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We provide a parton construction of wave functions and effective field theories for fractional Chern insulators.
We also analyze a strong-coupling expansion in lattice gauge theory that enables us to reliably map the parton
gauge theory onto a microscopic electron Hamiltonian. We show that this strong-coupling expansion is useful
because of a special hierarchy of energy scales in fractional quantum Hall physics. Our procedure is illustrated
using the Hofstadter model and then applied to bosons at half filling and fermions at one-third filling in a
checkerboard lattice model recently studied numerically. Because our construction provides a more or less
unique mapping from microscopic model to effective parton description, we obtain wave functions in the same
phase as the observed fractional Chern insulators without tuning any continuous parameters.
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I. INTRODUCTION

The discovery of the fractional quantum Hall effect in lay-
ered semiconductor devices in a high magnetic field1 opened
our eyes to a rich world of truly quantum-mechanical phases of
matter that exist at zero temperature. Quantum entanglement
plays a crucial role in defining and understanding topological
phases of matter like the fractional quantum Hall liquids.
Instead of long-range order and symmetry breaking, we should
study the pattern of long-range entanglement in such phases.2,3

One manifestation of the necessity of quantum entanglement
is the inability of product or mean-field-like wave functions
to capture, even qualitatively, the physics of such a phase.
Their potential ability to function as quantum computers,4 as
well as their natural robustness to local decoherence, are also
consequences of the presence of long-range entanglement in
the fractional quantum Hall fluids.

Despite the beauty and ruggedness of these topological
liquids, there are still many practical challenges as we attempt
to observe non-Abelian particles in nature and construct
the first scalable quantum computer. The zero-temperature
robustness of these topological fluids is eventually lost at
finite temperature, and, since all experiments are carried out
at finite temperature, we are forced into practical questions.
Exactly how big is the gap to excitations? Just how easy
is it to implement the nonlocal operations that detect non-
Abelian excitations or perform useful quantum computations?
Moreover, given the conceptual and practical importance of
topological phases of matter, it is very interesting to ask where
else in nature such topological phases may be lurking.

Motivated by these questions and others, there has been an
explosion of interest in new models that mimic the physics of
the quantum Hall effect. In the Hall effect, the basic starting
point is Landau levels, perfectly flat bands that exist in a
uniform magnetic field. When Landau levels are totally filled
we find the integer quantum Hall effect, and, when Landau
levels are partially filled, there exists a large degeneracy in the
noninteracting limit. The inclusion of interactions resolves the
degeneracy and produces an incompressible topological fluid,5

a fractional quantum Hall fluid. The physics of Landau levels
may be conjured anew on the lattice by studying tight-binding
models that break time-reversal symmetry.6,7 Such models can

be tuned to give very flat bands which simultaneously possess a
nontrivial Chern number. Filled bands with a nontrivial Chern
number are in the same universality class as integer quantum
Hall states, and the phenomenology is largely transferable.
Thus it is reasonable to guess that, if we were able to partially
fill a flat Chern band and expose the electrons to interactions
of a magnitude much greater than the bandwidth, then the
physics of the fractional quantum Hall effect should also be
visible (see Ref. 8 for a discussion of this point). This beautiful
idea, which is a striking example of universality in physics, has
recently been numerically confirmed in a flurry of activity.9–13

(Previous work, motivated by the possibility of cold atoms
realizations of fractional quantum Hall effect includes Refs. 14
and 15).

From the perspective of the questions raised above, these
fractionalized Chern insulators are interesting in that they
provide a new realization of quantum Hall physics with the
potential for much higher energy gaps and the possibility
of new methods for the detection of anyons. Particularly
interesting is the idea of realizing new high-temperature non-
Abelian topological liquids, on which we comment later. As an
important early step toward the observation and manipulation
of non-Abelian anyons in fractional Chern insulators, we must
establish a basic theoretical framework in which to understand
numerical and experimental results. We have in mind the
powerful formalism in fractional quantum Hall physics known
as the slave-particle or parton approach that provides wave
functions and low-energy effective theories for fractional Hall
liquids (e.g., Refs. 3,16–18). In practice, the parton approach
to this problem represents a rationalization for and a massive
generalization of Laughlin’s original wave function19 for
the ν = 1/3 plateau. We are interested in transferring this
technology to the new setting of fractional Chern insulators. An
interesting recent attempt to make this transition and provide
wave functions for fractional Chern insulators can be found
in Ref. 20. Parton wave functions similar to those we provide
have been used in variational studies in Ref. 21. Reference 22
also uses technology from quantum Hall by embedding the
Chern band problem into a larger Landau level. Reference 23
extends the algebra of density correlators in quantum Hall
states, called a W∞ structure, to Chern bands.
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In this paper we achieve this aim by formulating a parton
description of the recently observed Abelian fractional Chern
insulators. This parton description provides model wave
functions and low-energy effective theories that demonstrate
the universality of fractional quantum Hall physics. The
core of the parton formalism is a mapping of the original
electronic system to an effective description in terms of
fractionally charged “partons” coupled to emergent gauge
fields. Analysis of a parton model always requires analysis of
a gauge theory, and, in the case of fractional Chern insulators,
we deal with lattice gauge theory. In addition to the basic
story involving wave functions, we formulate and carry out
a strong-coupling expansion of certain lattice gauge theories.
This strong-coupling analysis yields two immediate benefits:
new insights into the dynamics of some strongly coupled gauge
theories and new clues leading to fractional Chern insulators,
including novel non-Abelian states. (Deriving the dynamics
of hadronic objects using a strong-coupling expansion in
lattice gauge theory dates back at least to Ref. 24 and is
used in the same spirit in, e.g., Ref. 25.) In fact, because the
strong-coupling expansion provides an almost unique mapping
from the microscopic Hamiltonian to the lattice gauge theory,
our construction can be regarded as a zero parameter model of
the original microscopic physics in terms of the gauge degrees
of freedom. Because the gauge theory dynamics can be reliably
analyzed (thanks to the Chern-Simons term), our construction
provides strong evidence that the system enters a fractional
Chern insulating phase.

As we explain in more detail below, the main conceptual
obstacle to the construction of a parton theory for fractional
Chern insulators is the question of the parton band structure.
In the case of Landau levels, the degeneracy of each Landau
level naturally depends on the charge of the particle moving
in the magnetic field. Consider the case of ν = 1/3. Breaking
the electron into three “colors” of charge 1/3 partons leads to
a partonic Landau level with reduced degeneracy, and, since
the number of partons of each color is the same as the number
of electrons, the partons are immediately able to completely
fill their Landau level. This picture leads to an easy accounting
of the Hall conductivity, as we have three colors of partons
each contributing a Hall conductivity of (e/3)2

h
for a total Hall

conductivity of 1
3

e2

h
. Vaezi26 has noticed that the story for

fractional Chern insulators is not as simple, since it is less
straightforward to reduce the size of the partonic bands, but
the state Vaezi constructs is not obviously gauge invariant and
appears to give zero after projection. We address this issue in
our construction by expanding the size of the unit cell seen by
the partons in a way that remains invisible to the microscopic
electrons.

The remainder of the paper is organized as follows. First,
we describe our construction in the context of a simple
lattice model of the fractional quantum Hall effect, namely
the partially filled Hofstadter model. In the same section we
discuss a strong-coupling expansion for the parton gauge
theory that, owing to the special physics of the fractional
quantum Hall effect, leads to an unusually complete physical
justification for the parton approach. Second, we apply our
construction to a case that makes contact with recent numer-
ical calculations, fractionally filled fermions and fractionally

filled bosons moving in a checkerboard model. Finally, we
summarize our results and indicate some exciting directions
we are currently exploring.

