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Exactly soluble model of resonant energy transfer between molecules
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Förster’s theory of resonant energy transfer (FRET) predicts the strength and range of exciton transport between
separated molecules. We introduce an exactly soluble model for FRET which reproduces Förster’s results as well
as incorporating quantum coherence effects. As an application, the model is used to analyze a system composed
of quantum dots and the protein bacteriorhodopsin.

DOI: 10.1103/PhysRevB.85.125106 PACS number(s): 33.90.+h, 42.50.Dv, 87.14.E−, 87.64.K−

I. INTRODUCTION

It has long been known that near-field electrodynamics
allows energy transfer without emission of real photons.
A striking example of this principle is provided by recent
advances in wireless nonradiative energy transfer;1 another
recent example is Auger-mediated “sticking,”2 whereby scat-
tering states of positrons may transition to bound states
in a metal, by transferring energy to a valence electron
which can then leave the surface of the metal. Nowadays
the phenomenon of nonradiative decay is of great scientific
interest in many different fields of physics and chemistry.3 In
particular, new paradigms for solar energy conversion make
use of nonradiative coupling for direct transfer of energy from
the excitons created in the solar absorber to high-mobility
charge carriers.4,5 The mechanism for this transfer relies on
the near-field resonance of electric dipoles and is generally
known as Förster resonance energy transfer (FRET).6–8 In
its simplest formulation, FRET9 is the quantum version of a
classical resonance phenomenon, whereby oscillating electric
dipoles exchange energy through their mutual electric fields.10

Some studies in the quantum version have considered the
possibility of coherent interactions between the dipoles.11–18

Such quantum coherence has been observed in the FMO
complex,21 and it has been suggested that this may partly
explain the high efficiency of energy transfer between chro-
mophores. Interestingly, it has recently been demonstrated that
the classical dipole model can reproduce the effects of quantum
coherence as well.19,20 In this work, we revisit the analysis of
the rate and efficiency of FRET, in the context of a donor
and an acceptor species with comparable electronic energy
gaps. In this situation FRET is evidenced by decreased natural
fluorescence from the donor and enhanced fluorescence from
the acceptor. The distance over which FRET has been observed
ranges from 1 to 10 nm, with the strength varying as the inverse
sixth power of the separation.

The fundamental mechanism underlying FRET is reso-
nance between excited electronic states in the donor and the
acceptor molecules. The excited electronic states have nonzero
electric dipole moments, and the resulting dipoles experience a
Coulomb interaction. The energy exchange is complicated by
the coupling of electronic states to vibronic molecular states,
leading to a broadening of the linewidths and a weakening
of the resonant interaction. This vibronic coupling explains

the difference between early inaccurate calculations of FRET
efficiency (by Perrin10 and others), which were based solely on
dipole resonance, and the later, more successful calculations
by Förster,8 which included vibronic effects.

In this paper we consider a simple model for FRET which
incorporates both electronic and vibronic effects. The model
applies in situations where the donor molecule is rigid, with
weak coupling between its electronic and its vibronic states,
while the acceptor has strong electronic-vibronic coupling in
its excited state. In this situation the model is exactly solvable
and thus allows a comparison with the perturbative formulas
derived by Förster and others. In particular, we derive exact
formulas for FRET efficiency and the Förster radius, and we
compare these to the well-known Förster formulas. Further-
more, the model is fully quantum mechanical and predicts
coherent oscillations between donor and acceptor under strong
FRET conditions. The model contains a parameter which
determines the strength of the electronic-vibronic coupling in
the acceptor, and for weak coupling the model reproduces
the long-range interactions (up to 100 nm) calculated by
Perrin.10

As described above, the model applies to a FRET system
where a rigid donor species, with weak coupling between elec-
tronic and vibronic states, interacts with an acceptor species
where electronic and vibronic states are strongly coupled.
Thus the donor is modeled by a simple two-state system,
corresponding to its electronic ground and excited states.
The donor’s vibronic degrees of freedom are “frozen”and
do not appear in the model. As we discuss in more detail
below, this kind of model can be realized in practice with
quantum dots (QDs). For the acceptor we again include
only two electronic states, corresponding to the ground and
excited states, but in addition, we include vibronic effects
in the excited state. The excited band is described in detail
below. For the moment, we note that the electronic-vibronic
coupling is derived from the Born-Oppenheimer approxima-
tion and assumes that the vibronic degrees of freedom are
entrained to the electronic state. Initially we assume that the
vibronic degrees of freedom are also frozen in the acceptor
ground state. Later we indicate how nonzero temperature
effects may be included by unfreezing these degrees of
freedom.

