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Iterative summation of path integrals for nonequilibrium molecular quantum transport
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We formulate and apply a nonperturbative numerical approach to the nonequilibrium current I (V ) through a
voltage-biased molecular conductor. We focus on a single electronic level coupled to an unequilibrated vibration
mode (Anderson-Holstein model), which can be mapped to an effective three-state problem. Performing an
iterative summation of real-time path integral (ISPI) expressions, we accurately reproduce known analytical
results in three different limits. We then study the crossover regime between those limits and show that the
Franck-Condon blockade persists in the quantum-coherent low-temperature limit, with a nonequilibrium smearing
of step features in the IV curve.
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I. INTRODUCTION

Understanding quantum transport in nanoscale electronic
systems with vibrational or mechanical (“phonon”) de-
grees of freedom is of topical interest in several areas of
physics, including molecular electronics,1,2 inelastic tunnel-
ing spectroscopy,3 nanoelectromechanical systems,4 break
junctions,5 and suspended semiconductor or carbon-based
nanostructures.6–9 The electron-phonon interaction allows
the observation of a rich variety of intriguing phenomena,
such as negative differential conductance, the Franck-Condon
blockade of transport, rectification, vibrational sidebands or
steplike features in the current-voltage (IV ) characteristics,
and current-induced heating or cooling. Already the simplest
nonequilibrium “Anderson-Holstein” (AH) model, where the
nanostructure corresponds to just one spinless electronic level
coupled to a single oscillator mode, captures much of this
richness;10,11 for a review, see Ref. 3. Analytical approaches
allow us to understand the AH model in various corners of
parameter space, but no controlled approximation, let alone
exact solution, connecting these corners seems in reach.
One may expect that a unified picture is available from
numerics. However, numerical renormalization group12 or
quantum Monte Carlo (QMC) calculations13,14 are usually
restricted to equilibrium. For the nonequilibrium AH model,
Han15 employed an imaginary-time QMC approach followed
by a double analytical continuation scheme; unfortunately, the
latter step is plagued by instabilities.16 A promising avenue for
the AH model has recently been suggested by real-time path-
integral QMC simulations,17,18 where one directly computes
the time-dependent current. Such calculations have to deal
with the infamous dynamical sign problem at long times,
but in several parameter regions, especially when a secondary
phonon bath is present, the stationary steady-state regime can
be reached.

In this work, we formulate and apply an alternative
numerical approach, which in practice is useful unless both
the temperature T and the bias voltage V are small. It is also
based on a Keldysh path-integral formulation but does not
involve stochastic sampling schemes and thus remains free
from any sign problem. To that end, we extend the “iterative
summation of path integrals” (ISPI) technique19 to the AH
model. Technical aspects of the present approach, in particular

our mapping to an effective three-state system via the “spin-1
Hirsch-Fye transformation” in Eq. (2) below, should also be
of interest to QMC schemes.14 In essence, the ISPI method
exploits that time correlations of the auxiliary three-state
Keldysh variable, which arise after functional integration over
the phonon and the (dot and lead) fermion degrees of freedom,
can be truncated beyond a certain memory time τm when
either T or V is finite. Together with a convergence scheme
designed to eliminate systematic errors due to the finiteness
of τm, such calculations allow us to obtain numerically exact
results. The ISPI method has already been successfully applied
to the spinful Anderson model,19–21 where instead of the
phonon a local charging interaction is present. While we
focus on the simplest version of the AH model with a
single unequilibrated22 phonon mode here, the conceptual
generalization to include Coulomb interactions, more phonon
modes, or several dot levels is straightforward. We benchmark
our ISPI code against three different analytical approaches and
then study the crossover between the respective regimes.

II. AH MODEL

We consider the AH Hamiltonian, H = Hm + Ht + Hl ,
describing a molecular level with tunnel coupling (Ht ) to
metallic source and drain contacts. Taking a single spinless
dot level (fermion annihilation operator d) with energy ε

and a boson mode (annihilation operator b) of frequency
�, the isolated molecule Hamiltonian is3 (we use units with
h̄ = kB = 1)

Hm = � b†b + [ε + λ(b + b†)]nd, (1)

with nd = d†d and the electron-phonon coupling strength
λ. The lead Hamiltonian Hl is taken in the standard wide-
band approximation,23 with relaxation processes assumed
fast enough to have Fermi functions with temperature T as
electronic distributions; their chemical potential difference
defines the bias voltage V . The tunnel coupling then introduces
the hybridization energy scales �L and �R for the left and right
lead, respectively.23 For simplicity, we focus on the symmetric
case in what follows; �L = �R = �/2. As observable of
main interest, we study the steady-state current I through the
molecule.
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A. Analytical approaches

