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We consider a one-dimensional potential trap that connects two reservoirs containing cold Bose atoms. The
thermal current and single-particle bosonic Green’s functions are calculated under nonequilibrium conditions.
The bosonic statistics leads to a Luttinger liquid state with a nonlinear spectrum of collective modes. This results
in the suppression of thermal current at low temperatures and affects the single-particle Green’s functions.
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I. INTRODUCTION

Systems of ultracold Bose gases have recently attracted a
great deal of experimental'™ and theoretical attention—see
Refs. 5 and 6 for reviews. A high control over experimen-
tal conditions, including geometry, density, and interaction
strength, as well as the absence of uncontrolled disorder
allow one to explore unique aspects of many-body physics.
Among experimental achievements, the coherence of the
nonequilibrium Bose condensate was studied based on the in-
terference measurement,’ correlations of density fluctuations
were measured in Ref. 8, and the distribution of the bosons
over momenta was explored in Refs. 3, 4, and 9.

Unlike the classic example of a bulk Bose fluid (“He),
atomic gases are usually realized in optical traps or in atom
chips where magnetic and electric fields confine the system
to a geometry with strong asymmetry with respect to three-
dimensional rotations. In many experimental situations, one
deals with arrays of quasi-one-dimensional (1D) systems.>%!°
These geometrical restrictions strongly influence the dynamics
as they lower the effective dimensionality of the system.
Indeed, in three dimensions a Bose system undergoes a famous
Bose-Einstein condensation, its thermodynamic properties
are well accounted by the mean free theory,!' while its
hydrodynamics is governed by the Gross-Pitaevskii equation.
On the other hand, in two dimensions, and especially in one
dimension, fluctuations of the order parameter destroy the
long-range order, necessitating a more microscopic treatment.
In this paper we focus on the impact these effects have on
transport properties of one-dimensional bosonic systems.

As is well known, a clean 1D system forms a strongly
correlated ground state, the so-called Luttinger liquid (LL).
Though this description holds for both fermionic and bosonic
systems, the bosonic character begets different properties in the
Luttinger liquid state. To explore these features, we consider a
Landauer-type setup shown in Fig. 1, where bosons are trapped
in the system that consists of two reservoirs connected by a
one-dimensional “wire.”

Far-from-equilibrium realizations of the Landauer setup
have been recently studied in the framework of correlated
1D electronic (or, more generally, fermionic) systems. The
tunneling spectroscopy of the nonequilibrium carbon nanotube
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have been measured in Ref. 12. The thermal current in the
edge state of the quantum Hall effect (QHE) was studied
in Ref. 13. On the theory side, one can distinguish several
types of nonequilibrium setups, ranging from partially'*!> to
fully nonequilibrium situations.'® In the partial-equilibrium
setup, electrons coming from different reservoirs have different
values of the chemical potential and temperature. In the case of
fully nonequilibrium situations, electrons in the reservoirs are
characterized by an arbitrary single-particle density matrix.
Remarkably, correlation functions of the interacting many-
body problem can be calculated exactly even in the latter case,
and can be cast in terms of Fredholm determinants.

In this paper, we address analogous questions in the
context of the bosonic system. Though at this moment we
are not aware of any direct experimental realization of a
Landauer-type setup for bosons, the idea seems experimentally
feasible. Indeed, the confinement of bosons to 1D optical wire
has been accomplished in Ref. 8. Since the case of partial
equilibrium seems to be more natural from the point of view
of experimental realization, we focus on it in the current paper.
We assume that the interaction between the atoms is of a
hard core type. Inside the reservoirs it plays a small role,
and we approximate the atoms there as an ideal Bose gas.
Inside the 1D “wire” connecting the reservoirs the hard core
repulsion cannot be neglected. We thus describe the system
by LL with a spatially varying interaction parameter g(x) (see
Fig. 1). One of the key features distinguishing this bosonic
setup from its fermionic counterpart is the absence of a Fermi
surface. In other words, the excitation spectrum of particles in
the noninteracting regions of the system is quadratic. Another
interesting realization of excitations with a quadratic spectrum
are transverse spin waves in a ferromagnetic Bose gas.!”