II. HOFSTADTER MODEL AND STRONG-COUPLING
EXPANSION

We introduce our construction in the simple context of the
Hofstadter model of particles hopping in a uniform magnetic
field on a lattice.28 The Hofstadter model is defined by taking a
square lattice and placing 2π/N flux through each plaquette of
the lattice. For a fixed N , the Hofstadter model has a unit cell
consisting of N sites and thus a band structure consisting of N

bands. As N → ∞, the lower bands of the Hofstadter model
reproduce the continuum physics of Landau levels. In terms of
universal physics, the lowest band of the Hofstadter model has
Chern number one and hence reproduces all the low-energy
physics of the ν = 1 integer quantum Hall state even at finite
N . Similarly, a fractionally filled lowest Hofstadter band in
the presence of interactions is a natural lattice regularization
of a fractional quantum Hall fluid. We now discuss the case of
electrons moving in the lowest Hofstadter band at filling 1/3.

Consider the amplitude for an electron to hop around one
plaquette of the square lattice. This amplitude has a phase given
by e2πi/N which we interpret as an Aharanov-Bohm phase
for an electron of charge e moving in a field of magnitude
B = 2π

Nea2 where a is the lattice spacing. Although the models
discussed in Refs. 9–13 generally speak of quantum Hall type
systems without magnetic fields, we see that we can always
reinterpret phases among the hopping parameters in terms
of strong lattice scale magnetic fields. This interpretation is
useful because it suggests a way to obtain a sensible parton
band structure. If the electron fractionalizes into charge e/3
partons then these partons should naturally experience a phase
of e2πi/(3N) when moving around a plaquette because of their
reduced charge. Thus at the mean-field level, before including
the gauge fluctuations that glue the partons back together into
electrons, the partons move in a modified Hofstadter band
structure with N replaced by 3N . This means the partons
move in an enlarged unit cell relative to the electrons, and,
with one parton of each color per electron, each parton color
can fill an entire band, leading to a gapped mean-field ground
state.

Despite the apparent enlargement of the unit cell, the
physical electron does not experience an enlarged unit cell
since it encircles 2π flux after moving around only N plaque-
ttes. Equivalently, motion of the electron requires coordinated
motion of the partons, and, counting the phase of 2π/3 per
color accumulated by a parton around N plaquettes, we find
a total phase 2π after summing over the three colors. The
analogy to the usual continuum story3,17,18 is, we hope, now
clear. In particular, the electron wave function is obtained
by taking the mean-field wave function of the partons, three
copies of the lowest 3N Hofstadter band, and projecting onto
the color-neutral state. As we take N → ∞ this procedure
recovers Laughlin’s wave function for ν = 1/3.

The above procedure may seem somewhat ad hoc, but
there is a more systematic way to relate the parton band
structure to the electron band structures from which it emerges.
First, we formalize the parton construction by writing the
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FIG. 1. (Color online) A rendition of the checkerboard model
showing the next-next-nearest-neighbor (NNNN) hoppings inter-
preted as “bridges” out of the plane connecting more distant sites.
The red and blue dots are the two sublattices. Our lattice gauge
theory version of this model associates a link variable with every
elementary hopping path shown here. Included in the sum over loops
are loops running along these out-of-plane bridges representing the
NNNN hoppings.

electron operator cr at site r in terms of three partons frα

carrying charge e/3 as cr = fr1fr2fr3 = 1
3!εαβγ frαfrβfrγ as

in Ref. 17. This expression is manifestly symmetric under
SU (3) transformations of the frα , and, since we can make
such transformations at each site r , we have an SU (3) gauge
structure. The group SU (3) is the so-called high-energy gauge
group. The terminology is necessary because the mean-field
parton Hamiltonian may break some of the SU (3) symmetry,
so the true low-energy gauge group can be distinct from SU (3).
Next, we write a Hamiltonian for the parton theory including
the SU (3) gauge fluctuations. For every term in the parton
hopping Hamiltonian we associate an SU (3) link variable V .
This particular choice is very convenient for performing a
strong-coupling expansion, and can be visualized as allowing
the partons to hop longer distances through lattice scale
“bridges” or “wormholes” as shown in Fig. 1. Our notation
is as follows: the lattice is defined by a graph (V,E), fermions
fr live on the sites r ∈ V , and gauge fields Vrr ′ live on links
rr ′ ∈ E . There is a link in E for every elementary hopping term
in the parton Hamiltonian. The set of elementary loops on the
lattice we denote L. The (chromo)electric-field conjugate to
Vrr ′ is EA

rr ′ where A is an adjoint index for SU (3). With these
conventions, our Hamiltonian is

H = −
∑
rr ′∈E

t
f

rr ′f
+
r ′ Vrr ′fr + H.c. + h

∑
rr ′∈E

E2
rr ′

−K
∑
�∈L

tr

( ∏
rr ′∈�

Vrr ′

)
+ H.c. (1)

The first term is a parton hopping term, the second electric term
favors small electric fields, and the third magnetic term favors
smooth gauge configurations. E2

rr ′ is the quadratic Casimir of
SU (3) on the link rr ′, so the eigenstates of the electric-field
term are labeled by irreducible representations of SU (3). In
this basis, the magnetic-field term functions like a raising
and lowering operator: it adds an electric-field line in the
fundamental along the path �. In an abuse of notation, the
variables Vrr ′ are matrices in the fundamental representation of
SU (3) whose elements are operators parameterizing the SU (3)
group manifold. For those unfamiliar with the machinery of

non-Abelian lattice gauge theory, we give a brief introduction
in Appendix A.

It is important to understand that the physical Hilbert space
of the gauge theory is formally larger than the electron Hilbert
space due to the presence of arbitrarily highly excited gauge
fields states or “glueballs.” Thus the gauge theory technically
describes electrons coupled to some high-energy tower of
bosonic states; however, these bosonic degrees of freedom
are irrelevant for the low-energy physics. We thus proceed to
study the gauge system at strong coupling as a model of the
low-energy physics of electrons.

Let us analyze this lattice gauge theory in a strong-coupling
expansion h � K,t

f

rr ′ . We will need only the lowest-order
terms for our purposes here, but the expansion can be carried
out systematically to higher orders where it is important to
remove disconnected terms.29 The excitations that survive
in the h → ∞ limit are, by design, the original electrons;
in terms of the gauge theory, these are colorless fermionic
“baryons” generated by the operators cr = fr1fr2fr3. Away
from h = ∞, these electrons can hop via virtual fluctuations
of their constituent partons. To see how, begin with an electron
on site r , and for simplicity suppose that there is a unique
parton hopping amplitude tf . The parton hopping Hamiltonian
moves one parton from site r to site r ′ with amplitude tf ,
but it also creates an electric-field line connecting r to r ′.
This intermediate state costs an energy of roughly h. We now
proceed to hop a second parton with the resulting intermediate
state still containing electric fields. Finally, we hop the third
parton, remove all electric fields, and return to a colorless state
at r ′. Gauss’s law requires that all electric fields be removed
in this final step since the final parton state is color neutral.
This process is illustrated in panel (A) of Fig. 2. In effect,
the electron moved from r to r ′ with an amplitude given by
t c ∼ (tf )3/h2. This argument applies to all the parton hopping
amplitudes, so we have for every parton hopping amplitude a
corresponding electronic hopping amplitude given by (tf )3/h2

(with the conventional overall minus sign). Furthermore, in our

(a)

(b)

FIG. 2. (Color online) The two most important processes in the
strong-coupling expansion. Process (A) generates an electron kinetic
term of order (tf )3/h2. Process (B) generates repulsive electron
interactions of order (tf )4K/h4.
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scheme the prefactor is the same in all cases (only one link
ever has an electric field excited). Of course, there are other
contributions to the electron amplitude from more complicated
processes, but these are further suppressed by powers of tf /h.