The key step in the solution of our model is the reduction to
a finite-dimensional system which exhibits the same efficiency
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for resonant energy transfer. The efficiency can be computed
exactly for this finite-dimensional model, and this provides
our exact results for the full model. In order to compare with
Förster’s formulas, we also compute the absorption coefficient
for our model, and we use this to evaluate the overlap integral
which appears in the standard rate formulas.

As an application we apply our model to the analysis of one
particular system of this type which exhibits FRET, namely,
the pairing of a QD donor species with bacteriorhodopsin (bR)
as the acceptor. The QD is known to have sharp emission lines
for fluorescence and, thus, is a good candidate for the “rigid”
donor molecule described above. We find good agreement with
other calculations of the FRET rate for this system.

II. DESCRIPTION OF THE MODEL

We employ the Born-Oppenheimer approximation and
assume that the electronic state of the molecule determines
its overall character, so that the vibronic state is entrained
to the electronic state. Thus the state space is a direct
sum H0 ⊕ H1 ⊕ · · ·, with one factor for each electronic
state. The electronic configuration determines an effective
Hamiltonian for the vibronic degrees of freedom, and each
space Hk is spanned by these vibronic states attached to the
corresponding electronic state. The spaces Hk may be discrete
or continuous, depending on the structure of the vibronic
states. For simplicity, we include only two electronic states,
the ground state and the excited state, thus the state space is
Hgr ⊕ Hexc.

A. The ground subspace Hgr

We assume a nondegenerate electronic ground state |ψgr〉,
and we also assume that the vibronic modes are frozen, so
Hgr is one-dimensional. For the acceptor this assumes zero
temperature. Later we extend to nonzero temperatures by
including vibronic ground states.

B. The excited subspace Hexc

Again, we assume a nondegenerate electronic excited state
|ψexc〉. For the donor, the vibronic modes are frozen, so
that Hexc is one-dimensional. However, for the acceptor, the
electronic state determines an effective Hamiltonian for the
vibronic states, which are labeled by their energy eigenvalues
ε. For this subspace we assume that the vibronic states
form a continuous band with a uniform density of states,
with eigenvalues extending from −∞ to +∞. Under this
assumption we ignore any edge effects in the band. Thus the
space Hexc is isomorphic to the one-particle Hilbert space
L2(R), and we represent a state as a square integrable function
φexc(ε) where ∫ ∞

−∞
|φexc(ε)|2dε = 1. (1)

The time evolution is φexc(ε) → e−iεtφexc(ε). For convenience
we denote the Hamiltonian in this basis as h, so that

(hφexc)(ε) = εφexc(ε). (2)

C. Excitons

As long as the electronic state does not change, the
dynamics of the vibronic state is completely determined by
the fixed effective Hamiltonian corresponding to this electronic
configuration (here we are neglecting any feedback reaction
from the vibronic modes on the electronic modes). However,
when the molecule undergoes an electronic transition, for
example, by photon absorption, the effective Hamiltonian for
the vibronic states immediately changes. This sudden change
creates an excited vibronic state, as the previously stationary
vibronic state becomes a superposition of energy eigenstates
of the new Hamiltonian. We call this vibronic state an exciton.
The exciton behaves like a delocalized one-particle state. In
our model, exciton states will arise only in the excited band
of the acceptor, due to a transition from the ground state. We
assume an average energy E3 for these exciton states.

D. Transitions

Turning now to transitions, we consider only radiative inter-
actions which act solely on the electronic state. Thus transitions
of the vibronic state occur as a consequence of the change of
the effective Hamiltonian due to the electronic transition. The
electronic matrix element due to the interaction V is

〈ψexc|V |ψgr〉. (3)