The nonlinearity of the excitation spectrum is known to
have a significant impact on the properties of the LL. In the
fermionic case it leads to a number of interesting and important
effects—see Refs. 18-20 for reviews. However, for most
characteristics of low-temperature dynamics of correlated
electronic systems, such a nonlinearity can be discarded. This
is done indeed in the case of the standard LL. model. In the
present situation, the spectrum for weak interaction is not
linear, even in the leading approximation. This should be
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FIG. 1. (Color online) Two reservoirs with cold atoms are
connected by a one-dimensional trap. The temperatures and chemical
potentials in the reservoirs are assumed to be different (upper panel);
the interaction strength g(x) as a function of the coordinate (lower
panel).

accounted for in the corresponding theory and may be expected
to profoundly affect the results of our analysis.

To deal with a nonlinear dispersion of the spectrum in the
bosonic case, we use the so-called harmonic approximation.?!
Remarkably, this approach accurately describes the system
in both the “quasicondensate” (weakly interacting Bose gas)
and the LL (sufficiently strong repulsive interaction) regimes.
Within this framework, we study the thermal current and
single-particle Green’s functions. The latter contain informa-
tion about the density of states and the distribution function
of bosons, as well as information about the phase-coherence
correlations that are probed in interference experiments.”

II. BOSONIZATION OF BOSONS
We begin with the Hamiltonian
H = Hy + Hint ()

that consists of the free part (we seth = 1),

1 R
dx V1o v, @)

and the interaction,
Hip = /dde'ﬁ(X)V(x,x’)ﬁ(X')- 3

Here we define the density of the bosonic field p(x) =
Wi(x)W(x); the bosonic field W satisfies the canonical com-
mutation relations

[P ), P = 8(x — x). )

To analyze the problem we use the hydrodynamic
approach,’! similar to the bosonization for fermionic systems.
The term “bosonization” in the present context is, perhaps,
not optimal since the original system is bosonic to begin
with. What actually happens is a transformation from the
original bosonic fields Wg ,\Il}; to collective degrees of freedom
described by the bosonic fields ¢,6. The original field operator
is expressed in term of the collective fields as?>?

p(x) =/ p + M(x)e?®. )

Here the field ¢(x) is related to the smeared density ,o(x)
p + I(x) (where p is the average density) via M(x) =
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—qug(x)/n. The collective bosonic fields (é,é) satisfy the
commutation relation

[$(x).0(x")] = TSgn(X —x)). (6)
The substitution of Eq. (5) into the Hamiltonian (1) leads
to a hydrodynamic description of 1D bosons.!! This is a
nonlinear theory that can be considerably simplified by using
the harmonic approximation. Expanding the Hamiltonian in
the fields 6,¢, one keeps terms only up to the quadratic level,
which yields

Hy = : d-x|:_(8xp) + p(0:6) } @)
2m

The harmonic approximation allows us to account for the
nonlinear (in the present case quadratic) spectrum of the
low-energy sound mode in the collective theory. Its validity
is restricted to the low-energy (large-density) regime, 7 <
max{A,pg}. Here A = p?/m is the bosonic counterpart of
Fermi energy, and g is the interaction strength introduced
below.

Clearly, the harmonic approximation is not an exact theory.
By neglecting the interaction between low-energy modes
(represented by terms of higher order in p and 6 in the
Hamiltonian), one discards relaxation processes that are
important, in particular, for thermal equilibration, drag, and
thermoelectric effect.'®%2%27 We will assume that our “wire”
is not too long, so that neglecting these processes is justified.
In that situation the harmonic approximation is sufficient to
describe thermal transport and tunneling spectroscopy in the
system.

In terms of the collective bosonic fields 6 and ¢ we obtain

_ 1 2 p(x)
HO—/dXI:W(ax(p) +g(x ) i|v

g(x) ®)
Hu= [ ar® 2067
Here we model the interaction with a short-range potential,
V(x,x') = g(x)d(x — x'). ©))

Let us note that Eq. (8) in fact corresponds to the microscopic
model (9) in the limit of weak interaction only. In the local
interaction model (9), the large-g limit yields the Tonks-
Girardeau gas®® that can be mapped onto a free-fermion
model (characterized by the LL parameter K = 1). However,
it makes sense to consider g in Eq. (8) as a phenomenological
parameter of the underlying LL model, which allows us to
go beyond the Tonks-Girardeau limit. On a microscopic level,
this corresponds to the replacement of the deltalike repulsion
(9) by a finite-range hard-core interaction.