If we express all electron hoppings in terms of a particular
matrix element t c0 , say a nearest-neighbor hopping, then we

have the remarkable result that
t c
rr′
t c0

= (
t
f

rr′
t
f

0

)3. In other words,

the electron hoppings measured relative to a reference hopping
are literally the cubes of the parton hoppings measured relative
to the equivalent parton reference hopping. Hence the parton
band structure represents, in a very precise sense, the “cube
root” of the electron band structure. It is important that the
mapping from electrons to partons is not quite unique; we
always have discrete phase choice not set by the electron band
structure. In the case of the Hofstadter model, this prescription
is very simple since there is only one kind of hopping term,
and so, up to the overall energy scale, we reproduce our simple
guess that the parton Hamiltonian should have a third of the
phase of the electron Hamiltonian through every plaquette.

So far we have only mentioned electron kinetic terms.
Electron interactions are also generated. A simple process that
generates such interactions is parton exchange between two
neighboring electrons as shown in panel (B) of Fig. 2. This
process involves not only parton hopping but also the magnetic
term to remove the final closed field line, and so it has an
amplitude Uc ∼ K(tf )4/h4 and is repulsive (an extra minus
sign comes the fermion exchange). In the strong-coupling limit
electron interactions are parametrically smaller than electron
kinetic terms. Interactions are also short ranged since parton
exchange over a distance x is suppressed by factors of (tf /h)x .
Note also that the magnetic term in the gauge Hamiltonian
generates ring-exchange terms for the electrons,25 where elec-
trons hop around loops in a coordinated fashion. These terms
are of order K(tf /h)6 and can be parametrically smaller than
t c and Uc. In this analysis we focus on the interactions between
two baryons and ignore possible many-body effects from the
background density of baryons; this should be justified since
such effects will require more complicated parton exchange
patterns and will be further suppressed. There is one more
subtle term coming from the restricted hopping freedom of
neighboring partons. Consider two electrons adjacent to each
other. As we discussed above, electron hopping proceeds via
a three step process, but besides moving electrons around
this hopping also generates an electron self-energy. On the
square lattice a parton can hop to one of four neighboring
sites and then hop back for an energy going like −(tf )2/h.
However, when another electron occupies a neighboring site,
Pauli exclusion prevents the parton from hopping to that site. A
careful accounting shows that this effect amounts to a repulsive
interaction between neighboring electrons. This interaction is
parametrically larger than the others in the large h limit, larger
even than the electron hopping. To this host of perturbatively
generated interactions, we can also add bare electron-electron
interactions.

Now the usual story at this point would be simple: the gauge
field confines and we can integrate it out to produce a weakly
coupled electronic Hamiltonian which can be analyzed in the
usual way. We emphasize that confinement is a very common
situation in gauge theory, and deconfinement typically requires

special circumstances: high density, many flavors, broken
time reversal, etc. Since strongly correlated electron systems
typically need electron interactions of the same order as
electron kinetic terms, such a phase corresponds to the medium
coupling region in the gauge theory h ∼ tf ∼ K . The usual
hope is that, once we make K and tf large enough, the gauge
theory will flow in the infrared to a deconfined phase, but
we emphasize that, because the strong-coupling expansion
breaks down at intermediate coupling, we cannot use it to
reliably predict electronic models that realize such deconfined
phases. Of course, it remains invaluable as a source of
intuition.

However, the case of fractional Chern insulators is special.
This is because although the bare electron hoppings are much
larger at large h than the electron interactions the bandwidth
of the nearly flat electronic band can be tuned to be quite
small. We use the Hofstadter model as an example. Let the
electronic gap be 	c ∼ t c, let the bandwidth of interest be
wc, and suppose it is tuned to be some small fraction F of
the electron hopping (in the Hofstadter model, this can be
accomplished by making N large; more generally it is the
goal of much band-structure engineering30,31). Then we want
to implement the hierarchy of scales 	c � Uc � wc. This
can in fact be achieved within a region of parameter space
where the strong-coupling expansion is reliable, so long as

F � 1. We need h �
√

tf K and h �
√

tf K
F

. In addition,
we must add bare electron-electron interactions to cancel the
large (tf )2/h repulsive interaction of neighboring electrons.
Of course, unless the electronic band is perfectly flat, we will
eventually violate the hierarchy if we take h to infinity or K to
zero while fixing tf .

Let us comment briefly on the nature of the cancellation
requiring bare electron-electron interactions. In order to have
electron interactions smaller than the electron gap 	c ∼
(tf )3/h2 we must apparently “fine-tune” the “large” energy
Uc

bare + (tf )2/h to a small fraction of (tf )3/h2 (all other
interactions are automatically handled by large h). This does
indeed look like fine-tuning from the point of view of the bare
parton parameters, but crucially the size window of allowed
values of Uc

bare, while small compared to the central value

(tf )2/h, is of order one when compared to the low-energy
electron parameters. Thus in terms of the natural variables
that can be varied in a condensed-matter setting, namely,
the parameters of the low-energy electron model, no special
fine-tuning is required to reach the fractional Chern insulator
phase.

At this point we present in Fig. 3 a rough phase diagram
of the gauge theory in terms of the energy scales already
discussed. We will analyze in much greater detail below the
nature of the fractional Chern insulator phases and the crucial
physics of deconfinement. For small h and U the partons
are in a gapped state with weak interactions and weak gauge
fluctuations, so a fractional Chern insulator is surely realized
in this part of the phase diagram. Unfortunately, this region
has no simple electronic interpretation. Moving out to larger
values of the baryon (electron) interaction U we eventually
expect to reach a crystal phase where the partons prefer to
clump and confinement is restored. One might have thought
a parton crystal was possible, but the gauge coupling flows
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FIG. 3. A sketch of the phase diagram of the gauge theory based
on the strong-coupling expansion and the energy scales of the electron
model. The phase boundaries are determined by the condition that the
electron-electron interaction either grossly exceeds the electron band
gap (upper curve) or falls well below the bandwidth of the lowest
electron band (lower curve).

strong in the absence of the Chern-Simons term and hence
confinement is almost certainly restored once the partons form
a crystal. Similarly, if we increase h while keeping U smaller
than the bandwidth of the partially filled electron band we
expect to restore confinement and obtain a Fermi liquid of
electrons. Of course, this state may host a wide variety of
further low-energy instabilities. The narrowing region at large
h is the part of the phase diagram where we argue the fractional
Chern insulator remains robust due to the hierarchy of scales
we have discussed. The remainder of this section will be spent
justifying in detail this result.

