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Atomic forces at finite magnetic temperatures: Phonons in paramagnetic iron
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A density-functional theory (DFT) based scheme to calculate effective forces for magnetic materials at finite
temperatures is proposed. The approach is based on a coarse graining procedure in the magnetic configuration
space. As application we calculate phonon spectra of paramagnetic bcc and fcc iron and show good agreement
with experimental data.
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Accurate and efficient computational schemes for the
theoretical prediction of parameter-free atomic forces and
force constants are an essential prerequisite for many ap-
plications within first-principles materials design, such as
lattice vibrations (phonon spectra, vibronic entropies, phase
transitions),1–13 diffusion processes (vacancies, impurities,
etc.),14 strain fields (e.g., in grain boundaries), or even
fundamental methods such as molecular dynamics (MD)
simulations.15–17

Although nowadays powerful tools exist to compute and
extract forces and force constants (direct force constant
approach/linear-response theory,18 ab initio MD19), current
approaches are often not suited for describing magnetic
materials at finite temperatures, i.e., under conditions away
from the magnetic ground state. A prominent example is
the paramagnetic regime. Due to the lack of alternatives,
current theoretical approaches for, e.g., vibronic contributions
of magnetic materials such as bcc iron, rely on calculations
performed in the magnetic ground state (e.g., the ferromag-
netically saturated state),13,20 or take the missing data from
experiment.7 Approaches going beyond these simple approx-
imations employ fixed-spin calculations6,21 or GGA + U ,5

but still employ magnetically fully ordered configurations.
Although it is known that magnetism can have a substantial
impact on vibrational properties,22,23 the basic fundamentals
are still poorly understood.5,8,23

A state-of-the-art first-principles approach to study mag-
netically disordered systems is the coherent potential approx-
imation (CPA) (a recent review is given, e.g., in Ref. 24).
In combination with the so-called disordered local moment
(DLM) model, the magnetically disordered system is modeled
as an effective medium of spin-up and spin-down species.25

An inherent limitation of the CPA treatment is that a direct
evaluation of forces and force constants is not possible due the
single-site nature of this approach.24 This seriously limits the
approach when applied to systems for which relaxation effects
become important.

Recently, Shang et al.26 proposed for magnetic systems at
elevated temperatures an approach to determine macroscopic
thermodynamic properties such as free energies and specific-
heat capacities. In their approach a Boltzmann statistical aver-
aging of free energies of individual magnetic microstates, such
as ferromagnetic or antiferromagnetic states, is performed.
Individual force and phonon calculations are performed
for each microstate independently. This approach implicitly
assumes that in each microstate “fast” atoms move in a “fixed”

magnetic configuration. This assumption does not hold at
high temperatures, where the magnitude of typical magnetic
excitations is higher in energy than vibronic excitations,
implying a faster time scale for the magnetic degree of
freedom.11,12,27 A very recent theoretical approach by Leonov
et al. which takes magnetic correlations in force constant
calculations within the framework of dynamical mean-field
theory into account, provides promising preliminary results for
fcc iron.28 This method is, however, still under development.

In this paper we propose an approach that overcomes
the limitations of current theoretical treatments and that
can be easily implemented in existing DFT codes. We start
from the magnetic Born-Oppenheimer (BO) energy surface
EBO({ �RI },�σ ) within constrained spin density-functional the-
ory, which denotes the unique total energy for a given set
of atomic coordinates { �RI } and local magnetic moments
�σ = {σI }. As a first step we discretize and coarse grain the
(principally infinite) configurational spin space and define a
spin space averaged (SSA) free-energy energy as

FSSA
{ �RI } = −kBT ln Z, (1)

where Z = ∑
m exp[−EBO({ �RI },�σm)/kBT ] denotes the mag-

netic partition sum and m indexes the individual magnetic
configurations. Note that the SSA free energy is not equivalent
to the full free energy (which would have to include, e.g.,
vibronic excitations).