Equation (8) is the Hamiltonian of a 1D LL for an
interacting bosonic system in the harmonic approximation.®
As one clearly observes, the Hamiltonian (8) contains a
fourth-order spatial derivative [the term (82¢)?], at odds with
the standard fermionic LL model that contains only a second
spatial derivative [(axés)z]. For large values of the interaction
constant, pg > p?/2m, the fourth-derivative term is relatively
small, leaving us with the standard LL with the interaction
parameter K2 = 72 p/2mg. When the interaction is weakened,
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pg K 0> /2m, the standard (linear-spectrum) LL description
is valid for the lowest temperatures only, 7' < pg. The LL
parameter becomes larger for weaker interactions and tends
to infinity in the limit of free bosons, but the region of
applicability of the standard LL theory vanishes in this limit.

In the general case, one should use the full theory (rather
than the standard LL theory). The corresponding spectrum
of bosonic excitations w(g) is nonlinear,” interpolating be-
tween quadratic (w = ¢?/2m for noninteracting bosons) and
linear (w = ugq for strongly interacting bosons; u being the
sound velocity). Finally, we mention that the Hamiltonian
(8) depends on the mean bosonic density, p(x). To find
the profile of the bosonic density, one needs to go beyond
the LL description and solve the nonlinear hydrodynamic
equations—see Appendix B 4.

To deal with the nonequilibrium conditions, we use the
Keldysh formalism. The fields on the upper and lower branches
are labeled by + and —, respectively. It is convenient to
perform a rotation in Keldysh space

0.6 = (¢4 £ 0-)/V2, (10)
0,0 = (04 £6_)/V2. an

where we will refer to (¢,0) as classical and to (¢,0) as
quantum components.’® We then find that the system is
described by the following action:

S=1o"D o, (12)

where we have defined the vector ® = (¢,6,¢4,0) . The inverse
propagator has a standard structure in the Keldysh space

—1yr
L :<(DO‘)“ > )>’ 42

(D™HK
where each component is a matrix in the 6, ¢ space. The inverse
retarded propagator is given by

R~ —lesy
(D—1>’=( o, o ) (14)
_?ax _ﬂaxpax
with
N 0 2 2 1
Fl = 5 ; [ p;ax — '0_’; 4+ 0, —0y — 8mgi|8x
w’m| p o 1)

and w; = w +i0. The advanced component is related to
the retarded one by a complex conjugation, (D~")*(w) =
[((D~1Y (w)]*. The Keldysh component (D~!)X carries infor-
mation about the distribution functions in two reservoirs: The
right-moving modes coming from the left reservoir have the
temperature 7, while the left-moving modes coming from the
right reservoir are characterized by the temperature 7 .

To simplify the analysis from now on we consider the large
density limit, approximating the mean bosonic density p(x) by
a constant. Variation of the action with respect to the classical
components of the fields 6 and ¢ yields the saddle-point
equations

1 g(x) - o, -
- A+ 08,2229, ) ¢ + =— 0,0, =0,
( 8wimp * + 2 ot 27

. (15)
0, = po.as

—0,¢, + — 076, = 0.

27 o + 2m
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These two equations can be conveniently combined into the
wave equation

[wz +a, <2,08(X) _ %33) 8x:|.l(a),x) -0, (16)
m 4m? -

where we have introduced J = 7 ~'3,6. Equation (16) de-
scribes the propagation of plasmons inside the wire with
dispersion that varies in space [as a result of the variation
of g(x)]. Due to these variations, a plasmon may experience
scattering but the total number of plasmons is conserved. To
make this conservation explicit, we multiply Eq. (16) by J*
from the left and subtract a complex-conjugated equation. This
yields the plasmon conservation law

80+ 0:J =0, a7

which has a form of the continuity equation that states that the
charge

0 =1JdJ —J8,J (18)

is carried by the current
2
T =L 00—y
m
1
— — (S ey — L e =TI+ T 5. (19)
4m?

