on regaining a
certain degree of nonlocality in the DMFT self-energy.9–13

There are other approaches to the nonlocality of the self-
energy at low dimensions d = 2,3. Coming from the weak
coupling limit, Schweitzer and Czycholl proposed a method
for solving the highly involved wave vector summations that
already appear in second-order diagrammatic perturbation
theory.14 Kakehashi and Fulde used a projection operator
method combined with the coherent potential approximation
for an investigation of the nonlocal excitation spectra.15

Concerning ferromagnetism, the few exactly known results
for the Hubbard model are of great value and can be used as a
test frame for approximate theories. The Nagaoka theorem16

states that a saturated ferromagnetic order is the ground state
for U = ∞ when one hole/electron is introduced into the
half-filled band for the simple cubic (sc) lattice in three
dimensions (3D). The Mermin-Wagner theorem17 rules out
ferromagnetic and antiferromagnetic order in the Hubbard
model in dimensions d � 2 for finite temperatures.18–20 For
the infinite dimensional sc and fcc lattice the existence of
ferromagnetism was proved by DMFT calculations.21–24

Apart from these rigorous results, several works have
investigated the possibility of ferromagnetism in the Hubbard
model within an approximation. DMFT calculations were
done for the 3D sc and fcc lattice23,25 and the influence of
next-nearest-neighbor hopping was investigated in Ref. 26.
Ferromagnetism in various lattices was investigated with a
spectral density approach (SDA) self-energy in Refs. 27 and
28. Variational methods have been used in Refs. 29–31.

A general trend can be read from these calculations. Two
main ingredients favor ferromagnetism in the Hubbard model.
An asymmetric density of states (DOS) (e.g., the fcc DOS) and
nonbipartite lattices with frustration in the antiferromagnetic
correlations, which can be generated by introducing next-
nearest-neighbor hopping t ′. This shows the competitive
character of ferro- and antiferromagnetic correlations in the
Hubbard model.

In this paper we investigate the influence of nonlocal
correlations on ferromagnetic order in the sc lattice. To this
end we shall apply the modified perturbation theory (MPT),
which was originally used only for solving the SIAM within
the DMFT procedure, directly to the full Hubbard problem.
The MPT leads to an explicitly wave-vector dependent
self-energy which decisively determines the single-electron
spectral density. It is well known that the latter provides the
bare line shape of a spin and angle-resolved (direct or inverse)
photoemission experiment.

The paper is organized as follows. In Sec. II we introduce
the Hubbard model Hamiltonian, derive the MPT self-energy,
and discuss its properties. Then thermodynamic quantities
as the paramagnetic static susceptibility and the optical
conductivity are derived. In Sec. III the numerical methods
for dealing with the complicated momentum summations are
presented. Section IV contains the results and interpretation
of our numerical calculations. Finally we give a summary and
conclusion in Sec. V.
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II. THEORY

A. Hubbard model

The Hamiltonian of the Hubbard model is given by

H = t
∑
〈i,j〉σ

c+
iσ cjσ +

∑
iσ

(zσB + t0)n̂iσ + U
∑

i

n̂i,↑n̂i,↓. (1)

Here t denotes the nearest-neighbor hopping strength (the sum
over Rj extends only over the nearest neighbors of Ri), U

is the local Coulomb repulsion, and B is an homogeneous
external magnetic field (z↑↓ = ±1). We have chosen the band
center of gravity t0 = 0 and the hopping strength t such that
the free electronic bandwidth W is equal to one throughout
the paper. An (approximate) solution of the Hubbard model is

found if we are able to calculate the electronic Green’s function
(GF):

Gkσ (E) = [E + μ − ε(k) − �kσ (E)]−1 (2)

or more precisely the electronic self-energy �kσ (E).