A major advantage of this formulation is that atomic forces
on an atom J are directly accessible as gradients on the SSA
free energy BO surface:

�F SSA
J,{ �RI } = −

∂FSSA
{ �RI }

∂RJ

= −
∑

m

pm

∂EBO({ �RI },�σm)

∂RJ

(2)

=
∑

m

pm
�F HF
J ({ �RI },�σm). (3)

Here, �F HF
J ({ �RI },�σm) are the Hellmann-Feynman forces

for an individual magnetic configuration �σm and
pm = exp[−EBO({ �RI },�σm)/kBT ]/Z denotes the Boltzmann
weights. The forces for each magnetic state can be regarded
as fluctuations around the SSA forces

�F HF
J ({ �RI },�σm) = �F SSA

J,{ �RI } + δ �F HF
J ({ �RI },�σm). (4)

The impact of the fluctuation term δ �F HF
J ({ �RI },�σm) on the

SSA forces �F SSA
J,{ �RI } is directly related to the time scale of
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FIG. 1. (Color online) Sketch of the randomized magnetic SQS. The forces are indicated by orange arrows.

magnetic and atomic degrees of freedom. For the common
case that magnetic moment oscillations are fast compared
to atomic oscillations the magnetic induced fluctuations
δ �F HF

J ({ �RI },�σm) average out. The actual forces experienced by
the atoms will thus be the effective averaged �F SSA

J,{ �RI } rather than

�F HF
J ({ �RI },�σm). The above formulation is general and allows

one to compute the atomic forces by fully including finite
temperature magnetism.

In order to test the reliability and applicability of the
proposed approach, we apply it to the hitherto unsolved
problem of computing phonons in the paramagnetic (PM)
regime. As a material system we chose one of the best studied
magnetic materials, pure iron. Although vibronic excitations
in iron have been studied intensively both experimentally
as well as theoretically for decades,1,5,6,8,11,21,22 many basic
questions still remain open. In particular, the impact of
magnetism on lattice vibrations and phase stability is poorly
understood up to now.5,8,11,22,29 In the following we consider
the paramagnetic β (bcc) and γ (fcc) phases of iron. For these
high-temperature phases a long-time question is the source of
stabilization, i.e., whether vibronic (phonons)22 or magnetic
excitations (magnons)29 drive the phase transition and stabilize
the high-temperature fcc phase.

In the high-temperature paramagnetic state the local mag-
netic moments are randomly distributed over the lattice as
sketched in Fig. 1 and fluctuate in size and direction. Since
at present DFT implementations are limited in computing
accurate forces for constrained noncollinear magnetic struc-
tures, we simplify the modeling of the paramagnetic state
by considering collinearly disordered magnetic moments. The
SSA procedure is therefore performed employing a sufficiently
large set of such randomly disordered collinear configurations
{�σm}. These configurations are constructed using the concept
of special quasirandom structures (SQSs) as obtained from the
ATAT package.30 We note, however, that the proposed scheme
itself is very general and would, in principle, allow the incor-
poration of noncollinear structures, if technically realizable.

To compute the phonon spectra we employ the direct
force constant method. Specifically, we diagonalize the force
constant matrix φαβ := −∂F HF

α /∂uβ created by the individual
displacements uβ as sketched by the blue atoms in Fig. 1.
The indices α and β go over all degrees of freedom of the
atomic system. For a nonmagnetic (NM) calculation, the force
constant matrix satisfies the underlying lattice symmetries S

(point and translational symmetries), i.e.,

φNM
αβ =

∑

γ δ

Sβ(λ)δ
αγ φNM

γ δ , (5)

where λ numerates all symmetry operators S providing
symmetry equivalent atomic force constants.

It is crucial to note that switching on magnetism and
considering an individual magnetic configuration the above
symmetry will be destroyed. The resulting force constant
matrix φαβ(�σm) therefore no longer has the symmetry of
an fcc or bcc crystal. As a consequence, diagonalization
of the corresponding dynamical matrix results in unstable
(imaginary) phonon modes. Applying the SSA scheme restores
the full atomic symmetry in the force constant matrix, i.e., φSSA

αβ

has the same symmetry as φnm
αβ and thus obeys Eq. (5). This

observation can be used to derive the following equivalence
between symmetrization and spin averaging:

φ
sym
αβ =

∑

λ

∑

γ δ

Sβ(λ)δ
αγ φγ δ(�σm0 ) (6)

=
∑

λ

φαβ(�σλ(m0)) = φSSA
αβ , (7)

where �σλ(m0) denotes the magnetic configuration after applying
the symmetry operation. The above equivalence allows one to
perform the full SSA using a single magnetic configuration
�σm0 provided that (i) the number of symmetry operations
λ(m0) is sufficiently large and (ii) �σm0 is constructed such
that it resembles a large number of locally inequivalent
magnetic configurations. Note that due to the fact that all
displacements are computed in the same supercell, the total
energies entering the Boltzmann factor in Eq. (1) are identical
(degenerate), i.e., all magnetic configurations have the same
weight. If the number of symmetry operations λ is not
sufficient to obtain converged SSA force constants, the above
formalism can be straightforwardly extended by replacing
the single initial magnetic configuration �σm0 by a set of �σmi

where the index i marks symmetry inequivalent magnetic
configurations.