Based on the model systems studied in Refs. 9–13, a
reasonable target Hamiltonian for realizing a fractional Chern
insulator should have the following features: (1) a large elec-
tronic band gap, 	c � wc,Uc; (2) strong electron interactions,
Uc � wc; and (3) small ring exchange terms. Regarding
criterion 3, it is usually believed that ring exchange terms are
helpful in the fight against confinement and we have no reason
to suspect otherwise here. Nevertheless, the most conservative
path is to limit ourselves as much as possible to the minimal
ingredients present in numerical studies that realize fractional
Chern insulators. (We should point out that in the ν = 1/2
boson case described below, the ring exchange term is of the
same order as the interactions.) Of course, ring exchange terms
will be generated under renormalization regardless of whether
we include them in the microscopic Hamiltonian. We can
realize all three criteria within the strong-coupling expansion
by establishing the hierarchy

√
(tf K)/F � h � K � tf .

This guarantees the electronic hierarchy 	c � Uc � wc plus
small ring exchange terms.

We are now in a privileged position. We have a precise and
controlled map between the gauge theory and the microscopic
electron theory via the strong-coupling expansion. We also
know the fate of the electron theory: it forms an incompressible
phase with the same universal physics as the ν = 1/3 fractional
Hall fluid. Thus we also know the fate of the gauge theory: it
must deconfine. To be fair, it is possible that the particular
interactions generated somehow always favor a crystalline
state, but we regard this as very unlikely. Thus deconfinement
must occur even if tf and K are relatively small. As we

said above, h cannot be infinite and K cannot be zero, but
our partonic “molecules” can be relatively tightly bound in
isolation and still deconfine when put together into a liquid.
We note that there exist duality arguments that suggest that a
lattice Chern-Simons term pushes the confinement transition
to h = ∞.32 A hint that this is sensible comes from the
continuum limit where the Chern-Simons term (generated
by the partons33,34) leads to a mass gap35,36 no matter the
size of the continuum gauge coupling.37–39 In the compact
Abelian gauge theory, Polyakov’s argument for confinement40

breaks down because the Chern-Simons term attaches fermion
charge to the instantons; they therefore only contribute
to fermion correlation functions, rather than to the free
energy.

The same physics is evident on the lattice, where the
collective motion of the partons responsible for the Hall
conductivity41 is not confined, even at large h, precisely
because it is adiabatic. Furthermore, because the Hall conduc-
tivity can be expressed without reference to excitations above
the partonic band gap,41 it is in some sense independent of tf

and always contributes an order one effect (like the continuum
Chern-Simons term). Of course, once we move away from
the low-frequency response, we will eventually encounter the
details of the parton band structure. We note that, while the
lattice is essential for dealing correctly with U (1) gauge theory,
it can effectively be dispensed with when considering non-
Abelian groups. While the naive continuum limit of U (1)
gauge theory fails to incorporate the instanton effects that
lead to confinement and hence looks free, non-Abelian
gauge theories in the continuum can already accommodate
confinement. Thus we expect that the continuum model with
the Chern-Simons term correctly captures the physics even at
strong gauge coupling.

As further evidence of the similarity between the lattice and
the continuum, we emphasize that the deconfined phase of the
lattice gauge theory does not have light propagating pure gauge
excitations. Exactly as in the continuum, the strong gauge
coupling leads to very heavy pure gauge states, namely, the
high-energy “glueballs” we mentioned earlier in connection
with the physical Hilbert space. These excitations occur at
energy scale h. What we must have in the low-energy physics
are renormalized partons that do not experience confining
electric fields, as well as certain zero modes of the gauge field.
In conjunction with the TKNN invariant, these gauge-field
zero modes lead to ground-state degeneracy on topologically
nontrivial surfaces. Finally, regarding the partons, it is useful
to appeal to the bag model of confinement (see, e.g., Ref. 42).
Imagine we start with a dilute gas of electrons where each
electron may be modeled as a “bag” of the deconfined phase.
The partons locally experience their band structure plus the
confining potential of the bag; hence the partons propagate
along the edge of the bag (a manifestation of the edge
states in a finite-size Chern insulator). When the electrons
reach a density of order one, the different bags strongly
overlap and partons may tunnel from one bag to another.
Analogous (but not identical) to the percolation transition
between quantization plateaus in the integer quantum Hall
effect, the partons are ultimately able to connect up and
form a gapped collective state. We may picture the partons
moving along the edges of the bags to screen out any charge
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sources. Of course, such a state does not screen in the same
way as a metal, but a type of screening is certainly present.
The simplest demonstration of this fact comes from the
Abelian equations of motion, where all static fields are short
ranged.

We offer one more argument for the deconfined nature
of the lattice gauge theory. We can consider a microscopic
electron model that possesses a completely flat Chern band
at the cost of introducing long-range hoppings. As we argue
in Appendix B, these hoppings may be chosen to decay
superpolynomially fast or nearly exponentially fast (although
perhaps not exponentially fast). Now, in such a model, the
condition Uc � wc on the electron side is vacuous, and we
appear to be able to take h arbitrarily large on the gauge theory
side. Yet surely such a model still realizes the fractional Chern
insulator phase (at least if the partons remain gapped), since
it closely mimics the physics of the usual continuum quantum
fractional Hall effect. Thus we must have that the gauge theory
deconfines even if h is large. We are led to conclude that
fermions in a filled Chern band and the Chern-Simons term
they generate have a profound impact on the dynamics of the
gauge fields they are coupled to.

Note that infinite range hoppings do not require a prolifer-
ation of gauge degrees of freedom. This is because, instead of
introducing new gauge fields for each hopping, we may simply
stretch a Wilson line between the hopping sites. This Wilson
line only reduces the electron hopping amplitude by a factor
of the distance, a modification that can easily be absorbed into
a redefinition of the parton hoppings without changing their
superpolynomial decay.

Having dealt with the issue of confinement, we turn to the
low-energy physics. Although it is not our purpose here to
reanalyze the low-energy theory (see Refs. 3 and 43), we do
want to make a few comments. For the Hofstadter model, the
low-energy limit of the lattice gauge theory consists of a non-
Abelian SU (3) gauge field with a Chern-Simons k

∫
AdA +

2
3A3 term at level k = Cparton = 1. By level-rank duality, this
is equivalent in the bulk to a U (1) Chern-Simons theory at
level k = 3 which possesses three degenerate ground states
on a torus. The low-energy theory also contains the Chern-
Simons term for the background gauge electromagnetic gauge
field that encodes the Hall conductivity. The theory contains
gapped fermionic matter; the partons, coupled to the SU (3)
gauge field, and the usual anyonic statistics follow from a
more detailed analysis.

To summarize this section, we have introduced a strong-
coupling expansion that justifies our procedure for taking
the “nth root of band structure.” Furthermore, we showed
that the unique physics of the fractional quantum Hall
effect permits an unusually complete understanding of the
connection between the microscopic electron model and
its partonic gauge theory description. Since the gauge the-
ory can be reliably analyzed, our construction provides a
strong argument that the microscopic electron model enters
a fractional Chern insulating phase. As an application of
this technology, we can with reasonable confidence propose
microscopic Hamiltonians that may realize non-Abelian frac-
tional Chern insulators. We now turn to the case where, for
definiteness, most of the attention has been focused—the
partially filled checkerboard model—and describe in detail the

partonic band structures and wave functions generated by our
approach.

III. CHECKERBOARD MODEL PARTON CONSTRUCTION

The desiderata for the nth root operation to provide a good
fractional Chern insulator mean-field state are the following:

(1) Gauge-invariant quantities should be invariant under the
translation invariance of the original lattice model, with the
original unit cell. This ensures that the resulting physical wave
function is translation invariant.