B. Self-energy

It is now a well-known fact that the self-energy of the
Hubbard model becomes a purely local quantity in the limit of
infinite dimensions (d → ∞).5,6 However the k dependence
will certainly play a crucial role in the more realistic case of
d = 2,3. In the weak coupling limit (U 	 W ) the second-
order perturbation theory (SOPT) is a good starting point for
the investigation of nonlocal correlation effects. The SOPT
self-energy is given by14

�kσ (E) = �(HF)
σ + �

(SOC)
kσ (E)

= U 〈n−σ 〉 + U 2
∑

R

eikR
∫

dxSRσ (x)
∫

dySR−σ (y)
∫

dzS−R−σ (z)
f−(x)f−(y)f−(−z) + f−(−x)f−(−y)f−(z)

E + i0+ − x − y + z
. (3)

The sum extends over all lattice sites R. Schweitzer and
Czycholl14 gave a method for the calculation of (3) by
collecting all symmetry equivalent points in shells and recast
the sum over lattice sites into a sum over shells. They showed
that this sum can be truncated after a finite number of shells.
However, their method of calculating the real and imaginary
part of (3) is still numerically very demanding. We will show
in Sec. III how to speed up the computation to allow fully
self-consistent calculations for arbitrary band fillings n. There
is a certain arbitrariness in (3) concerning the spectral densities
(SD) appearing in the formula. In an expansion strictly to
order U 2 the free SD has to be chosen.32 But one could also
renormalize the theory by using the full SD in a self-consistent
manner. It turns out that only the first choice will reproduce
certain exact results.33 To be specific we give the form of the
SD used:

S
(0)
Rσ (x) = 1

N

∑
k

eikRδ
[
x + μ(0)

σ − ε(k)
]
. (4)

μ(0)
σ is fixed by the condition that the free occupation number

is equal to the full occupation: 〈nσ 〉(0) = 〈nσ 〉. Notice that this
choice of μ(0)

σ is equivalent to a SOPT “around Hartree-Fock
(HF)” at half-filling where the full μ from (2) is taken in the
HF-SD. Only this choice will result in the now widely accepted
three peak structure of the density of states (DOS) and will
give a “smooth” change of the DOS away from half-filling.
For more qualitative discussions we refer the reader to the
Results section.

To extend the validity of the self-energy to larger values
of U we use the following ansatz for a modified perturbation
theory (MPT):

�kσ (E) = U 〈n−σ 〉 + akσ�
(SOC)
kσ (E)

1 − bkσ�
(SOC)
kσ (E)

. (5)

This form for the self-energy was proposed by Kajueter and
Kotliar34 for the Anderson impurity model (SIAM). They used
the first two spectral moments and an additional condition
for the chemical potential to fix the parameters akσ and
bkσ . This method of fixing the parameters was afterwards
modified by Potthoff et al.35 for the same model in order to
reproduce the first four moments of the SD correctly. We will
follow this latter approach but now applied to the full lattice
Hamiltonian (1).

To fix the appearing constants in (5) we use the high-energy
expansion of the self-energy for the Hubbard model:

�kσ (E) =
∞∑

m=0

C
(m)
kσ

Em
. (6)

The first three coefficients can be obtained from the first four
moments M

(m)
kσ of the SD20 via the high-energy expansion of

the electronic GF (2):

Gkσ (E) = 1

E

∞∑
m=0

M
(m)
kσ

Em
(7)

and are given in (A1). By expanding also the right-hand side of
(5) we can determine the coefficients akσ ,bkσ and get finally
the MPT self-energy:

�kσ (E) = U 〈n−σ 〉 +
{[

�
(SOC)
kσ (E)

]−1 + D
(2)
kσ − C

(2)
kσ(

C
(1)
kσ

)2

}−1

,

(8)

where D
(2)
kσ denotes the third moment of (3) as given in (B2).

The MPT self-energy can be proved to be exact in a variety
of limiting cases. It trivially fulfills the limits of U = 0 and
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n = 0,n = 2. More interesting is the case of zero bandwidth
limit t → 0. A straightforward calculation yields

�
(W→0)
kσ (E) = U 〈n−σ 〉 + U 2〈n−σ 〉(1 − 〈n−σ 〉)

E + zσB + μ − U (1 − 〈n−σ 〉) ,
(9)

which is indeed the correct form of the “atomic limit.”20

Expanding the self-energy for small U reproduces the result
of perturbation theory (3) with corrections only of order U 3.
Therefore the MPT should be correct for small U and show,
for example, Fermi liquid behavior.14

Since the first four spectral moments are reproduced
correctly by construction, they should be correct at large
energies |E| 
 1, too. In particular, the position and shape
of the upper (lower) Hubbard band for n < 1 (n > 1) will
become exact in the strong coupling limit (U 
 1) which is
known to be a weak point of SOPT alone. In this respect
the MPT self-energy is in accordance with the t/U strong
coupling expansion of Harris and Lange.36,37 To conclude this
discussion we summarize our findings. We have proposed a
fully k-dependent MPT self-energy which fulfills the atomic
limit and shows reasonable behavior in the weak and strong
coupling region. Therefore there is well-founded hope that
our theory will also give reasonable results in the intermediate
coupling region.