Before turning to a description of the ISPI scheme, let
us briefly summarize the analytical approaches to the AH
model that we employ to benchmark our method. (i) For
λ/� � 1, perturbation theory in the electron-phonon coupling
applies and yields a closed IV expression for arbitrary values
of all other parameters.24 We note that the solution of the
AH model with a very broad dot level25,26 corresponds to
this small-λ regime. (ii) For high temperatures, T � �, a
description in terms of a rate equation is possible.23 We here
use the simplest sequential tunneling version with golden rule
rates.27 For small λ, the corresponding results match those
of perturbation theory, while in the opposite strong-coupling
limit, the Franck-Condon blockade occurs and implies a drastic
current suppression at low bias voltage.8,28 (iii) For small
oscillator frequency, � � min(�,eV), the nonequilibrium
Born-Oppenheimer (NEBO) approximation is controlled and
allows us to obtain I from a Langevin equation for the
oscillator.29,30 For small λ, this approach is also consistent
with perturbative theory, while for high T , NEBO and rate
equation results are found to agree.

B. Keldysh path-summation formulation

We now start from the textbook time-discretized coherent-
state representation of the Keldysh generating functional.31,32

The short-time propagator on the forward (backward) branch
of the Keldysh contour, e−iδtH (e+iδtH ), where δt denotes the
discrete time step, then allows for a Trotter breakup, e∓iδtH =
e∓iδtH1e∓iδt (H−H1), with the systematic error in observables
scaling ∼δ2

t . It is useful to choose H1 = Hm − �b†b [see
Eq. (1)], where the auxiliary relation

e∓iδtH1 = 1 − nd + nde
−λ2δ2

t /2e∓iδt εe∓iδt λb†e∓iδt λb (2)

allows us to effectively decouple the electron-phonon inter-
action in terms of a three-state variable sη = 0,±1 defined
at each (discretized) time step tj along the forward (σ = +)
or backward (σ = −) part of the Keldysh contour, where
η = (tj ,σ ). Below, we also use the notation η ± 1 = (tj±1,σ )
with periodic boundary conditions on the Keldysh contour. It
is crucial for the construction of the coherent-state functional
integral that Eq. (2) is normal ordered. The “spin” variable sη

picks up the three terms in Eq. (2) and acts like a Hubbard-
Stratonovich auxiliary field, similar to the Ising field employed
in the Hirsch-Fye formulation of the Anderson model.19,33

The bosonic (phonon) scalar field and the fermionic (dot and
lead electrons) Grassmann fields appearing in the Keldysh
path integral are then effectively noninteracting but couple
to the time-dependent auxiliary spin variable. Hence those
fields can be integrated out analytically and the time-dependent
current I (tj ) follows from a path-summation formula for the
generating functional,

Z =
∑

{sη=0,±1}
detD [{s}] , (3)

where the matrix Dηη′ (in time and Keldysh space) depends
on the complete spin path {s}. Specifically, we obtain D =
−iB(G−1

d − 
), where G−1
d is the discretized inverse Green’s

function of the dot as in Refs. 19 and 31 but with the modified

spin-dependent matrix elements [−iG−1
d ]η+1,η = −sη. The

self-energy matrix 
 describes the traced-out leads. We find

ηη′ �= 0 only when sη = ±1, where it coincides with the usual
(wide-band-limit) expression.23 Finally, the diagonal matrix B

(quoted here for ε = 0) with

Bηη = Asη
exp

(
− λ2δ2

t

∑
η′

σσ ′[iGph]η,η′+1|sηsη′ |
)

(4)

encapsulates all phonon effects, where Gph is the discretized
phonon Green’s function (see Ref. 31) and we used the notation
A0 = 1 and A±1 = ±(1/2)e−λ2δ2

t /2. By including a source term
in D, it is straightforward to numerically extract the time-
dependent current I (tj ).19 For sufficiently long times tj , I (tj )
reaches a plateau yielding the steady-state current of interest.

III. ISPI IMPLEMENTATION

Starting from the formally exact path-summation formula
[Eq. (3)], the ISPI algorithm can now be adapted from Ref. 19:
For finite T or V , matrix entries Dηη′ involving large time
differences |t − t ′| are exponentially small. We put these to
zero beyond a memory time τm ≡ Kδt , where K denotes the
number of time slices kept in the memory. The numerical
computation of the memory-truncated path summation in
Eq. (3) is then possible in an iterative way19 without additional
approximations and, for given δt and K , yields the steady-state
current I (δt ,K). While this formulation is exact for δt → 0
and sufficiently large K (long memory time), K cannot be
chosen arbitrarily large in practice and an extrapolation scheme
is necessary.19 Convergence of the extrapolation requires
sufficiently high T or V , for otherwise the necessary memory
times are exceedingly long. For the results below, we used
K � 4 and 0.3 � �δt � 0.35. The current shown follows by
averaging over the δt window, with error bars indicating the
mean variance. Additional ISPI runs for 0.18 � �δt � 0.22
and 0.3 � �δt � 0.4 were consistent with these results, and
we conclude that small error bars indicate that convergence
has been reached. For typical parameters and K = 4, our ISPI
code yielding I (δt ,K) runs for ≈11 CPU hours on a 2.93 GHz
Xeon processor.