We find an explicit form for this matrix element for the situa-
tions of interest, namely, direct photon absorption and resonant
excitation through the Coulomb interaction. In order to deter-
mine the vibronic matrix element, we follow Jortner22 and pro-
ceed by analogy with the derivation of the lineshape of a reso-
nance. Recall that a resonance is a perturbation of an embedded
eigenvalue in continuous spectrum. The perturbation causes
the eigenvalue to “dissolve,” accompanied by the emission of
a one-particle state in the continuous spectrum. In our model
this one-particle state is the exciton. Thus the transition from a
vibronic ground state is accompanied by the creation of an ex-
citon, which is a normalized excited vibronic state. The Breit-
Wigner form for the lineshape of the resonance is a Lorentzian,
where the width corresponds to the lifetime of the resonance,22

and the center is the average energy. We assume the same form
for the exciton, so the wave function of the exciton (in the diag-
onal energy representation) is the square root of a Lorentzian:

f (ε) =
√

γ

2π

eiθ

(ε − E3) + i
2γ

. (4)

Using a Lorentzian form implicitly assumes that the energy
band extends from −∞ to +∞. We make this assumption, thus
ignoring any edge effects in the band. The width γ depends on
the particular system and determines the lifetime of the exciton.
The Lorentzian is centered at energy E3, corresponding to the
average exciton energy. We also include a phase factor eiθ ,
which may depend on ε. As we will see, this phase factor is
irrelevant to the calculation of the FRET efficiency.

III. DYNAMICS OF THE MODEL

The FRET interaction between the donor and the acceptor
causes an exchange of energy as the excited state is trans-
ferred from one to the other. Although the transfer becomes
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irreversible after some time, the initial interaction is unitary
and thus admits the possibility of oscillations between donor
and acceptor.

We use standard notation, with D for donor ground state,
D∗ for donor excited state, A for acceptor ground state, and
A∗ for acceptor excited state. Thus the coupled donor-acceptor
system is described by the collection of states

|DA〉, |D∗A〉, |DA∗〉, |D∗A∗〉, (5)

where both |DA〉 and |D∗A〉 are single states, while |DA∗〉
and |D∗A∗〉 contain the exciton subspace.

A. The Hamiltonian

The FRET interaction is dipole-dipole in lowest order, and
so its strength decays as the inverse third power of the distance.
The Hamiltonian is determined by the matrix element of the
Coulomb interaction VC between the electronic parts of the
states |D∗A〉 and |DA∗〉. Thus the electronic transition matrix
element is

U = 〈DA∗|VC |D∗A〉
= 1

R3

(
DD · DA − 3

R2
(DD · R)(DA · R)

)
, (6)

where R is the separation between the systems, and DD and DA

are the transition dipole moments of the donor and acceptor,
respectively. We use atomic units throughout, and we assume
that the dielectric constant is 1. We look in detail at specific
models later, but for the moment we note that for typical
systems the dipole moment is about 10 D, so at separations of
around 5 nm the interaction energy U ∼ 10−4 eV, compared
to the typical energy gaps between ground and excited states
of 1–2 eV.

In the absence of other effects, we could analyze the
dynamics of this coupled system by restricting to the subspace
spanned by the states |D∗A〉 and |DA∗〉 and computing the
time evolution of the initial state |D∗A〉 under the influence of
the interaction U . The Hamiltonian is

H =
(

E1 U 〈f |
U |f 〉 E2 + h

)
, (7)

where E1 and E2 are the electronic energy gaps of the donor
and acceptor, respectively; U is the interaction matrix element
defined in Eq. (6); and h is the diagonal energy operator of the
continuous exciton band in the excited state. Also, |f 〉 denotes
the creation operator for the exciton as in Eq. (4), and 〈f |
denotes the corresponding annihilation operator.

B. The master equation

In our model we also include the effects of fluorescent
decay from the excited state to the ground state for both
systems. We do this by introducing jump operators for the
(irreversible) fluorescent decays from excited to ground state
and use a master equation to compute the time evolution of
the density matrix. So we are using the Markov approximation
for the coupling to the electromagnetic field which causes
fluorescence.23 In order to separate the outcomes from the
two excited states |D∗A〉 and |DA∗〉, we use two copies of
the ground state to indicate which molecule has decayed (since

the jump operators are irreversible, there is no coupling from
these ground states back to the excited states). Thus the system
is represented by a density matrix ρ, spanning the states |D∗A〉,
|DA∗〉, |D̂A〉, and |DÂ〉, where |D̂A〉 and |DÂ〉 are copies
of the ground state, and the two fluorescent decay channels
are |D∗A〉 → |D̂A〉 and |DA∗〉 → |DÂ〉. In this subspace the
Hamiltonian is