C. Thermodynamics and transport

1. Paramagnetic static susceptibility

The developed theory allows for a self-consistent calcula-
tion of the magnetization in a possible appearing ferromagnetic
region. To test the system regarding a ferromagnetic phase tran-
sition, we will calculate the paramagnetic static susceptibility,
which is defined as follows:

χ̂ (p)(T ) =
∑

σ

∂B(zσ 〈nσ 〉)|T ,B=0,〈n↑〉=〈n↓〉. (10)

The zero crossings of the inverse of (10) indicate the points
where the paramagnetic phase become susceptible to a
ferromagnetic phase transition.

For an evaluation of (10) one has to perform the derivative
analytically and get after a lengthy calculation an explicit form
for the susceptibility as a functional of the (self-consistently
determined) paramagnetic self-energy. Since the expressions
are rather long, we do not give them here.

2. Optical conductivity

The optical conductivity in linear response is given by the
retarded current-polarization GF38:

σβα(E) = −〈〈ĵ β ; P̂ α〉〉E, (11)

where α,β denote the Cartesian coordinates of the operators.
By writing down the EQM of this GF and exploiting the
connection ĵ = −i 1

N
[P̂,H ]− this can be rewritten as

σβα(E) = −〈[ĵ β ,P̂ α]−〉
E

+ iN
〈〈ĵ β ; ĵ α〉〉

E
. (12)

For a tight binding (nearest-neighbor hopping) model
the operators are given as P̂ = q

∑
i,σ Ri n̂iσ and ĵ =

− iq

N
t
∑

〈im〉,σ (Ri − Rm)c+
iσ cmσ . With these operators the first

term of (12) can be calculated and in case of a simple cubic
lattice simplified to give the zero frequency Drude weight of
conductivity:

Re
[
σ

βα

D (E + i0+)
] = −πδαβδ(E)

2tq2

N

∑
kσ

cos (kα)〈n̂kσ 〉.

(13)

The second term in (12) is the current-current GF. It represents
the influence of electronic correlations. We approximate this
GF on the “one loop” level in a diagrammatic expansion. The
explicit calculation is given in Appendix C and it is shown
that the real part consists of two parts. One is proportional to
δ(E) and cancels the Drude peak in case of a local self-energy
exactly. The second term yields

Re
[
σ

βα

C (E + i0+)
] = δαβ

πq2

N

∑
kσ

vkαvkβ

∫
dxSkσ (E + x)

× Skσ (x)
f−(x) − f−(E + x)

E
, (14)

with vkα = ∂kα
εk.

Note that this approximation becomes a rigorous result in
infinite dimensions because the self-energy is a local quantity
and all higher vertex corrections vanish in this case.39

We will only show results for the contribution from
(14) hoping that the exact cancellation is retained in the
k-dependent case approximately at least. The neglect of
vertex corrections cannot be justified rigorously in case of
a k-dependent self-energy because Ward identities may be
violated. We show therefore only results for the 3D sc lattice,
where the k dependence of the self-energy is not so pronounced
(especially at the Fermi level) and refer the reader to the more
specialized literature for a thorough discussion of this point.40

III. COMPUTATIONAL METHODS

The self-energy (8) is a functional of the chemical potential
and different correlation functions. It has to be calculated self-
consistently. To this end we need a fast way of calculating
integrals of the form