A. Benchmark checks

Next we show that the numerical ISPI results are consistent
with analytical theory for the IV curves in all three parameter
limits mentioned above. For clarity, we focus on a resonant
level with ε = 0 here. Let us then start with the case of weak
electron-phonon coupling, λ = 0.5�. Figure 1 compares our
ISPI data for � = � to the respective results of perturbation
theory in λ and of the rate equation. As expected, for this
parameter choice, perturbation theory essentially reproduces
the ISPI data. The rate equation is quite accurate for high tem-
peratures, but quantitative agreement with ISPI was obtained
only for T � 10�. Note that the ISPI error bars increase when
lowering T due to the growing memory time (τm) demands.
The effect of changing the phonon frequency � is illustrated in
Fig. 2, taking T = � but otherwise identical parameters. Again
perturbation theory is well reproduced. Next, Fig. 3 shows
ISPI results for a slow phonon mode, � = �/2, with stronger
electron-phonon coupling, λ = �. In that case, perturbation
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FIG. 1. (Color online) Current I (in units of e�/h) vs bias voltage
V (in units of �/e) for λ = 0.5�, � = �, ε = 0, and T = �. The ISPI
data are depicted as filled red circles, where the dotted red curve is
only to guide the eye and the error bars are explained in the main text.
We also show the results of perturbation theory in λ (dashed black
curve) and of the rate equation (solid blue curve). The upper (lower)
inset shows the corresponding result for T = 3� (T = �/3).

theory in λ is not reliable and the rate equation is only accurate
at the highest temperature (T = 3�) studied, (cp. the upper left
inset of Fig. 3). However, we observe from Fig. 3 that, for such
a slow phonon mode, NEBO provides a good approximation
for all temperatures and/or voltages of interest. We conclude
that the ISPI technique is capable of accurately describing
three different analytically tractable parameter regimes.

B. Franck-Condon blockade

Next we address the limit of strong electron-phonon
coupling λ, where the rate equation approach yields a Frank-
Condon (FC) blockade of the current for low bias and T �
�.28 Sufficiently large λ can be realized experimentally, and the
FC blockade has indeed been observed in suspended carbon
nanotube quantum dots.8 For an unequilibrated phonon mode
with intermediate-to-large λ, understanding the FC blockade
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FIG. 2. (Color online) Same as Fig. 1 but for � = 0.5� (main
panel) and � = 2� (inset), both for T = �.
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FIG. 3. (Color online) Same as Fig. 1 but for � = 0.5� and
λ = �. The main panel is for T = � and compares the ISPI results
to NEBO predictions. The insets are for T = 3� and T = �/3,
respectively, where the rate equation results are also shown. Notice
that, in contrast to ISPI, the rate equation predicts an unphysical
current blockade for T = �/3.

in the quantum-coherent low-temperature regime, T < �, is
an open theoretical problem. Here multiple phonon excitation
and deexcitation effects imply a complicated (unknown)
nonequilibrium phonon distribution function, and the one-step
tunneling interpretation in terms of FC matrix elements be-
tween shifted oscillator parabolas28 is not applicable anymore.
Here we study this question using ISPI simulations, which
automatically take into account quantum coherence effects.

In Fig. 4, the crossover from weak to strong electron-
phonon coupling λ is considered. The inset shows IV curves
for T = �, where we observe a current blockade for low volt-
ages once λ � 2�. The blockade becomes more pronounced
when increasing λ and is lifted for voltages above the polaron
energy λ2/�.28 Remarkably, the FC blockade persists and
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FIG. 4. (Color online) ISPI data for the IV curves from weak
(λ = 0.5�) to strong (λ = 4�) electron-phonon coupling, with � =
2�. The main panel is for T = 0.2�, the inset for T = �. We used
a dense voltage grid yielding smooth IV curves. Error bars are not
shown but remain small (cp. Fig. 1).
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becomes even sharper as one enters the quantum-coherent
regime (here, T = 0.2�), despite the breakdown of the
sequential tunneling picture. We also observe a nonequilibrium
smearing of phonon step features in the IV curves in Fig. 4
(cf. also Refs. 8 and 28).

IV. CONCLUSIONS

We have extended the iterative simulation of path integrals
(ISPI) technique to the Anderson-Holstein model, which is the
simplest nonequilibrium model for quantum dots or molecules
with an intrinsic bosonic (phonon) mode. Our formulation
exploits a mapping to an effective three-state system and re-

produces three analytical theories valid in different parameter
regions. This extension of the ISPI approach then captures
the full crossover between those limits unless both T and V

are very small. For strong electron-phonon coupling and an
unequilibrated phonon mode, we find that the Franck-Condon
blockade becomes even more pronounced as one enters the
quantum coherent regime.
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