(2) There should be a band gap between the filled and empty
bands. The filling fraction for each parton color is the same as
for the original particles.

(3) The total Chern number of the filled bands should be
nonzero.

The final criterion (3) is crucial in order to prevent the gauge
theory from entering a confining phase.

In the previous section we described a strong-coupling
perturbation-theory calculation that narrows our search: define
a new lattice with the same connectivity structure as the
original, and define the hopping amplitude on a given link
to be the nth root of the original amplitude. This leaves a Zn

phase ambiguity on each link; choosing these phases to all be
+1 inevitably leads to partially filled parton bands; choosing
these phases to break lattice translation invariance to an order-n
subgroup produces a new band structure which can meet the
above criteria. We emphasize again that the hierarchy of scales
considered in Refs. 9–13,31 is precisely what is needed to
have a reliable strong-coupling expansion. Thus our nth root
procedure is, modulo the important discrete freedom described
above, a unique and precise mapping from the microscopic
model to the gauge theory. For the moment we proceed with a
general description keeping n arbitrary; later we will specialize
to bosons (n = 2) and fermions (n = 3).

Consider a tight-binding model defined by the following
Hamiltonian:

H = −
∑
rr ′∈E

t crr ′c
†
r cr ′ + H.c. (2)

Here c†,c denote creation and annihilation operators for
electrons or hardcore bosons; the sites r are drawn from the set
V which is a Bravais lattice plus basis. Our mean-field ansatz
for the nth root of this lattice is

Hmf = −
∑

α

∑
rr ′∈E

t c
rr ′1/nωrr ′f †

rαfr ′α + H.c. (3)

f †
α ,fα create and annihilate n colors (labelled by α)

of fermionic partons, from which the original electrons
or hardcore bosons are constructed as baryons, cr =
1
n!εα1...αn

frα1 . . . frαn
. At this point, we have not yet included

the gauge fluctuations, so the color label in the mean-field
Hamiltonian above should be treated like a flavor or band
index. We assume that the mean-field Hamiltonian respects
the full SU (n) symmetry. ωrr ′ are nth roots of unity expressing
the ambiguity in the nth root operation; they can be regarded
as variational parameters. Not all of them can be eliminated by
rephasing the parton operators frα → ωrfrα (ωr independent
of α). It is important to note that, although the graph is
the same as that of the original model, the unit cell of the
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parton mean-field Hamiltonian may be expanded relative to
the original due to the phases ωrr ′ .

For definiteness, we focus on the checkerboard model
studied by Sun et al.31,44 This is a tight-binding model with
two sites per unit cell and hopping amplitudes out to the
next-next-nearest neighbor (NNNN). Electrons in this band
structure at one-third filling (that is, one electron for every
three unit cells, or every six sites) with nearest-neighbor
repulsive interactions, exhibit an insulating state9,10,13 as do
repulsive hardcore bosons at one-half filling.12 The electron
model has been studied for system sizes up to 12 electrons on
36 unit cells13 and at various values of the hopping amplitudes
including t ′′ = 0 (“π -flux” model of Ref. 9).

These works find evidence for 1/ν degenerate ground states
on the torus (in each case, ν is the number of particles per unit
cell), which flow into each other under threading of flux. This
is precisely the finite-size signature of a fractional quantum
Hall liquid; however, we note that an electronic charge-density
wave which breaks lattice translation symmetry also shows
the same qualitative physics. Indeed, in the limit of a thin
torus, the quantum Hall fluid actually takes the form of a
one-dimensional charge density wave (CDW).45,46 However,
on a torus of aspect ratio near one, the mixings between the
three ground states are very different in the fractional Chern
insulator (FCI) and CDW cases; furthermore, the entanglement
spectra will also be very different. Following the numerical
calculations and our analytic results above, we assume the
state is a FCI and go on to provide candidate wave functions
for each of these states.

The structure of the lattice is indicated in Fig. 4 (see Fig. 1
for a different view). We now further specialize our notation
to the checkerboard case by explicitly distinguishing the two
sublattices in V . More explicitly, define Fourier modes for the
a and b sublattices (empty and filled circles in Fig. 4):

ak = 1√
Na

∑
xa

eikxa cxa
, bk = 1√

Nb

∑
xb

eikxb cxb
, (4)

where Na and Nb are the number of sites in the a and
b sublattices. The Hamiltonian, which depends on four
parameters t,t ′,t ′′,φ, is H = ∑

k∈BZ h2N + h3N + h4N , with

h2N = −teiϕ
[
b
†
kake

i
2 kx+ky + e

i
2 −kx+ky

× a
†
kbke

i
2 kx−ky + e

i
2 −kx+ky

] + H.c.,

FIG. 4. (Color online) The checkerboard flat band model and its
cube root. The original unit cell is shaded in green; the 3×-enlarged
unit cell is less shaded. The arrows indicate the direction in which
the hopping amplitude is eiϕ . t ′

1 (t ′
2) is the NNN amplitude associated

with the solid (dashed) lines.

h3N = −a
†
kakt

′
1e

ikx + t ′2e
iky − b

†
kbkt

′
2e

ikx + t ′1e
iky ,

h4N = −t ′′a†
kak + b

†
kbke

i(kx+ky ) + ei(−kx+ky ). (5)

Because the models we consider have fractional filling
for the microscopic bosons and electrons, we must enlarge
the unit cell of the partons to achieve a gap in the single-
particle parton spectrum. However, we wish to ensure that the
original translation symmetry for gauge invariant variables
is preserved (see Ref. 27 for a thorough description of
this requirement and its relation to the projective symmetry
group). As an aside, we note that this is not a fundamental
requirement since explicit translation symmetry breaking and
fractionalization can coexist, but, because of its simplicity and
relevance to recent numerical efforts, we choose to isolate
the fractionalization physics. Thus we assign the discrete
phases ωrr ′ in a way that doubles (bosons, n = 2) or triples
(electrons, n = 3) the unit cell. We will label the subcells
within the enlarged unit cell using script letters a,b,.... Our
rule for assigning the phases ωrr ′ is as follows: when leaving
the ath subcell of the enlarged unit cell, particles acquire a
phase ωa

n , where ωn ≡ e2πi/n. This has the interpretation as
the spontaneous development of a magnetic field of the slave
gauge field, specifically, a field in the center of the gauge group.
More explicitly, define clock matrices in the enlarged-unit-cell
basis a,b = 1..n:

(α)ab ≡ eiα 2πa

n δab. (6)

We first rewrite the original Hamiltonian in the new basis, so
far a purely cosmetic transformation. The original Hamiltonian
is now a sum over the reduced Brillouin zone BZ′:

H =
∑
k∈BZ′

a†,b†ahab(k)a,bT
b . (7)

Now we take the nth root. Our definition of the nth root tight-
binding model consists of replacing h in Eq. (7) by

hnth root = h2N · (α) + h3N · (α′) + h4N · (α′′). (8)

The parameters �α = (α,α′,α′′) run from 1 to n and represent
independent choices of nth root for each type of hopping. The
resulting band structure for n = 2 and one choice of αs is
shown in Fig. 5.

As we have repeatedly stated, the trick is to have the
quadratic parton Hamiltonian break the translation group up
to gauge transformations. The simplest such Hamiltonians,
realized in our examples below, are proportional to the identity
on the color indices. We may make use of discrete fluxes to
obtain gapped topological bands, but these lie in the center of
SU (n) and do not break the parton gauge group. A detailed
analysis shows that in such cases translation invariance for
the electrons requires the same flux (mod 2π ) through every
equivalent loop in the enlarged unit cell. A simple way to see
this is to observe that the electron interactions, as generated by
the strong-coupling expansion, will not be translation invariant
without this constraint.