〈· · ·〉 = 1

N

∑
k

∫
dEf−(E)Fk(E)Sk(E), (15)

where f−(E) is the Fermi function, Fk(E) is a polynomial
of low order in E, and Sk(E) is the full SD. It is hopeless
to perform the four-dimensional integral directly because the
SD is a strongly peaked function. However one can replace
the energy integration by a sum over the poles of f−(E) in
the upper complex plane. The usual Matsubara form of the
Laurent expansion of f−(E) is not suitable here because it
converges very slowly with an increasing number of poles.
Recently Ozaki41 proposed a different pole expansion for the
Fermi function which gives a good approximation for a large
energy domain down to very low temperatures with only a few
hundred poles. We use this expansion for a numerical very
accurate determination of the energy integral. The remaining
k integration over the irreducible wedge of the Brillouin zone
can then be performed directly.
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For the exposed procedure we need the values of the SOPT
self-energy at the Ozaki poles in the complex plane. For their
determination we first rewrite (3) as a sum over shells of
symmetry equivalent points:

�
(SOC)
kσ (E) = U 2

N∑
s=0

G
(s)
k �(s)

σ (E), (16)

where G
(s)
k denotes the k-dependent shell factor given by the

sum over the exponentials in (3) within one shell and �(s)
σ (E)

the remaining energy-dependent part. The imaginary part of
the latter is given by

Im�(s)
σ (E) = −π

∫
dx

∫
dyS(0)

sσ (x)S(0)
s−σ (y)S(0)

s−σ (x + y − E)

×F (x,y,x + y − E), (17)

where F (x,y,z) denotes the product of Fermi functions in (3).
This twofold convolution can be solved very efficiently by a
fast Fourier transform. From this �(s)

σ (E) can be obtained in
the complex plane via the spectral representation of Green’s
functions.38 The free-shell density of states needed for the
calculation have been computed and stored beforehand to
very high precision. The number of shells necessary to
get converged results depends strongly on the coordination
number of the underlying lattice. After some tests we have
used 201 shells for the 2D and 61 shells for the 3D lattice for
all calculations in this work, which was sufficient to get mostly
converged self-energies.

IV. RESULTS AND DISCUSSION

Our k-dependent self-energy allows the description of
homogeneous phases (paramagnetic/ferromagnetic). We will
discuss the electronic properties in the paramagnetic state of
the three-dimensional Hubbard model first, knowing well that
in certain parameter regimes (e.g., near half-filling at low
temperatures) antiferromagnetism is expected in principle.
This restriction is shared with other self-energy approaches
(e.g., DMFT calculations) and a comparison to these should
render our results useful.

A. QDOS and spectral density

In Fig. 1 we show the quasiparticle density of states (QDOS)
at low temperature (T = 10 K) for two different band fillings
and various interaction parameters U . The three peak structure
of the QDOS is clearly visible. Upper and lower Hubbard
bands are roughly separated by the Coulomb interaction
strength U and there appears a Kondo resonance near the Fermi
level (E = 0 eV in figures). By increasing U , this resonance
decreases but stays finite also for large U . As a consequence
there is no clear metal-insulator transition (MIT) for n = 1 as
is found in DMFT calculations. To illustrate this further we
show the inverse effective mass m

m∗ = 1
N

∑
k[1 − ��

′
k(0)]−1

in Fig. 2. Although there is no clear transition point, the
system should be insulating above U/W ≈ 10 due to the
large effective mass of the quasiparticles. This finding is in
qualitative agreement with the nonlocal theory of Kakehashi
and Fulde.15

-2 0 2
E [eV]

0

1

2

U/W = 0.5
U/W = 1.0
U/W = 2.0
U/W = 4.0
U/W = 1.0 loc.
U/W = 0.0

-1 0 1 2
0

1

2

FIG. 1. (Color online) QDOS for various interaction parameters
U/W ; full lines: k-dependent self-energy results; dashed lines: local
self-energy and interaction free result. Parameters: T = 10 K, upper
panel: n = 0.75, lower panel: n = 1.0.

The comparison of the local approximation (only the zeroth
shell of the SOC is taken into account) and the full k-dependent
calculation shows decisive effects of the latter. Whereas the
local theory fulfills the Luttinger theorem (the QDOS at the
Fermi level is equal to the free DOS), the k dependence leads
to a reduction of states at this point. This is understandable
because the Luttinger-Ward argument only holds for local self-
energies.42,43 Another effect of the k dependence are the peaks
in the upper (n = 0.75,1.0) and lower (n = 1.0) Hubbard band
for intermediate coupling (U/W ≈ 1). For interpretation of
these peaks we have plotted the spectral density together
with the imaginary part of the self-energy along special
directions within the first Brillouin zone for n = 1 in Fig. 3.
The self-energy shows typical Fermi liquid behavior. The
imaginary part is near zero (zero only at T = 0) at the Fermi
level and decreases quadratically with increasing energy. This
leads to increasing damping effects in the dispersion of the
Kondo resonance particularly strong at the � and R points.
At these points the self-energy shows a strong enhancement
around E = ±0.5, respectively, and then increases abruptly to
zero for lower/higher energies. Therefore we find no damping
effects in this energy region and quasiparticle states with
energies lower/higher than the threshold energy will have
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m
/m