In a region with a constant interaction strength g, Eq. (16)
yields Bogolubov’s excitation spectrum for the acoustic
phonons,

2:2,o;g 2

7*
—. 20
R 20)

This dispersion relation has four solutions, resulting in
oscillating and exponentially decaying (growing) waves (see
Fig. 2),

Jo(x) = Ae'?* + Be !9 4 CeP* + De ¥, (1)

where

q = \/Em\/—g—ir\/gz—l—wz/mz, (22)
p= ﬁm\/ g+ +w?/m2. (23)

We consider now the situation when the interaction strength
changes from one value to another in a boundary region (see
Fig. 2). If we consider the solution to be not too close to
the boundary, the exponentially decaying components can
be neglected, and the propagating waves are related via a

FIG. 2. (Color online) The boundary between the regions with
different interaction constants. Propagating and decaying waves on
both sides of the boundary are shown.
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FIG. 3. (Color online) The scattering of plasmons at the boundary
between regions with different values of the interaction can be
described by scattering matrix S.

scattering matrix. To take into account the different velocities
of propagation, we define a = \JuA, b = /uB, where u, =
dw, - I . . .

Sq 1sa sound velocity in the corresponding region. It is easy to
verify that coefficients a and b in different regions (see Fig. 3)

are related
ay ap
=S 24
(b1> <b2> &4

through a unitary scattering matrix

t r
S = ( ) ) (25)
rot

with || = || and |r| = |F/].

The transmission coefficient has to be calculated for a
particular realization g(x) of the interaction in the boundary
region. In the limiting case of an adiabatic barrier, when the
interaction changes smoothly on the scale of the plasmon
wavelength, one finds the ideal transmission, |f| =1 and
r = 0. We focus on the opposite case of a sharp-step barrier,
with the interaction constant g; to the left of the boundary
and g, to the right. To find the transmission and reflection
amplitudes of such a barrier, we derive matching conditions for
the amplitudes at the boundary. For this purpose, we integrate
Eq. (16) over a small region around the boundary. This leads
to a requirement that J, J', J”, and 2pgJ’ — J"” /4m are
continuous at the boundary [which implies that J” has a jump
equal to 8mpJ’(g2 — g1)]. These four conditions allow us to
find the amplitudes A,,B; of the outgoing waves and C;,D;
of the decaying waves for given amplitudes A; and B, of the
incoming waves, and thus to establish the scattering matrix.
We obtain the transmission

2 / (@1 +ip)(qa + ip2)

I=—=./919 ; ;
Z\V " @ = ip)(g2 — ip2)
x [8mppa(g1 — g2) — (b1 + p)(a} + P)].  (26)
and the reflection amplitude
L g+ip . ,
= 22 (py + p)(q1 +ip2)@2 — ip) (a1 — ¢)
Zq—ipy
+38mmp(pi1g1 + p2g2)(g2 — g1, 27
where we have introduced the notation
Z = (p1 + p2)(q1 +ip2)(q2 + ip1)(q1 + q2)
+8wmp(p1g1 — p292)(&2 — &1)- (28)

For our model with noninteracting reservoirs, we now con-
sider the case of the scattering between interacting and
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noninteracting regions, i.e., g1 = 0 and g, = g. In this case
the transmission amplitude is a function of a dimensionless
parameter s = w/2mwpg with the asymptotics

—23/4s14 0 fors <« 1,

1s) = {1, fors > 1. (29)

III. KINETICS OF 1D BOSE FLUID: THERMAL CURRENT

In the preceding section, we have found the plasmon
transmission coefficients at the boundaries between the inter-
acting region and the reservoirs. Supplementing these results
with the boundary conditions on the distribution functions of
plasmons in the reservoirs, we straightforwardly calculate the
distribution functions of the right- and the left-moving modes
(Bg/r) inside the wire (see Fig. 4).

For a wire that is longer than the thermal wavelength of the
plasmons, the Fabry-Pérot-type plasmon interference can be
neglected, and one finds

T TR
By = ———BY + —— B
1 -RiR, 1 -RiR, 30)
gro_ b po. TR o
L 1-— RzR] L 11— RZRI k>

where B\ = coth(w/2Tg), B\ = coth(w/2T.), T;, and T
are temperatures of the left- and the right-moving collective
modes, 7; = |f;]?, T, = |f2]? are the transmission coefficients
of the left and right barriers, and R; =1—7; are the
corresponding reflection coefficients.