More generally, pick a parton Hamiltonian H1 that we like,
which gives nice gapped topological bands, but whose fluxes
do not preserve the original unit cell. Define H2 (H3) to be
the Hamiltonian obtained by translating all the hoppings by
one (two) original unit cell of the electrons. Now let the
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FIG. 5. (Color online) Left: the topological flat bands found in the checkerboard model by Ref. 31, at the optimal hopping amplitudes.
Energy is measured in units of the NN amplitude t , and wave vectors are measured in units of the inverse NNN lattice spacing. The
Hamiltonian is the one used in the numerical work,9–13 which is minus that studied in Ref. 31. Right: the band structure for a square root
of the checkerboard flat band model. Each parton hopping amplitude is the square root of the optimal-flatness values chosen in Ref. 31:

t = 1, t ′
1 =

√
1

2+√
2
, t ′

2 = t ′
1e

iπ
2 , t ′′ = i

√
1

2+2
√

2
, ϕ = 5π/8, �α = (1,1,0), �θ = (0,1,1,1). The discrete parameter �θ is explained in Appendix C.

The Chern number of the bottom band is −1.

motion of the blue parton be governed by H1, let red move
according to H2, and let green move according to H3. The
electron wave function is the product of the wave functions:
�(z) = sl1(z)sl2(z)sl3(z). By construction, translation by one
original unit cell T acts by T sl1 = sl2,T sl2 = sl3,T sl3 = sl1
and therefore T � = �.

More formally, our new Hamiltonian can be described
as follows. Our old Hamiltonian was Hold = ∑

α=1..3 h1c
†
αcα

where α is the color index. The new Hamiltonian is Hnew =∑
α hαc†αcα . The only catch is that our new Hamiltonian no

longer preserves the whole SU (3) parton gauge group. The
unbroken gauge group is

G = {U ∈ SU (3) such that Hnew is preserved under

cα → Uβ
α cβ}.

Using this definition, the subgroup of SU (3) that preserves
the new Hamiltonian is U (1) × U (1). This group acts by
various diagonal phase rotations of the parton colors. The
action of translation by one original-unit cell, accompanied
by a permutation of the colors [the Weyl group of SU (3)] is
a projective global symmetry. The resulting Chern-Simons
theory is U (1)4 × U (1)6, which has the same topological
properties as the full SU (3) theory.

A. Bosons at half filling

Since the hardcore bosons are at half filling, and the boson
creation operator is b† = f

†
1 f

†
2 , each color of parton is also

at half filling. Following the procedure outlined above, we
find band structures like the one in Fig. 5 where the lowest
band is separated by an energy gap from the other four. The
mean-field ground state for each parton species is then a Slater
determinant of the states in the lowest band. The candidate
boson ground-state wave function is the projection of this
state onto the gauge singlet sector, a procedure motivated by
the strong-coupling limit in the gauge theory. In this case,
where the whole SU(2) gauge symmetry is preserved by the
mean-field parton Hamiltonian, the boson wave function is just

the square of the Slater determinant. We see that it naturally
incorporates both the physics of the Chern band, since the
partons have a Chern number, as well as the physics of strong
correlation, since the boson wave function, as the square of a
fermion wave function, forbids the bosons from approaching
each other.

The sum of the Chern numbers of the filled bands for each
parton color is one. In the continuum limit they therefore
produce a Chern-Simons term for the SU(2) gauge field with
coefficient k = 1. The effective field theory is SU(2) level
1 Chern-Simons gauge theory, which is related by level-rank
duality to U (1) level 2. This state exhibits charge-1/2 quasipar-
ticles with anyonic statistics. Furthermore, each parton color
has a Hall conductivity of e

2
2 1

h
, and with two colors, we have

a total Hall conductivity of 1
2

e2

h
. More generally, an n color

parton model will have a Hall conductivity of 1
n

e2

h
for the

Abelian phases considered here.
In the band structure shown in Fig. 5 we have followed

very literally the leading-order result of the strong-coupling
expansion. If we permit ourselves to treat the absolute values
of the parton hopping amplitudes as variational parameters
(the phases are sacred), we can achieve flatter parton bands
with larger band gaps. This freedom should be kept in mind in
future variational studies using these parton wave functions,
especially since the parton band structure is only directly
meaningful at weak gauge coupling.

B. Fermions at one-third filling

A very similar story is obtained for the checkerboard
flatband model filled with a (spinless) electron for every
six sites. Following the procedure detailed in the previous
section with n = 3, we construct a family of cube roots of
the checkerboard tight-binding model, parameterized by the
discrete phases e2πi �α/n. A favorable result is shown in Fig. 6.
The cube of the Slater determinant of the lowest band is
our candidate wave function. As before, the wave function
incorporates both strong correlation and Chern band effects. It
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FIG. 6. (Color online) The band structure for a cube root of the
checkerboard flat band model. Each parton hopping amplitude is
the square root of the optimal values chosen in Ref. 31: t = 1,

t ′
1 = 3

√
1

2+√
2
, t ′

2 = t ′
1e

− πi
3 , t ′′ = 3

√
1

2+2
√

2
, ϕ = π/12, �α = (1,1,0).

The Chern numbers of these bands, from bottom to top, are
(1,0,−1,0,0,0).

is precisely analogous to Laughlin’s model wave function for
ν = 1/3 (which is also the cube of a Slater determinant).

IV. CONCLUSIONS

We have provided model wave functions for fractional
Chern insulators using the parton approach. We also analyzed
the parton gauge theory in a strong-coupling expansion
and obtained a mapping to a microscopic electron model.
Furthermore, we argued that both sides of this mapping
are under control, based on a combination of numerical,
experimental (in equivalent fractional quantum Hall systems),
and analytical results. Thus we have a rather special situation
where the parton approach to fractionalized phases can reliably
be used, even at the lattice scale.

We find it amusing to note that the construction we have
described is a cognate of various mechanisms for fractionaliza-
tions of momentum47 and D-brane charge quantum numbers48

in string theory. Like the topology of band structure, the latter
enjoys a K-theory classification.49

In the future, we believe it would be very interesting to
study the gauge theory numerically, as well as to compare our
wave functions to those produced in the recent numerical cal-
culations. It would also be interesting to find a Hamiltonian for
which our state is the exact ground state, either by pushing the
strong-coupling expansion or by using an analog of Haldane’s
pseudopotentials. We are currently pursuing lattice models
that might realize non-Abelian fractional Chern insulators,
and we anticipate that our strong-coupling expansion will be
useful in this endeavor. Finally, it would be quite interesting
to propose analogous realistic models in three dimensions that
might realize fractional topological insulators. This can be
achieved as shown in Ref. 50 by spontaneously breaking the
gauge symmetry in the mean-field parton Hamiltonian. We can
also consider models in 2 + 1 dimensions that break the SU(n)

gauge group down to some subgroup, e.g., a combination
of U(1)s or a discrete group such as Zn. These models are
realized at the mean-field level by parton Hamiltonians in
which the different colors experience different hoppings, and,
in the low-energy limit, they may be described by Chern-
Simons-Higgs theories. However, as we indicated above, some
care must be taken with lattice symmetries in such broken
phases.