*

FIG. 2. Inverse effective mass as function of interaction parame-
ter U/W . Parameters: T = 10 K, n = 1.0.

infinite lifetimes. This is clearly visible in the spectral density
where in the lower/upper Hubbard band “bridges” of sharply
peaked states appear at both k points. Similar effects were
found in SOPT calculations by Schweitzer and Czycholl14 and
in the projection operator method of Kakehashi and Fulde15

but here they are much more pronounced. The reason is most
likely the increased numerical accuracy of our calculation (see
Sec. III).

Comparing our results to a recent dynamical cluster
approximation13 (a cluster extension of the DMFT in order
to retain a k dependence) there is good agreement below the
MIT (U/W = 0.67 in the mentioned work). The dispersion
of the Kondo resonance and the maxima of the lower/upper
Hubbard bands show essentially the same behavior as in our
calculation. Above the MIT (U/W = 1) there are of course
discrepancies because of the missing MIT in the MPT.

With increasing temperature damping effects will become
more important. This is shown in Fig. 4. The Kondo resonance
peak is diminished with rising temperature and tend to vanish

FIG. 3. Spectral density (upper figure) and imaginary part of
MPT self-energy (lower figure) along special directions in the
first Brillouin zone of the simple cubic 3D lattice: M(π,π,0) →
X(π,0,0) → �(0,0,0) → R(π,π,π ) → M . Parameters: n = 1, T =
10 K, U/W = 1.

-0.2 0 0.2
E [eV]

0

0.5

1

T=100K
T=300K
T=500K
T=700K

0 400 800
T [K]

-1

0

FIG. 4. (Color online) QDOS (Kondo resonance) at various
temperatures T . Inset: averaged imaginary part of MPT self-energy
at Fermi level E = 0. Parameters: n = 1, U/W = 2.

completely at higher temperatures. The reason for this can be
found in the inset of Fig. 4. With increasing temperature the
averaged imaginary part of the self-energy at the Fermi level
decreases starting from zero at T = 0 K. For low temperatures
a typical Fermi liquid behavior is obtained (∼T 2).

For the two-dimensional sc lattice the effects of a nonlocal
self-energy should be more drastic then in 3D as a direct
consequence of the reduced coordination number. Figure 5
shows the spectral density and imaginary part of the self-
energy of the sc 2D lattice at half-filling. We find again
states with infinite lifetime at � and M points due to the
vanishing imaginary part of the self-energy. The self-energy
shows Fermi liquid behavior (∼E2) at large portions of the
Brillouin zone. However, this behavior is changed near the
Fermi surface. At the X point and the midpoint between � and
M (π

2 , π
2 ) the self-energy shows a linear energy dependence.

This “marginal Fermi liquid” behavior is a direct consequence
of the perfect nesting properties [ε(k) ≈ ε(k + Q), where Q

FIG. 5. Spectral density (upper figure) and imaginary part of
MPT self-energy (lower figure) along special directions in the first
Brillouin zone of the simple cubic 2D lattice: M(π,π ) → �(0,0) →
X(π,0) → M . Parameters: n = 1, T = 10 K, U/W = 1.
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0

1

2

3

-1 0 1
E [eV]

-0.5

0

0.5

FIG. 6. (Color online) Spectral density (upper figure) and real
part (lower figure: black line) and imaginary part (red line) of the
self-energy for the simple cubic 2D lattice at k = ( 6π

20 , 6π

20 ). Vertical
broken line: position of the shadow band. The crossing point the
green dash-dotted line with the real part of the self-energy marks the
position of quasiparticle excitations. Parameters: n = 1, U/W = 1,
T = 10 K.