HDA =

⎛
⎜⎜⎜⎝

E1 U 〈f | 0 0

U |f 〉 E2 + h 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ . (8)

The effects of fluorescence are implemented by the jump
operators:

J1 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ , J2,i =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 〈ui | 0 0

⎞
⎟⎟⎟⎠ , (9)

where {|ui〉} form an orthonormal basis in the exciton space.
The master equation is

dρ

dt
= −i[HDA,ρ] + γ1

2

(
2J1ρJ

†
1 − J

†
1 J1ρ − ρJ

†
1 J1

)
+

∑
i

γ2

2

(
2J2,iρJ

†
2,i − J

†
2,iJ2,iρ − ρJ

†
2,iJ2,i

)
, (10)

where γ1 and γ2 are the rates for fluorescence |D∗A〉 → |D̂A〉
and |DA∗〉 → |DÂ〉, respectively.

C. Definition of the efficiency, Förster radius, and FRET rate

Using the master equation in Eq. (10), it is possible to
compute the probability of exciton transfer from the donor to
the receiver and to find the efficiency of this process. In the
absence of FRET, the system ultimately ends up in state |D̂A〉.
Thus we define the efficiency of FRET to be the long-run
probability that this does not happen; that is,

F = 1 − lim
t→∞〈D̂A|ρ(t)|D̂A〉. (11)

The Förster radius R0 is then defined by the condition that at
this separation the efficiency reaches 50%. That is,

R0 = max{R : F � 0.5}. (12)

The FRET rate γFRET can also be computed from the efficiency,
by comparing the rates for fluorescence of the donor and FRET:

γFRET = γ1
F

1 − F
, (13)

where γ1 is the natural fluorescence rate for the donor. This
follows from the relation

F = γFRET

γFRET + γ1
. (14)

IV. SOLUTION OF THE MASTER EQUATION

We solve the master equation given in Eq. (10) with the
initial condition ρ(0) = |D∗A〉〈D∗A|, corresponding to the
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donor in its excited state and the acceptor in the ground state.
The solution of Eq. (10) takes the block diagonal form,

ρ(t) =

⎛
⎜⎜⎜⎝

ρ11(t) ρ12(t) 0 0

ρ21(t) ρ22(t) 0 0

0 0 ρ33(t) 0

0 0 0 ρ44(t)

⎞
⎟⎟⎟⎠ . (15)

The top left 2 × 2 block is(
ρ11(t) ρ12(t)

ρ21(t) ρ22(t)

)
= e−iBt

(
1 0

0 0

)
eiB∗t , (16)

where B is the non-Hermitian operator acting on the space
spanned by |D∗A〉 and |DA∗(ε)〉, i.e.,

B =
(

E1 − i
2 γ1 U 〈f |

U |f 〉 E2 + h − i
2γ2

)
, (17)

and |f 〉 is the Lorentzian function in Eq. (4). The remaining
diagonal entries in Eq. (15) are given by

ρ33(t) = γ1

∫ t

0
ρ11(s)ds, (18)

ρ44(t) = γ2

∫ t

0
Trρ22(s)ds. (19)

In order to facilitate the notation, define the state

|ψ0〉 =
(

1

0

)
. (20)

It follows that the efficiency is given by

F = 1 − ρ33(∞) = 1 − γ1

∫ ∞

0
|〈ψ0|e−iBs |ψ0〉|2ds. (21)

Thus the calculation reduces to the problem of finding matrix
elements of the operator e−iBs . This is straightforward because
B is a rank 1 perturbation of a diagonal operator. The key step
is the reduction to a related two-state system. Namely, define
the 2 × 2 matrix

B̂ =
(

E1 − i
2 γ1 U

U E2 + E3 − i
2 (γ + γ2)

)
. (22)

It is shown in Appendix A that

〈ψ0|e−iBs |ψ0〉 = 〈ψ0|e−iB̂s |ψ0〉, (23)

and thus

F = 1 − γ1

∫ ∞

0
|〈ψ0|e−iB̂s |ψ0〉|2ds. (24)

Thus the effect of the exciton coupling in this model is the
same as in a two-state model with a second channel for decay
of the excited state to the ground state, at a rate which is the
inverse lifetime of the exciton.