Before applying our approach, we first show results
obtained from two common treatments for phonon spectra
of paramagnetic bcc and fcc iron. These are based on ferro-
magnetic (FM) and NM calculations. All DFT calculations
in the following are performed using the VASP32 package
employing the projector augmented-wave method33 within the
generalized gradient approximation (Perdew-Burke-Ernzerhof
parametrization34).35

The first approximation (FM) assumes that even at high
temperatures, where the magnetic order is destroyed, it is
still possible to use the magnetic ground state, e.g., the
ferromagnetically saturated state for bcc iron.9,11,13,20 The
theoretical calculations are carried out at the experimental
volume at the considered temperatures.36 This allows one to
test the performance and applicability of our approach. The
ultimate goal is of course a fully theoretical determination of
the equilibrium lattice constant at the considered temperature.
The proposed SSA scheme itself is a mandatory step in this
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FIG. 2. (Color online) Phonon spectra for paramagnetic bcc and
fcc iron in comparison with experimental data (Refs. 22,31). In
addition the results obtained from a ferromagnetic (FM) and a
nonmagnetic (NM) calculation are shown.

direction, since vibronic contributions are the basic driving
force of volume expansion. In fcc iron interesting magne-
tovolume effects8,37,38 are observed. These are particularly
prominent at T = 0 K and result, e.g., in a highly sensitive
dependence of magnetic interactions on volume38 or in a strong
dependence of elastic properties on the magnetic state.37 In
the high-temperature paramagnetic limit, which is in the focus
of the present paper, such effects are likely to be averaged
out. This is in agreement with recent DMFT calculations by
Leonov et al.,28 where paramagnetic phonons at a lower lattice
constant are computed and found to be in good agreement
with our results. In Fig. 2 the results at high temperature
(Texp = 1173 and 1428 K) obtained for a FM calculation for
bcc and fcc iron (orange lines) are shown in comparison with
experimental data. Both temperatures are above the critical
magnetic temperature of bcc and fcc iron, respectively. In the
case of bcc iron, the longitudinal branches are in reasonable
agreement with experiment. However, the experimentally
observed pronounced softening at high temperatures, in
particular of the transversal modes (T) between H and P as
well as between 
 and N are not reproduced. The softening
of the latter modes is directly related to a strong decrease
in the elastic constants C ′ and C11. These elastic constants
are directly involved in the structural transformation path
(Bain path) from bcc to fcc, and, e.g., critical to understand
mechanical failure of ferritic steels at high T .

The difference between experiment and this level of theory
is even more pronounced for fcc iron.39 Here the calculations
provide imaginary phonon frequencies for the modes between

 and X, and 
 and L consistent with structural instability of
FM fcc iron with respect to tetragonal deformation.38,40

The second approximation to approximate the param-
agnetic states is to perform NM (i.e., non-spin-polarized)
calculations. This approximation is based on the Stoner
theory of magnetism.41 According to this model, magnetic
moments remain ferromagnetically ordered for the whole
temperature range 0 < T < TC . With increasing temperature
the magnitude of the local moments decreases and finally
vanishes for T � TC . To elucidate how such an approach
performs in the case of iron we show the results of NM
calculations in Fig. 2 (gray lines). The results are very similar
to recent calculations employing ultrasoft pseudopotentials.6,21

For both bcc and fcc iron, unstable (imaginary) phonon modes
appear. For bcc iron, the softening appears around the 
 point
consistent with a negative shear elastic constant (C ′).40
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FIG. 3. (Color online) Left panels: Convergence of the mean
value of the force on the displaced atom F
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and its nearest neighbor
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Ann
. Right panels: Density of states of force constants due to

individual displacements.