Using the plasmon distribution function, one can calculate,
in particular, the thermal current

o0

=3 dow[ B} (0) — By (0)]. @1

Substituting Eq. (30) into Eq. (31), we find

Ig

1 o0

Ip = —
E 47'[0

dow| B} (0) — By(@)|Tu(w).  (32)

Here 7, is the total transmission coefficient

Ti(0)Dh(w)

Tiot(w) = 1— R](a)—)Rz(a});

(33)
it is shown in Fig. 5 for the case of two sharp barriers
characterized by the transmission amplitude (26).
Substituting 7y for the case of two sharp barriers into
Eq. (32) and performing the frequency integration, we find

Ig = Fp(Ty) — Fe(Tr), (34

FIG. 4. (Color online) Distribution functions for transmitted and
reflected plasmons inside the wire.
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FIG. 5. Total plasmon transmission for a system of two identical
sharp barriers as a function of s = w/2mpg.

where

3 1 g (5752
FoT)= 15 mé (2) 77, for T K 2mpg, 35)
zT2 for T > 2mpg.

In the limit of a small temperature difference AT = T; — T
we have

= A food o’ Tr(@) (36)
= — w————Tiot(w),
ET8rr? )y T sinn? w2
where T = TL”’* . Equation (36) can be cast in the scaling
form
Ig = ATTSf ( ) (37)
2npg

The function f entering Eq. (37) can be calculated numerically
and is plotted in Fig. 6. It has the following asymptotic limits:

as'?, fors « 1,

f(s):{%’ for s > 1,

(38)

where a >~ 1.003.

At relatively high temperatures, T > pg, we reproduce the
thermal current of noninteracting bosons®! (see Appendix A).
This result can be considered as a thermal-current counterpart
of the Landauer quantization of charge conductance: The
numerical coefficient in the second line of Eqs. (35) and (38)
is fully universal in 1D geometry and does not depend on the
form of the spectrum, interaction strength, carrier statistics

0.5

0.4

0.3

f(s)

0.2

0.1

0 L Il L Il L Il L Il L _
0 0.2 0.4 0.6 0.8 1

S

FIG. 6. Scaling function f(s) governing the dependence of the
heat current on s = T /2mpg [see Eq. (37)].
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(fermions versus bosons), etc. The only condition is the
absence of backscattering of plasmons. In the low-temperature
regime, we find that the thermal current is suppressed due to
reflection of the bosons on the boundary between the interact-
ing and noninteracting regions. This T'!/? suppression of the
thermal conductance distinguishes the bosonic setup from its
fermionic counterpart.

IV. PHASE COHERENT DYNAMICS:
GREEN’S FUNCTIONS

We now proceed with the analysis of the single-particle
Green’s functions of the original bosons,

G(x,7) = —i{¥p(r,0IL0,0), )
Gi(x,7) = —i (U50,00¥5(x,1)),

that carry information about the spectral properties (density
of states and distribution functions) of the system. The results
for the noninteracting case are well known; for completeness,
we present them in Appendix A. Our approach allows us to
analyze the Green’s functions in a broad range of parameters,
with the only assumption being T < max(pg,p?/2m). To
relate it to well-accepted terminology in the field,*>® the
harmonic approximation allows us to describe the system
in the ‘decoherent quantum,” “‘quasicondensate,” and “Tonks-
Girardeau” regimes, and in the strong-interaction LL regime,
pg > T,p*/2m (which is not realized in the delta-interaction
model considered in Refs. 32 and 33), as well as in crossovers
between them.

Using the representation of the boson creation and annihila-
tion operators in terms of the collective field, Eq. (5), we write
the Green’s function as a correlation function of the harmonic
fluid,

GZ(x,1) = —i (T pY(x, 1) 120,000y (40)

It is convenient to represent this correlation function as

GZ(X,1) 1 —i (2 + 0 >
,T) = —I —il—+—) -
p 0o dory dorg 0oy

X(ei f(da))dxjfw @7 (0, x)> (41)

Here we have defined a four-component “source” vector

> —1
Iy = [e_"”oz 8(x — X) + ar8(x)],
hoox 27t,0\/_ 0x 2
1 .
I = —[e7"8(x — X) — 8(x)].
T2
(42)
g2, = L0 ey s — X) — ans (o],
T 27[[0[ ax
1 .
IS = F—=le778(x — X) 4 80,
4, —w,x ﬁ

and it is understood that one should set the sources o, = 0
after the derivatives in Eq. (41) have been evaluated.
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Since the action (12) is Gaussian, the functional integration
over fields 6 and ¢ can be easily performed, yielding

G2(X,1) o l1—i (2 + 0 ”
,T) = —1 —i|\—+—)-
P 30[1 80[2 305180[2

X exp [—% / (dw)dx1dx2J%, , Doy JZT } .