is a reciprocal lattice vector] of the 2D Fermi surface44,45 at
half-filling. Electrons can be scattered efficiently due to the
large phase space. This leads to a second effect in the spectral
density—the formation of “shadow” bands. They are visible
as dark lines running from the special points X, (π

2 , π
2 ) to �, M

with a slope determined by the condition E ≈ ε(k + Q). These
shadow features, which have already been described by Vilk,46

are no real quasiparticle band but merely thermal excitations
corresponding to a local minimum of the imaginary part of
the self-energy. To illustrate this point we have plotted the
spectral density (upper panel) and self-energy (lower panel)
at k = ( 6π

20 , 6π
20 ) in Fig. 6. The green dash-dotted line obeys

E + μ − ε(k) and its crossing points with the real part of
the SE (black line) define the quasiparticle excitations of the
system. In the SD only one of the three excitations forms
a peak (near E = 0), the others are strongly damped by a
large imaginary part of the SE (red line). The black dashed
line marks the position of the shadow band. There is no real
excitation energy but we find a local minimum of the imaginary
part of the SE which leads to observed shadow feature.

B. Conductivity

From (14) it becomes clear that the optical conductivity is
mainly determined by the number of available quasiparticle
states. In Fig. 7 the inverse static conductivity (resistivity) at
half-filling is shown as a function of temperature for U = 2.
At low temperatures the resistivity increases quadratically.
This results from the reduction of the QDOS at Fermi level
as shown in Fig. 4. The resistivity rises until the thermal
energy is sufficient to excite electrons from the lower to
the upper Hubbard band (kBT ≈ U ). Then it will decrease
going through a minimum and rise again. The inset shows
the optical conductivity at fixed temperature T = 100 K.
The conductivity decreases with increasing energy due to
the lack of states between the Kondo resonance and the

0 2000 4000 6000 8000
T [K]

1/
σ(

0)
 [

a.
u.

]

0 2 4
E [eV]

σ(
E

) 
[a

.u
.]

FIG. 7. Correlation part of the resistivity (inverse of the static
conductivity) as a function of temperature T for the 3D simple cubic
lattice. Inset: optical conductivity as function of E. Parameters: n = 1,
U = 2. Inset: T = 100 K.

upper Hubbard band. As soon as the energy is sufficient to
excite electrons from the Fermi level to the upper band, the
conductivity will rise strongly reaching a maximum soon and
decrease again. These findings for the conductivity are in good
agreement with DMFT results for U below the metal-insulator
transition.39

C. Inverse paramagnetic susceptibility and ferromagnetic
phase transition

The inverse paramagnetic static susceptibility (IPS) (10)
can be used as a tool for finding borders of a ferromagnetic
phase transition in the n-U diagram. Its zero crossings will
mark the critical points. In Fig. 8 we show the IPS for the 2D
and 3D sc lattice at low temperature (T = 10 K) for various U .
Whereas we find zero crossings above a critical U/W ≈ 15
in the 3D case, there is no point of phase transition in the 2D

0

U/W=100
U/W=500
local; U/W=15
local; U/W=20

0 0.2 0.4 0.6 0.8 1
n

0

U/W=15
U/W=20
U/W=50
local; U/W=5
local; U/W=6

2D

3D

FIG. 8. (Color online) Inverse paramagnetic susceptibility as a
function of band filling n for the 2D (upper figure) and 3D (lower
figure) system calculated with the full k-dependent self-energy. The
result of local self-energy is shown also (dashed lines). Parameters:
T = 10 K.
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FIG. 9. (Color online) Curie temperature TC as function of band
filling n for various U/W . Inset: relative magnetization (n↑ − n↓)/n

as function of interaction strength U/W . Parameters inset: n = 0.9,
T = 10 K.

case when we use the full nonlocal MPT self-energy. Only
when using the truncated local version of the MPT do we get
a phase transition in 2D also. This shows first of all that the
predictions of the nonlocal theory are in accordance with the
Mermin-Wagner theorem and secondly, that the nonlocality
of the self-energy is crucial in order to get the result. We
would like to mention that the IPS curve for U/W = 500 is
saturated in the sense that increasing U/W further will not
change its shape drastically.