The efficiency F in (24) can be evaluated by finding
the eigenvectors and eigenvalues of B̂. The assumption that
γ1,γ2 > 0 implies that B̂ has two eigenvalues with negative
imaginary parts. These can be computed explicitly, and the

initial state |ψ0〉 can be written as a linear combination of the
eigenvectors. The result is

F = (1 + r)|U |2
(1 + r)2|U |2 + 4r

[
	2

16 + (E1 − E2 − E3)2
] , (25)

where

	 = γ1 + γ2 + γ (26)

and

r = γ1

γ2 + γ
. (27)

A. Förster radius and FRET rate

From Eq. (25) we compute the Förster radius and the FRET
efficiency for this model. Setting F = 1/2 we get the condition

|U |2 = 4r

1 − r2

[(
γ1 + γ2 + γ

4

)2

+ (E1 − E2 − E3)2

]
. (28)

The interaction U is given by Eq. (6). Introducing an angular
factor κ , this gives

|U |2 = κ2 D2
DD2

A

R6
(29)

and, hence, the formula for the Förster radius,

R6
0 = 1 − r2

4r

κ2D2
DD2

A

1
16 (γ1 + γ2 + γ )2 + (E1 − E2 − E3)2

. (30)

B. Exciton lifetime and scaling at resonance

At resonance where the energies match we have E1 − E2 −
E3 = 0. In this case we have

F = γ2 + γ

γ1 + γ2 + γ

|U |2
|U |2 + γ1(γ2+γ )

4

. (31)

Define the dimensionless parameter

η = 4|U |2
γ1(γ2 + γ )

; (32)

then at resonance we get

F = γ2 + γ

γ1 + γ2 + γ

η

η + 1
. (33)

It is reasonable to expect that the inverse exciton lifetime γ is
much larger than the fluorescence rates γ1,γ2. In this case the
FRET efficiency at resonance takes the simple form

F = η

η + 1
, η = 4|U |2

γ1γ
. (34)

This same scaling relation has been found for resonant energy
transfer between classical oscillators1 and seems to be a
general feature of this type of phenomenon.

C. Temperature dependence

In order to incorporate nonzero temperature effects, we
introduce vibronic ground states for the acceptor, labeled
{|φgr(ε1)〉}, where ε1 is the energy in the ground-state vibronic
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band. These states are assumed nondegenerate, and thus
completely labeled by their energy eigenvalue ε1, with respect
to the Hamiltonian determined by the electronic state |ψgr〉.
Thus a general state in the acceptor band will be

|A〉 =
∑
ε1

c(ε1)|φgr(ε1)〉, (35)

with the normalization condition
∑

ε1
|c(ε1)|2 = 1. The vi-

bronic Hamiltonian is diagonal in this representation, and so
the time evolution of a state is

|A〉 →
∑
ε1

c(ε1)e−iε1t |φgr(ε1)〉. (36)

To include nonzero temperatures, we assume a Boltzmann
distribution for the initial equilibrium state; that is,

ρeq = Z−1
∑
ε1

e−ε1/kBT |φgr(ε1)〉〈φgr(ε1)|. (37)

We then compute the thermal average of the efficiency over
initial vibronic energies. Thus the temperature-dependent
efficiency is

F (T ) = Z−1
∑
ε1

e−ε1/kBT F (ε1)dε1, (38)

where F (ε1) is given by Eq. (25) with E1 replaced by the initial
energy E1 + ε1. By using this formula for F (ε1) we assume
that initially the acceptor is in a pure vibronic ground state
|φgr(ε1)〉, which transitions to the exciton state f (ε) due to the
FRET interaction. Our main simplification is the following:
we assume that the reverse operation causes a transition from
the exciton state back to the same initial vibronic state
|φgr(ε1)〉. So under this reverse operation an exciton state
ψ(ε) is mapped to α |φgr (ε1)〉, where the amplitude is α =∫

f (ε)ψ(ε2)dε. Thus the acceptor always returns to its initial
ground state (this assumption has also been made for exact
calculations of coherent exciton scattering).24

Carrying out the summation in Eq. (38) requires knowledge
of the phonon spectrum of the acceptor, and we do not pursue
the question further here. However, we note that this effect
of the temperature is expected to be small because at room
temperature kBT is significantly smaller than the energy scale
given by γ ∼ 0.1 eV.