Thus, the problem of calculation of the Green’s functions has
been reduced to the calculation of the bosonic propagator

D= pt b 43
_<D“ 0)' (43)

We now focus on the case of coinciding spatial points (X =
X") deeply inside the interacting part of the wire (for X # X',
see Appendix B 3). Expanding the bosonic density operator up
to second order in ¢, and calculating the Gaussian functional
integral over the bosonic fields (see Appendix B 3 for technical
details), we obtain

GZ(1) = —ip[l — dZ(1)]e~ ¥ @, (44)

Here we have defined the preexponential factor

> m o dow
CD< T) = —/ —_— Bw+Bw
1@ 0 4pgq+q3/m[( i+ Bi)
qz
X | iwsinwt — — coswT

)
+ i sinwt F 2w cos a)ti|, 45)
2m

and the exponential factor

: o 2m q(g + q*/4mp)
x [(Bp + B})(1 — coswt) & 2i sinwt].  (46)

In these formulas g should be understood as related to @ via
the dispersion law (22).

It is instructive to compare our results for the Green’s
functions of a bosonic system in a partial nonequilibrium
state, with their fermionic counterparts.’ It is seen that the
bosonic results differ in two respects: (i) the appearance of
a preexponential factor and (ii) a more complicated form of
the exponential factor reflecting the nonlinear character of the
spectrum of collective excitations.

Infact, Eq. (44) interpolates between the standard LL results
(applicable in the limit of strongly interacting bosons) and
Eq. (B1), which is valid for free bosons. The characteristic
energy scale for the crossover between these two regimes is
set by the interaction (wy = pg). For energies well below wy,
the model behaves as a standard LL system (with a linear
plasmonic spectrum). In this case the preexponential factor
@, is small (of the order of T'/wy < 1), and therefore can
be neglected. The exponential factor @, in this limit turns
into the LL result of Ref. 15 (which, of course, reduces
to the conventional LL formula in the equilibrium case).
In the high-energy limit (max{t~',T} > w;) the spectrum
of excitations is quadratic, and one recovers the free-boson
results—see Appendix A.
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V. SUMMARY

In this paper, we have studied a system of bosonic atoms
in a Landauer setup, subject to a temperature and chemical
potential difference. We have developed a nonequilibrium
bosonization approach that describes the system within the
harmonic approximation. This approach ignores the interac-
tion between different collective modes, but takes into account
the nonlinear dispersion of their spectrum.

We have studied the plasmon propagation in a two-terminal
setup formed by two noninteracting reservoirs connected
by an interacting 1D “wire.” The plasmon backscattering is
controlled by the dimensionless parameter x ~ w/pg, where
w is the plasmon frequency (whose characteristic value is
set by the respective temperatures of the reservoirs), p is the
density of bosons, and g the interaction strength. At large x,
backscattering is suppressed, and the thermal current acquires
a universal value (that depends neither on the spectrum of the
original particles nor on their statistics). In the low-temperature
regime, the reflection of plasmons is strong, and the thermal
current exhibits a T'!/2 suppression compared to the universal
value. As another application of this formalism, we have
calculated the bosonic single-particle Green’s function in the
same nonequilibrium setup. The result interpolates between
the conventional (linear spectrum) Luttinger liquid and free-
boson limits.

The approach developed in this paper can be used to
study other properties of the system, e.g., higher correla-
tion functions or non-steady-state characteristics. A more
ambitious perspective will be the development of a general
nonequilibrium bosonized theory of nonlinear LL (formed
by interacting fermionic or bosonic particles) including both
nonlinear spectral dispersion of plasmon modes and their
coupling.
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APPENDIX A: TRANSPORT PROPERTIES
OF FREE BOSONS

In this Appendix we summarize the basic properties of
noninteracting bosons, using the original description.