We come now to the discussion of the magnetic properties
of the 3D system. The rather high critical U reflects the fact that
the sc lattice is not particularly susceptible to ferromagnetism
(the competing antiferromagnetism is not suppressed by
frustration, like in the fcc lattice). The IPS crosses the zero
axis at two points. These mark the lower and upper bound of
the ferromagnetic region. The Curie temperatures for different
U/W are plotted in Fig. 9. The maximal TC is reached
for a band filling of n ≈ 0.91. Starting from Ucrit/W ≈ 15,
TC increases quickly with increasing U/W and runs into
saturation for larger values of U/W . The same is true for
the magnetization m = n↑ − n↓ and the phase border. The
magnetization at n = 0.9 and T = 10 K is shown in the
inset of Fig. 9. The electron system is far from saturation,
the polarization reaches ∼16% for U/W = 70 and increases
slowly for stronger interaction parameters.

The full phase diagram is shown in Fig. 10. The lower
phase boundary is decreasing with increasing U/W to lower
n up to U/W ∼ 350 where it takes the value ncrit ≈ 0.845.
Increasing U/W further will not increase the ferromagnetic
region but we observe a slight shifting to higher n again. The
upper phase boundary growths monotonically with increasing
U/W reaching a value of n ≈ 0.969 for U/W = 500. This
result is in accordance with Nagaokas theorem.

As expected, in the local approximation the critical U :
Ucrit/W ≈ 5 at T = 10 K for the 3D sc lattice is lower than in
the full k-dependent case and agrees well with findings from
DMFT calculations (U/W � 3).25

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
n

0

100

200

300

400

500

U
/W

PM FM

FIG. 10. Ferromagnetic phase diagram of the 3D simple cubic
lattice as function of U/W and band filling n. Parameters: T = 10 K.

V. SUMMARY AND CONCLUSIONS

In this work we have derived a nonlocal self-energy for
the Hubbard model within a modified perturbation theory
approach. It was shown that this self-energy fulfills a variety of
limiting cases (e.g., weak coupling and atomic limit) and shows
the correct high-energy behavior by construction. Numerical
tools for the evaluation of this self-energy were introduced, in
particular to solve the complicated momentum integrations.

We show results for the two- and three-dimensional simple
cubic lattice, discussing in detail the influence of nonlocality,
temperature, and interaction strength on the self-energy,
spectral density, and quasiparticle density of states. These
results are then used for the interpretation of the calculated
optical conductivity and resistivity curves.

The inverse paramagnetic susceptibility was calculated,
showing that there is no ferromagnetic phase transition in
the two-dimensional but for the three-dimensional lattice.
The ferromagnetic/paramagnetic phase diagram for the three-
dimensional lattice is then constructed.

Our findings emphasize the importance of nonlocal corre-
lations in the Hubbard model in low dimensions, in particular
for the fulfillment of Mermin-Wagner theorem.

The strength of the present approach is that it allows self-
consistent calculations at arbitrary band fillings with a fully k-
dependent self-energy. This comes at the expense of neglecting
certain correlation effects. Most severe in this respect is the
missing metal-insulator transition (MIT) at half-filling, which
should also occur in finite dimensions at roughly U/W ≈ 1 as
indicated by DMFT calculations.13 It is interesting to note that
the (local) MPT, when used as an impurity solver in a DMFT
calculation for the infinite dimensional Hubbard model, does
show a MIT in the correct U/W region, whereas it does not
when used as a self-energy for the lattice Hamiltonian.47

Another shortcoming of the current state of the theory is
the inability to check for antiferromagnetic phases, which
ultimately should appear near half-filling. The reason for this
is in the ansatz of the self-energy (8), which only allows
the calculation of homogeneous phases. This does not mean
that there are no possible antiferromagnetic solutions within
the MPT approach. It would be an interesting task for a
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forthcoming work to extend the MPT in this direction. An
indirect hint for the presence of antiferromagnetic correlations
within the MPT can be derived from the breakdown of
ferromagnetic order near half-filling, which could have its
origin in competing antiferromagnetic correlations.