V. COMPARISON WITH STANDARD FRET FORMULAS

The standard Förster formulas for FRET rate and Förster
radius involve the overlap integral between the normalized
donor fluorescence spectrum and the acceptor absorption
spectrum. The formula for the Förster radius (in cm) is8

R6
F = 9000 ln(10)κ2QD

128π5NA

J, (39)

where QD is the donor quantum yield, NA is Avogadro’s
number, and J is the overlap integral (in cm3 dm3/mol),

J =
∫ ∞

0
εA(λ)FD(λ)λ4dλ (40)

(recall that we have assumed that the refractive index is 1).
Here FD(λ) is the donor emission spectrum [normalized so
that

∫ ∞
0 FD(λ)dλ = 1, where λ is the wavelength (in cm)],

and εA is the molar absorption coefficient (in cm−1 dm3/mol).
Inserting values for the constants gives

R6
F = 8.79 × 10−25QDκ2J. (41)

In our two-level model the donor is assumed to have a
narrow band fluorescence spectrum centered at energy E1,
so the overlap integral is essentially εA(λ) λ4 evaluated at the
wavenumber λ = 2πc/E1. Thus the formula is

R6
F = 8.79 × 10−25QDκ2εA(2πc/E1)(2πc/E1)−4. (42)

The acceptor’s molar absorption coefficient can be evaluated
from the standard absorption rate for the transition from ground
state to excited state, using Fermi’s Golden Rule to compute
the rate. The details are carried out in Appendix B and the
result (in cm−1 dm3/mol = 10 m2/mol) is

εA ln(10)

NAa2
B

= 2π

ωc

10E2
2D

2
Aγ

(ω − E2 − E3)2 + γ 2/4
, (43)

where aB is the Bohr radius. Using this expression for the
absorption coefficient in Eq. (39) and setting ω = E1, we get
(in a.u.)

R6
F = 9κ2QD

(
c

E1

)3
γD2

A

(E1 − E2 − E3)2 + γ 2/4

(
E2

E1

)2

.

(44)

Turning now to our Eq. (30), we use the Einstein A coefficient
to relate the fluorescence rate and the dipole strength of the
donor:

γ1 = 4

3

E3
1

c3
D2

D. (45)

This approximation for γ1 given by Eq. (45) neglects spectral
shifts and broadening. Thus our expression for R0 becomes

R6
0 = 3

16
(1 − r2)κ2

(
c

E1

)3

× (γ2 + γ )D2
A

(E1 − E2 − E3)2 + (γ1 + γ2 + γ )2/16
. (46)

Comparing Eq. (46) and Eq. (44), we see that our result differs
from the standard one in several ways. In particular, the width
of the Lorentzian is (γ1 + γ2 + γ )/4 instead of γ /2, and the
factor (E2/E1)2 is absent in Eq. (46). However, for realistic
models we expect that γ 	 γ1,γ2, hence r 
 1. So when we
compare the values at the resonant energy (where E1 − E2 −
E3 = 0), and if we set QD = 1, then we get the ratio

R0

RF

= 0.7783

(
E1

E2

)1/3

. (47)

We expect that E3 � E2/10 (the energy difference between the
donor’s emission peak and the acceptor’s absorption peak), and
thus E1/E2 � 1.11, so we find a quite close agreement with
the standard result.

VI. APPLICATION: QUANTUM DOTS AND
BACTERIORHODOPSIN

Recent proposals for improved dye-sensitized solar
cells25,26 involve replacing the liquid dye by nanoparticles
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γ1

ψ∗
D

ψD

VF

ED

|f〉 ψ∗
A

ψA

γ2

ER

ψR
A

D A

FIG. 1. (Color online) Schematics of the continuum model for
FRET. The donor is a quantum dot, while the acceptor is an
optoelectric protein such as bacteriorhodopsin.

attached to a substrate and exploiting FRET to achieve efficient
energy transfer.27 One candidate material is a mixture of QDs
and the protein bR.28–30 In one scenario the QD would act as
an antenna for photon absorption, with subsequent transfer to
the retinal complex in bR. The retinal complex in bR is known
to be an efficient absorber of photons through direct capture,
and this same efficiency is expected for nonradiative transfer
of excitons from QD to bR via the FRET mechanism.4 The
methods developed in this paper can be used to evaluate the
efficiency of FRET in this hybrid system. The QD has a band
gap of approximately 2 eV (depending on its diameter),31,32

and after photon absorption it rapidly relaxes to its lowest
energy excited state, thus the QD is well modeled as a two-state
system.