Summarizing, neither of the two existing approaches, i.e.,
approximating the PM state by FM or NM calculations,
provides an accurate description of the vibrational frequencies.

As a first step to test our proposed approach we set up
a 16 atomic spin SQS for bcc iron (sketched in Fig. 1)
with the atoms in the ideal bcc positions. For this fixed
spin configuration we obtain nonvanishing atomic forces, i.e.,
the magnetically disordered structure is unstable at T = 0 K
and atomic relaxation would destroy the bcc symmetry. In a
second step we compute the atomic forces for all inequivalent
displacements. After employing the SSA procedure [Eq. (7)],
we obtain the force on the displaced atoms as well as the force
on its nearest neighbor (Fig. 3, upper panel). The individual
forces �F HF

J,�(�σλ(m0)) [Eq. (4)] fluctuate around the mean SSA

value �F SSA
J,� as can be also seen in the force density of states

(right panel in Fig. 3). � denotes the change of the atomic
positions from the ideal to the displaced configuration used
in the force calculation. We can thus conclude that a single
SQS provides a sufficient set of magnetic configurations if the
lattice symmetries are employed.

From the effective force constants the phonon dispersions
for bcc iron are computed and shown in Fig. 2 (left panel, blue
line). First, it can be seen that no imaginary phonon frequencies
occur in contrast to the nonmagnetic calculations. The overall
dispersions are shifted to lower energies as compared to
the ferromagnetic solution and significantly improve the
agreement with experiment. In particular, the strong softening
of the transversal 
N modes as well as the softening around the
dip in the HP branches are now well reproduced and clearly
demonstrate the large impact magnetic disorder has on the
vibrational properties of bcc iron.

To estimate the impact of supercell size convergence we
performed the same procedure starting from a 54 atomic bcc
SQS. The obtained phonon spectra are also shown in Fig. 2
(dashed blue line). The corresponding spectrum is slightly
shifted to lower frequencies. The overall correction is about
one order of magnitude smaller than the impact of the magnetic
state and thus for the present analysis, negligible.
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We now discuss the fcc phase of Fe. As discussed in the
beginning, neither FM nor NM calculations are sufficient to
correctly reproduce the experimental data. The calculations
are performed using a 32 atomic SQS. All 32 × 6 inequivalent
displacements giving in total N = 192 individual snapshots
�σλ(m0) for the statistical average equation (4) are included.
The performance of the spin-averaging procedure on the
forces is shown in Fig. 3, lower panel. Similar as for bcc
iron, we obtain a rapid convergence of the averaged forces
by including more and more individual snapshots. From
the averaged force matrix we deduce the phonon spectrum
for fcc iron. Overall the obtained dispersion is in excellent
agreement with experimental data. Compared to the FM
solution, dominantly the longitudinal branches are shifted to
lower values, whereas the transversal branches are shifted
to higher frequencies, removing the instability around the 


point. We can thus conclude that PM suffices to make fcc iron
metastable.

In conclusion, we propose an approach that allows one
to compute atomic forces for magnetic systems at finite T

and that can be easily connected to existing DFT codes.
To test the reliability and performance of the proposed
approach, phonon spectra of PM β (bcc) and γ (fcc) iron
are computed. Our results clearly demonstrate that magnetic
disorder alone, i.e., without having to invoke high-temperature
anharmonic contributions, guarantees dynamic stability of the
iron fcc phase. In the absence of a realistic paramagnetic

description, i.e., considering fcc Fe in a ferro- or nonmagnetic
state, unphysical imaginary phonon modes arise. This clearly
demonstrates the strong interplay of atomic and magnetic
degrees of freedom involved in the stability mechanisms in
iron and the importance to perform phonon calculations based
on the actual (realistic) magnetic phases. The approach can be
easily extended to structures with reduced symmetries (e.g.,
point or extended defects) or to perform MD calculations
including finite temperature magnetism. MD calculations
will largely profit from a straightforward parallelization over
disordered magnetic configurations.
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9F. Körmann, A. Dick, T. Hickel, and J. Neugebauer, Phys. Rev. B
81, 134425 (2010).
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13F. Körmann, A. Dick, T. Hickel, and J. Neugebauer, Phys. Rev. B
83, 165114 (2011).

14B. Grabowski, T. Hickel, and J. Neugebauer, Phys. Status Solidi B
248, 1295 (2011).
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