1. Landauer approach: Particle current

For the case of noninteracting bosons the particle current
can be straightforwardly found within the Landauer approach:

1= [ deveuennie - N@l @b
0

where v is the density of states, v the velocity, and N; the

distribution function in the corresponding reservoir. Using the

relation v(e)v(e) = 1/2m, one finds the relation

©d
I= / —26 [NL(€) — Ng(e)]. (A2)
0 JT
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Assuming Bose distributions with the same temperature 7" and
two different chemical potentials 1,z and performing the
integration, we obtain

T 1 — et/
[=--—In <1_g—u/r) :
We note that the particle current is determined by the
occupation numbers in both reservoirs at the bottom of the band

(ate = 0). In the linear response regime, expanding the current
in the difference of chemical potentials, we find

(A3)

1
I'= ——(ur — nr)Np(e = 0). (A4)
2
To relate the occupation number at the bottom of the band
to macroscopic parameters of the problem, we compute the
particle density

o0
/ dev(e)Ng(e) = p. (AS)
0
For |u| <« T one finds
m
p=T |—, (A6)
Il
thus leading to Ng(e = 0) = p*>/mT and
1 p?
I = ——— (L — Ug). (A7)

2 mT

We note that the particle current of bosons is enhanced
by a large parameter p>/mT as compared to the particle
current of fermions subjected to the same difference of
chemical potentials. The large conductance is reminiscent of
the superfluidity of the Bose condensate in higher dimensions.

On a more formal level, the appearance of the “Fermi
energy” p?/m entering the large factor p?>/mT indicates that
the particle current cannot be calculated within the harmonic
approximation. In the interacting case its calculation would
require the use of a full nonlinear hydrodynamic theory—see
Appendix B below.

2. Thermal current

The thermal current is given by

* de
Ig = Z—G[NL(G) — Ng(e)]. (A8)
0 T
Performing the integration one finds
I T; —T, A
E= 2( 2)- (A9)

We note that the heat current in the system of noninteracting
bosons coincides with the heat current of 1D free fermions.**
Moreover, this result is universal and does not depend on the
shape of a single-particle spectrum of elementary carriers,
either fermions or bosons.’! This universality survives the
adiabatic switching of interaction (again for both fermions
and bosons), when backscattering of plasmons is negligible,
but is ultimately violated in the generic case [see, in particular,
Eq. (37)].
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APPENDIX B: GREEN’S FUNCTIONS, G=

In this Appendix, we present details of the calculation of the
bosonic Green’s function. We begin by considering the case
of noninteracting bosons, first in the original formulation and
then within the bosonization framework. Then we calculate
the Green’s function in the interacting case.

1. Noninteracting bosons: Original description

We consider the noninteracting 1D bosons and calculate the
Green’s functions for coinciding spatial points, X = X’ (the
case of X # X' treated similarly). Equations (39) yield

i m (®do _;
i =g 5 [ e (com
5(T) 7\ 2 ), @e co

In the energy representation it reproduces the well-known
results

:I:l). (B1)

G=(@) = —2miv(@)Np(w — ), (B2)
G™ (w) = —2wiv(w)[1 + Np(w — )], (B3)
where N is the Bose distribution function and
O(w) [m
vw)= —=,/— (B4)
T 2w

is the density of states of noninteracting bosons. To compare
with the bosonized theory, we consider the high-density (u —
0) limit. Next, we show how these results can be derived by
using the bosonization approach.

2. Noninteracting bosons: Bosonized description

The Green’s function within the bosonization framework is
given by Eq. (44). Substituting the spectrum of free bosons in
Eq. (45), we get

> 1 m [ dw . 1
P ()= —,/= —| B, | i sinwt — = coswt
27V 2 Jo Jo 2
+ (% sinwt — coswr) ]

Similarly, Eq. (46) yields for the function in the exponent,
CD< —
@)= 4;1 V2 /

Let us emphasize that the integral over frequency in Eq. (BS)
converges (as opposed to the logarithmically divergent inte-
grals in the LL case). The resulting function @, is actually
small. Therefore, one can expand the exponent in Eq. (44).
Combining all the terms together, one finds

(B5)

[(1 — coswT)B, +isinwrt].

(B6)

G2(®) ~ip[ — 1 + ®L(x) + DL (D)) (B7)

To compare this with the exact result, we take Eq. (B1), subtract
its value at T = 0 (density), and then consider the limit © — O.
The result is in full agreement with Egs. (B7), (BS), and (B6).