APPENDIX A: COEFFICIENTS OF SELF-ENERGY
EXPANSION

C
(0)
kσ = U 〈n−σ 〉,

C
(1)
kσ = U 2〈n−σ 〉(1 − 〈n−σ 〉), (A1)

C
(2)
kσ = C

(1)
kσ [εσ (k) − μ + U (1 − 〈n−σ 〉)] + U 2Bk−σ

with
Bk−σ = BS,−σ + BW,−σ (k),

BS,−σ = 1

N

i �=j∑
i,j

Tij 〈c+
i−σ cj−σ (2niσ − 1)〉

= 1

N

∑
k

[ε(k) − T0]
∫ ∞

−∞
dEf−(E)

×
{

2

U
[E − ε−σ (k)] − 1

}
Sk−σ (E − μ),

BW,−σ (k) = 1

N

i �=j∑
i,j

Tij e
−ik(Ri−Rj )(〈ni−σ nj−σ 〉 − 〈n−σ 〉

− 〈c+
jσ c+

j−σ ci−σ ciσ 〉 − 〈c+
jσ c+

i−σ cj−σ ciσ 〉).
(A2)

APPENDIX B: HIGH ENERGY EXPANSION OF SOPT
SELF-ENERGY

�
(SOC)
kσ (E) ≈

N∑
m=1

D
(m)
kσ

Em
(B1)

with

D
(1)
kσ = U 2〈n−σ 〉(1 − 〈n−σ 〉) = C

(1)
kσ ,

D
(2)
kσ = U 2

∑
R

eikR{δR,0[〈eR−σ 〉(0)(2〈nRσ 〉(0) − 1)

+〈nR−σ 〉(0)(MR−σ + MRσ )] − 〈nR−σ 〉(2MR−σ 〈nRσ 〉(0)

+MRσ 〈nR−σ 〉(0))} (B2)

and

〈nRσ 〉(0) =
∫

dEf−(E)S(0)
Rσ (E), (B3)

〈eRσ 〉(0) =
∫

dEEf−(E)S(0)
Rσ (E), (B4)

MRσ = TR − μ(0)
σ δR,0. (B5)

APPENDIX C: DERIVATION OF THE OPTICAL
CONDUCTIVITY

The density-density GF in (renomalized: free propagators
are replaced by full ones) diagrammatic one-loop expansion is
given by

〈〈n̂kσ ; n̂k′σ 〉〉En
≈ δkk′

1

β

∑
m

Gkσ (iEm)Gkσ (iEn + iEm)

= δkk′

∫ ∫
dxdySkσ (x)Skσ (y)

f−(x) − f−(y)

iEn + x − y

(iEn→E+i0+)= δkk′

∫
dxf−(x)Skσ (x)[Gkσ (x + E + i0+) + Gkσ (x − E − i0+)].

From this we get for the correlation part of conductivity (12):

Reσβα

II (E + i0+) = Re

{
iq2

(E + i0+)

1

N

∑
kσ

(∂kβ
εk)(∂kα

εk)
∫

dxf−(x)Skσ (x)[Gkσ (x + E + i0+) + Gkσ (x − E − i0+)]

}

= −2q2δ(E)
1

N

∑
kσ

(∂kβ
εk)(∂kα

εk)
∫

dxf−(x) [ImGkσ (x)ReGkσ (x)]

+ πq2

E

1

N

∑
kσ

(∂kβ
εk)(∂kα

εk)
∫

dxf−(x)Skσ (x) [Skσ (x + E) − Skσ (x − E)] .

The first term of this result can be recast into the form of the Drude contribution (13) but with opposite sign:

−2q2δ(E)
1

N

∑
kσ

(∂kβ
εk)(∂kα

εk)
∫

dxf−(x) [ImGkσ (x)ReGkσ (x)] = −q2δ(E)
1

N

∑
kσ

(∂kβ
εk)(∂kα

εk)
∫

dxf−(x)Im [Gkσ (x)]2

= −q2δ(E)
1

N

∑
kσ

(∂kβ
εk)(∂kα

εk)
∫

dxf−(x)
1

∂kα
εk

∂kα
ImGkσ (x)
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= −πq2δ(E)
1

N

∑
kσ

(∂kα
∂kβ

εk)
∫

dxf−(x)Skσ (x) = −δαβπδ(E)q2 1

N

∑
kσ

(∂2
kα

εk)〈n̂kσ 〉,

where the second and third step is only allowed when the self-energy does not depend on k and several steps require a diagonal
mass tensor (as it is for the sc lattice).
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