More generally, our lattice gauge theory and strong-
coupling expansion provide powerful tools to address out-
standing questions. We give three examples. First, it is
experimental lore that in realistic materials the gap separating
a flat electron band from other bands will be on the order
of the spin-orbit coupling. Since interactions are likely to be
at the Coulomb scale, it may be unlikely that the interaction
energy is less than the electronic band gap. This brings in the
danger of mixing with levels with different Chern numbers,
potentially complicating the physics. From the perspective of
our gauge theory, this situation can be modeled by adjusting
the bare baryon-baryon interactions. Although we have argued
that very large baryon interactions will destabilize the state,
our model is not obviously unstable to interactions on the
order of the electron gap. Thus we can provide insight into this
problem from a very different perspective. The story is only
slightly complicated by the fact that the gap to quasiparticles
in the gauge theory should not be set by tf but by some
much smaller renormalized energy scale (one commensurate
with electronic energy scales). Second, our mapping from the
parton gauge theory to the electron model also suggests that
we could have models where the bare electron band does not
have a Chern number (despite breaking time reversal), and yet
the partons remain in gapped Chern bands. Third, our mapping
naturally provides a way to take a parton band structure that
realizes a Chern number two band and guess a microscopic
electron model. This case is interesting because an SU (3) level
2 topological phase is non-Abelian and universal for quantum
computation.

Since it is of particular interest, we comment a bit more
on our progress toward non-Abelian states. Regarding the
checkerboard model, while individual bands occasionally have
Chern numbers with absolute value larger than one, we have
not found choices of �α (or the other order-n ambiguities in
the nth root procedure) that lead to band structures where the
sum of the Chern numbers of the lowest bands adds up to
a number with absolute value larger than one. However, the
model studied by Hatsugai and Kohmoto7,51 can be viewed as
a cube root of the square lattice with NNN hoppings which
spontaneously breaks time-reversal symmetry. In a range of
parameters, the lowest band has Chern number 2. This suggests
that (spinless) electrons on this square lattice at one-third
filling and repulsive interactions will form a non-Abelian
FQH state. We are in the process of investigating this claim
further.

Note added in proof. While this paper was in preparation,
we learned of a paper by Lu and Ran27 which also develops
a parton construction for fractional Chern insulators. The
overlap between their work and ours is significant; our
discussion of the strong-coupling expansion is a substantial
difference. Their work is a general discussion of a variety
of parton wave functions including time-reversal symmetric
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insulators, while we focus on the story of the strong-coupling
expansion and the case of fractional Chern insulators.
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APPENDIX A: LATTICE GAUGE THEORY

Here we give a very brief review of lattice gauge theory
using our notation above. In general the link variables Vrr ′

represent abstract group elements and each such link is asso-
ciated with a Hilbert space {|Vrr ′ 〉} labeled by these elements.
If the group is discrete then this is a finite dimensional
space but in general the space is infinite dimensional. An
important role is played by left multiplication by a group
element W denoted LW and acting as LW |V 〉 = |WV 〉. In the
case of a Lie group we may consider infinitesimal elements
W = 1 + wAT A where T A denote the abstract generators of
the associated Lie algebra. This leads to a an infinitesimal
form for the operator LW = 1 + iwAEA where EA are the
electric-field variables introduced earlier. Thus we see that the
EA are conjugate variables in the usual sense that they generate
motion within the group manifold. While the operators EA act
directly on quantum states, the variable V does not since it
is only an abstract group element. Instead, we must consider
derived quantities such as trR(V ), the trace of the V in the
irreducible unitary representation R. This is indeed an operator
on the physical Hilbert space. The elements of the group in
a particular representation can also act on a Hilbert space
carrying that representation.

In a slight abuse of notation, the variables Vrr ′ in the
Hamiltonian in Sec. II are already in a particular represen-
tation, namely, the fundamental of SU (3). For example, the
trace in the magnetic-field term is a trace in the fundamental
representation, and similarly, the matrix elements in the parton
kinetic term are also in the fundamental. Let us justify our
earlier claim that trR(V ) acts like a ladder operator. We use the
symbol χR(W ) to represent the character, the numerical value
of the trace of element W , which is to be distinguished from
the operator trR(V ). Indeed, we have

trR(V )|W 〉 = χR(W )|W 〉. (A1)

Consider a state given by

|R〉 =
∫

dW trR(V )|W 〉 =
∫

dWχR(W )|W 〉, (A2)

where dW represents integration with respect to the Haar
measure on the group. The orthogonality of characters∫

dW (χR(W ))∗χR′(W ) = δRR′ implies the relation

〈R|R′〉 = δRR′ . (A3)

The action of trR(V ) on |R′〉 is

trR(V )
∫

dWχR′ (W )|W 〉 =
∫

dWχR⊗R′ (W )|W 〉, (A4)

which can be rewritten

=
∑

R′′∈R⊗R′

∫
dWχR′′ (W )|W 〉. (A5)

When we act on |R′〉 with trR(V ) we generate all the states
|R′′〉 appearing in the tensor product of R and R′. In particular,
the trace in the fundamental acts like an elementary ladder
operator. Since the states |R〉 are eigenstates of the Casimir
operator E2 = EAEA, the operator trR(V ) thus raises or lowers
the corresponding eigenvalue of E2.

The simplest example of this machinery is provided by U (1)
gauge theory. The representations R are labeled by an integer n

called the charge. Furthermore, all irreducible representations
are one dimensional, so the trace in trR(V ) is actually unneces-
sary. We have trRn

(V ) = einθ in terms of the elementary rotor
variable eiθ parameterizing the group manifold and which is
the analog of the fundamental representation discussed above.
The quadratic Casimir E2 is nothing but −∂2

θ with eigenvalues
n2 given by the charges or equivalently the representations.
The states associated to a particular representation are nothing
but the usual states of definite angular momentum in the
rotor language. As our discussion above indicates, the proper
generalization of these states to non-Abelian groups makes use
of characters in an essential way. The basic message, however,
is the same. We have states labeled by representations of the
group, with “bigger” representations costing more in terms of
electric-field energy, and operators playing the role of magnetic
fields that move us between different states of definite electric
field.

APPENDIX B: PERFECTLY FLAT CHERN BANDS

It is possible to have a perfectly flat band with a
nonzero Chern number provided we relax the assumption
of finite-range interactions. Consider for simplicity a gapped
Hamiltonian H with two bands with opposite and nonzero
Chern numbers. Our construction will also work for more
complicated Hamiltonians. Let P be the projector onto
the lowest band. The Hamiltonian Hflat = H − PHP has a
perfectly flat lower band with the same Chern number as
before. The question we must answer is, how nonlocal is the
operator P ?

Consider a function f (t) whose fourier transform f̃ (ω) has
the property that f̃ = 1 for ω in the lower band and f̃ = 0 for
ω in the upper band. f is otherwise arbitrary, although we will
want it to decay as fast as possible at large t . Since we require
that the Fourier transform of f vanishes outside a compact
domain, f cannot decay exponentially fast in t (otherwise the
Fourier transform would be analytic in a strip). However, it can
decay faster than any polynomial and nearly exponentially.