In its ground state the retinal molecule has a planar
conformation. Upon excitation it briefly enters a band of
planar excited states (due to an electronic transition consistent
with the Franck-Condon principle) and then rapidly relaxes
to a nonplanar conformation.33 The latter transition occurs
within a few hundred femtoseconds, is effectively irreversible,
and thus signals the transfer of the excitation to bR. The
planar excited state lies in a band of closely spaced levels
corresponding to different vibrational and rotational states.
Recent studies have demonstrated that coherence persists in
the exciton state for several hundred femtoseconds after initial
excitation.33

Our model QD/bR is schematized in Fig. 1 and it is a
simplified version of the more general model described above.
The values of the various parameters can be obtained from
known properties of the molecules. The wave function f has
the Lorentzian form, centered at the exciton energy E3. We
assume transfer on resonance, so that E1 = E2 + E3 = 2 eV.
The width γ is the inverse lifetime of the exciton, which
is known from coherence analysis to be at least 100 fs, so
γ is upper bounded by around 0.05 eV. The rate γ1 is set
by the QD experimental lifetime,32 so γ −1

1 = 16 ns, and the
rate γ −1

2 = 500 fs.33 However, they are not important in the
calculations since they are much smaller than γ . The FRET
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FIG. 2. (Color online) (a) Efficiency for QD-bR as a function
of separation; (b) occupation probability of initial excited state as a
function of time. Arrows show the position of R0 for two values of γ .

coupling strength U is determined by the formula16

U = κDQDDbR

εrR3
, (48)

where εr is the permittivity of the medium, R is the separation
between the molecules, DQD and DbR are the dipole moments
of the QD and bR, respectively, and the angular factor κ

depends on the orientations of dipoles relative to the separation
between molecules. We use the values DQD = DbR = 10 D,
εr = 1 (permittivity of medium, assumed dry), and κ = 1 and
keep the separation distance R as a free parameter. In atomic
units this gives

U = 15.479

R3
. (49)

Figure 2(a) shows the efficiency as a function of R for
these values. The FRET distance R0 is consistent with the one
estimated from experiments of about 7–8 nm.30 The curve
almost exactly matches the phenomenological formula6–8

for efficiency E = R6
0/(R6

0 + R6). Figure 2(b) shows the
occupation probability of the initial donor excited state as
a function of time, for the same parameter values and with
a separation R = 2 nm. Coherent oscillations are apparent if
γ = 0.05 eV.

VII. CONCLUSIONS

We have introduced an exactly solvable model for FRET,
which captures the key features of Förster’s electronic-
excitonic coupling in a microscopic quantum mechanical
setting. The standard Förster equations are accurate when the
following conditions are satisfied.6

(a) The dipole-dipole approximation for the electronic
coupling can be employed appropriately for the donor-acceptor
interaction.

(b) Interactions among donors or acceptors and static
disorder effects leading to spectral line broadening can be
neglected.

(c) The energy transfer dynamics is incoherent.
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Our approach goes at least beyond condition c since, at
short distances and times, the formalism is able to capture the
coherent energy transfer. The model uses a master equation
with Lindblad operators to take account of fluorescence and
relaxation effects and uses a continuum of excited states in
the acceptor to implement the exciton dynamics. The model is
robust and can easily be extended to include more complicated
exciton dynamics. As a concrete application the model is used
to analyze FRET coupling between a QD and bR, where it
makes realistic predictions of the FRET distance.
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APPENDIX A

We use resolvent techniques to compute the exponential of
B. Recall the resolvent representation

e−iBs = 1

2πi

∮
e−izs(z − B)−1dz, (A1)

where the line integral encloses the spectrum of B in the
complex plane. The assumption that γ1,γ2 � 0 implies that
B has no spectrum in the upper half-plane, so the resolvent
(z − B)−1 is analytic in the upper half-plane. There is a
cut along the real axis where the spectrum of h2 lies, and
also, possibly, poles in the lower half-plane. The line integral
encloses the cut and also any poles in the lower half-plane. In
the lower half-plane the integration contour can be deformed
to a large semicircle z = Re−iθ with 0 � θ � π . For s > 0 the
contribution of this semicircle vanishes in the limit R → ∞,
thus for s > 0 the line integral in Eq. (A1) can be written as

e−iBs = − 1

2πi

∫ ∞+iε

−∞+iε

e−izs(z − B)−1dz

= 1

2πi

∫ ∞+iε

−∞+iε

e−izs(B − z)−1dz. (A2)

This leads to the formula

〈ψ0|e−iBs |ψ0〉 = 1

2πi

∫ ∞+iε

−∞+iε

e−izs〈ψ0|(B − z)−1|ψ0〉dz.