3. Interacting bosons: Bosonized description

We now consider the case where both coordinates X and
X' are located inside the interacting part of the system. In this

125102-7
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case the Green’s function depends on the x = X — X'. For the
problem of the sharp barrier one finds

G2(t,x) = —ip[l — ¢>12(r,x)]e_¢2<(”)+”. (B8)
Here the preexponential

o0 dw

4pgq +4q°/m
pe
X [B? (iw sinép — ECOSER>

> m
O~ (1,x) = —
T (T,x) 375 )y

;2
:I:;isinéR Fwcoségr + (R < L)i|,
m

and exponential factor

ORI LW 2L

o 27 q(g+q>/4mp)
x [BR(1 —coség) £ isinég + (R < L)], (B9
where £g/; = wT F gx and [ is an average value of the particle
current flowing through the system—see Appendix B 4. It is
given by the mean value of (d,6), which is determined by a
nonlinear hydrodynamic equation.

We note that when calculating the correlation function of
the bosonic fields we neglected the modulation of the mean
density of bosons. It is possible to generalize the harmonic
approximation and to allow the modulation of the mean density
in space. We now present general formulas applicable in the
case of a spatially varying mean density.

To calculate the correlation functions of the bosonic fields,
one needs to find the inverse of the operator

D 'D=1. (B10)
Employing Eq. (14), we find that components of the matrix
correlation function D satisfy the following equations:

IS , 21%p .
LDjy(,x,x") = —71,
LD (w,x,x") = 2miwd "1,
o (B11)
LDQ(Z,(a),x,x’) =2miwl,
La,Djy(w,x,x") = Qe K~ (x)a 1,
where we have defined an operator
. 27%p
L=w =T LR (B12)
m

In order to find the components of the correlation function D,
we construct the scattering states x, ,(x), characterized by the
momentum ¢ and index 7 that labels the reservoir from which
the state was “emitted.” The scattering state wave functions
satisfy the following equation:

212p

K@) = g (). (B13)
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In terms of the scattering states, the correlation functions
of the bosonic fields can be written as follows:

272
D (x5 = ZLprie,
m

272
D (w,x,x") = —2miwd, TLprie,
m

g2 (B14)
D(;{;(a),x,x/) = 2miwd" T lpra,
m
Dl (w,x,x") = —Qr)? K~ ()3, a5 D/,
Here we defined
1 mEe
r/a Xqg(X)xq (X))
prla — Z q : q ) (B15)

— 2
q>0,n s a)q

The Keldysh component can be constructed from the retarded
and advanced one, by imposing the “partial equilibrium”
condition in each direction of plasmon propagation,

DK — _oxi Z X;’(x)xq*'i(x/)Bn(a))S(wz _ wﬁ),
q>0.n

(B16)

and similarly for other components.

4. Mean density current for interacting bosons

To find the particle current, one needs to calculate the
expectation value of the operator

1="20.600. (B17)
m

In the presence of a weak external potential U (x,?), the linear

response theory predicts

(I(x,t)) = Bt/dx'dt’D(;¢(x,t;x/,t/)BXU(x’,t’). (B18)

We now analyze this expression in different limits. If the
interaction between bosons in the leads g, is finite (we now
relax the assumption g, = 0 we used throughout the paper),
it sets the energy scale pg;. For energies below this scale the
spectrum of collective modes is linear, and one restores the
known LL result*>-¢

(Iy=K,V/h. (B19)

Here K, = /m2p/2mg, is the LL parameter in the leads, and
V is a difference between the chemical potentials in the leads.
In the absence of interactions in the leads, the value of the
current in this case is unaffected by the interaction inside the
system, as in the fermionic case.’’*

For the case of free bosons (g, = g = 0), Eq. (B18) yields

(I()) = %,/%v,

implying that the “conductance” diverges in the dc limit (v —
0). This divergence signals that the harmonic approximation
is not a suitable framework to calculate the particle current.
Indeed, while developing the harmonic approximation we took
the © — O limit, assuming that the characteristic energies of
the collective excitations are much greater than the chemical
potential. While this assumption is valid for the thermal current
and the single-particle Green’s function, it does not hold for

(B20)
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the particle current of the free bosons. To cure this problem,
one should restore the low-energy cutoff, replacing w with u.
Doing so and using Eq. (A6), one recovers the conductance of
noninteracting bosons, Eq. (A7).

While the limits discussed above give us some idea about
the particle current, this problem remains to be solved for

PHYSICAL REVIEW B 85, 125102 (2012)

bosons that do interact in the wire (g # 0), but do notinteractin
the leads (g, = 0). In particular, it remains to be seen whether
the value of the particle current in this case is affected by the
interaction inside the system. To answer this question, one has
to go beyond the harmonic approximation and to resort to the
full (nonlinear) hydrodynamic description.
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