Now we form the operator

P̃ =
∫ ∞

−∞
dtf (t)eiHt =

∑
En

f̃ (En)|En〉〈En|. (B1)
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However, this operator is nothing but the projector P because
of the properties of f̃ . We are now in a position to evaluate
〈r|P |r ′〉 where rr ′ are positions on the lattice. The key point
is that, although we integrate over all times, long times receive
an extremely small weighting. At early times, the amplitude
to go from r ′ to r is very small because the particle has not
had a chance to move. At late times, the weighting factor
f is very small. Thus there is some intermediate time that
dominates the matrix element, and the matrix element can be
quite small if the separation between r and r ′ is large. The char-
acteristic time scale in f is the inverse gap 	−1. Assume for
simplicity that the propagation under H is ballistic with speed
v. Then the transition amplitude is very small for |r − r ′| � vt

and the weight factor is very small if 	t � 1. Combining these
two facts, we expect a sharp decay in the matrix element of P

once |r − r ′| � v/	. This decay will be almost exponential
as described above.

Assembling everything together, the operator PHP only
delocalizes the terms in H by a size of roughly v/	 up to
corrections that are almost exponentially small. The hopping
terms in PHP will not be of strictly finite range, but they
will decay very rapidly. For more information about these
techniques, see Ref. 52. Of course, we have not proved that
there is no finite range model with a perfectly flat Chern band.

Regarding the gauge theory on a lattice with such long-
range hoppings, we are free to abandon our original procedure
of associating a new SU (n) link variable with every hopping.
Instead, we may simply stretch a Wilson line built of existing
gauge variables to connect the distant sites. This only modifies
our strong-coupling calculation by a factor of 1/x where x is
the lattice length of the Wilson line. However, this modification
may be reincorporated into the long-range hoppings without
affecting their super-polynomial decay. Gauge kinetic terms
involving these long Wilson lines will be generated upon
integrating out the fermions, but we may expect them to have

a suitably small prefactor. We can find no serious conceptual
issues with the gauge theory defined with such long-range
hoppings, but we are aware that we cannot rule out subtle
pathologies. The fact that the corresponding electron model
appears to reliably enter a fractionalized phase described
by a conventional low-energy gauge theory suggests that
the inclusion of these long-range hoppings is not a serious
modification of the physics.

APPENDIX C: EXPLICIT nth ROOT HAMILTONIANS

Here we give more explicit expressions for the parton
hopping matrices in the checkerboard lattice models. In the
following, the parton gauge indices are omitted because the
Hamiltonians we describe are proportional to the identity
matrix in that space. It will be convenient to define k1 ≡
kx + ky and k2 ≡ −kx + ky . In each case, the tight-binding
Hamiltonian is a sum of nearest-neighbor (NN), next-nearest-
neighbor (NNN), and next-next-nearest-neighbor (NNNN)
hopping terms. For reference, the original checkerboard
model31 is

H = −
∑
BZ

(a†,b†)h2N + h3N + h4N (a,b)T + H.c., (C1)

where

h2N = teiφ

⎛
⎝ 0 ei

k2
2 + e−i

k2
2

ei
k1
2 + e−i

k2
2 0

⎞
⎠ (C2)

h3N = eiky

(
t ′2 0

0 t ′1

)
+ eikx

(
t ′1 0

0 t ′2

)
(C3)

h4N = t ′′(eik1 + eik2 )

(
1 0

0 1

)
. (C4)

A. Square root of the (upside down) checkerboard model

To begin, define building-block matrices in the basis (a1,b1,a2,b2), where a = 1,2 here is the subcell index:

h2N = t

⎛
⎜⎜⎜⎜⎜⎝

0 ei( k2
2 +φ) 0 0

ei(φ+ k1
2 ) 0 0 0

0 ei(− k2
2 +φ+πθ1) + ei(−φ+ k1

2 +πθ2) 0 ei( k2
2 +φ)

ei(φ− k1
2 +πθ3) + ei(−φ+ k2

2 +πθ4) 0 ei( k1
2 +φ) 0

⎞
⎟⎟⎟⎟⎟⎠ (C5)

h3N = eiky

⎛
⎜⎜⎜⎝

t ′2 0 0 0

0 t ′1 0 0

0 0 t ′2 0

0 0 0 t ′1

⎞
⎟⎟⎟⎠ + eikx

⎛
⎜⎜⎜⎝

0 0 t ′1 0

0 0 0 t ′2
t ′1 0 0 0

0 t ′2 0 0

⎞
⎟⎟⎟⎠ (C6)

h4N = t ′′(eik1 + eik2 )

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎠ (C7)
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For n = 2, the clock matrices discussed in Eq. (6) take the explicit form

(α) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 eiαπ 0

0 0 0 eiαπ

⎞
⎟⎟⎟⎠ . (C8)

Then, the general Hamiltonian for the square root of the checkerboard model is

H = −
∑
BZ

(a†
1,b

†
1,a

†
2,b

†
2)(�h · �)(a1,b1,a2,b2)T + H.c., with �h ≡ (h2N,h3N,h4N ), � ≡ ((α),(α′),(α′′)). (C9)

The parameters α,α′,α′′ and θ1,2,3,4 take values 1..n = 2 and parametrize the ambiguities in taking the square root of each hopping
amplitude. We could introduce analogs of the θ parameters for the NNN and NNNN hoppings as well; we have not yet explored
this possibility.

The parameters used in Fig. 5 are

t = 1, t ′1 =
√

1

2 + √
2
, t ′2 = t ′1e

iπ
2 , t ′′ = i

√
1

2 + 2
√

2
, φ = 5π

8
, �α = (1,1,0), �θ = (0,1,1,1). (C10)

B. Cube root of the checkerboard model

Similarly, the cube root tight-binding model is constructed as follows:

h2N = teiφ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 e
ik2
2 0 0 0 e

−ik2
2

e
ik1
2 0 e

−ik1
2 0 0 0

0 e
−ik2

2 0 e
ik2
2 0 0

0 0 e
ik1
2 0 e

−ik1
2 0

0 0 0 e
−ik2

2 0 e
ik2
2

e
−ik1

2 0 0 0 e
ik1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C11)

h3N = eiky

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

t ′2 0 0 0 0 0

0 t ′1 0 0 0 0

0 0 t ′2 0 0 0

0 0 0 t ′1 0 0

0 0 0 0 t ′2 0

0 0 0 0 0 t ′1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ eikx

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 t ′1 0

0 0 0 0 0 t ′2
t ′1 0 0 0 0 0

0 t ′2 0 0 0 0

0 0 t ′1 0 0 0

0 0 0 t ′2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C12)

h4N = t ′′(eik1 + e−ik2 )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C13)

We introduce the  matrices similarly:

(α,β) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 e
i2πα

3 0 0 0

0 0 0 e
i2πα

3 0 0

0 0 0 0 e
i2πβ

3 0

0 0 0 0 0 e
i2πβ

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C14)

H = +
∑
BZ

(a†
1,b

†
1,a

†
2,b

†
2,a

†
3,b

†
3)(�h · �)(a1,b1,a2,b2,a3,b3)T + H.c., (C15)
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with �h and � defined as above. This notation is slightly more general than that used in the body of the paper; the set of parameters
we used for the cube root in Fig. 6 translates to

t = 1, t ′1 = 3

√
1

2 + √
2
, t ′2 = t ′1e

−iπ
3 , t ′′ = 3

√
1

2 + 2
√

2
, φ = π

12
, �α = (1,1,0), �β = (2,2,0). (C16)

where �α ≡ (α,α′,α′′), �β ≡ (β,β ′,β ′′). Note that the overall sign in Eq. (C15) accounts for the sign-reversal relative to Ref. 31
which puts the flat band on the bottom, using the key equation (−1)3 = −1.
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