(A3)

We next derive an explicit formula for the matrix element
〈ψ0|(B − z)−1|ψ0〉 appearing on the right-hand side above,
under the assumption that Imz > 0. Define

(B − z)−1 =
(

I11(z) I12(z)

I21(z) I22(z)

)
. (A4)

Then the Feshbach method yields I11(z),

〈ψ0|(B − z)−1|ψ0〉 =
(

E1 − i

2
γ1 − z − |U |2M

)−1

, (A5)

where

M = 〈f |
(

E2 + h − i

2
γ2 − z

)−1

|f 〉. (A6)

Using the Lorentzian form for f and the diagonal energy
operator h, the matrix element M is

M = γ

2π

∫ ∞

−∞

1

k − E3 + i
2γ

1

k − E3 − i
2γ

× 1

E2 + k − i
2 γ2 − z

dk. (A7)

This integral may be computed by completing the contour in
the lower half-plane and evaluating the sum of the residues.
For Imz > 0 this gives

M = 1

E2 + E3 − i
2 (γ + γ2) − z

. (A8)

Inserting this into Eq. (A5) leads to the expression

I11(z) =
(

E1 − i

2
γ1 − z − |U |2

E2 + E3 − i
2 (γ + γ2) − z

)−1

.

(A9)

The key observation now is that Eq. (A9) is the resolvent of
the reduced two-state system defined by the matrix introduced
in Eq. (22); that is,

B̂ =
(

E1 − i
2 γ1 U

U E2 + E3 − i
2 (γ + γ2)

)
. (A10)

It follows that

〈ψ0|(B − z)−1|ψ0〉 = 〈ψ0|(B̂ − z)−1|ψ0〉, (A11)

and hence we obtain for all s

〈ψ0|e−iBs |ψ0〉 = 〈ψ0|e−iB̂s |ψ0〉. (A12)

APPENDIX B

The acceptor’s molar absorption coefficient can be com-
puted by using the following time-dependent Hamiltonian for
the electronic transition in the presence of a classical field:

H (t) =
(

E2 νe−iωt

νeiωt 0

)
. (B1)

Here E2 is the energy of the excited state, ω is the frequency
of the radiation, and ν is the coupling between the field and
the system. This coupling is given by

ν = ie

mc

∫
ψexc(r) (A0 · ∇) ψgr(r)d3r, (B2)

where ψexc and ψgr are the excited- and ground-state wave
functions, and A0 is the field strength (assumed constant).
We have used the rotating-wave approximation and dropped
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the counter-rotating term proportional to eiωt . Standard dipole
approximations lead to

ν = − i

c
|A0|E2DA. (B3)

The radiation intensity (power per unit area) is related to the
field strength through the time-averaged Poynting vector, and
this gives

Iin = ω2|A0|2
2πc

. (B4)

Combining the electronic transition rate with the exciton
amplitude, Fermi’s Golden Rule gives the following rate for
transitions in this radiation field:

σ = 2π |ν|2|f (ω − E2)|2. (B5)

The absorption coefficient determines the rate of energy
absorption by an ensemble of molecules. Consider a slab
of absorber with unit cross-sectional area and thickness x,

illuminated by light of frequency ω and intensity Iin. Then the
output intensity is given by the Beer-Lambert law,

Iout = Iin10−εAkx, (B6)

where εA is the molar absorption coefficient and k is the
concentration (in moles per unit volume). The number of
molecules in the slab is NAkx, where NA is Avogadro’s
number. The energy absorbed per unit time by transitions is
thus NAkxσω. Equating this to the energy difference between
input and output gives the result in atomic units:

εA ln(10) = NAσω

Iin

= NAω2π |ν|2|f (ω − E2)|2
Iin

= 2π

ωc

NAE2
2D

2
Aγ

(ω − E2 − E3)2 + γ 2/4
.
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