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Conductance quantization in graphene nanoconstrictions with mesoscopically smooth but
atomically stepped boundaries
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‘We present the results of million-atom electronic quantum transport calculations for graphene nanoconstrictions
with edges that are smooth apart from atomic-scale steps. We find conductances quantized in integer multiples
of 2¢?/ h and a plateau at ~0.5 x 2¢2/ h as in recent experiments [N. Tombros et al., Nat. Phys. 7, 697 (2011)].
We demonstrate that, surprisingly, conductances quantized in integer multiples of 22/ h occur even for strongly
nonadiabatic electron backscattering at the stepped edges that lowers the conductance by one or more conductance
quanta below the adiabatic value. We also show that conductance plateaus near 0.5 x 2e?/ h can occur as a result
of electron backscattering at stepped edges even in the absence of electron-electron interactions.
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Electrical conductances quantized in integer multiples
of the fundamental quantum 2e¢?/h are the hallmark of
ballistic quantum transport in nanostructures such as semi-
conductor quantum point contacts,"> gold atomic wires,’
and carbon nanotubes.* These quantized conductances are
explained theoretically in terms of the Landauer theory of
transport.” However, in the case of graphene nanostructures,
quantum transport calculations have shown the conductance
quantization to be easily destroyed by disorder®'* that is
ubiquitous in these systems or by abrupt bends in the quantum
wire geometry.'> Accordingly, there have been only a few
reports'®!8 of conductance quantization being observed ex-
perimentally in graphene nanostructures: Lin et al.' and Lian
etal.'” demonstrated conductance quantization experimentally
in graphene nanoribbons. However, the conductance steps that
they observed were a few orders of magnitude smaller than the
ballistic conductance quantum 2%/ k. This phenomenon'®!”
has been explained theoretically'®?° as arising from strong
electron backscattering at the edges of the electronic subbands
of the ribbons due to the presence of random defects. More
recently, Tombros et al.'® have reported the experimental
observation of conductance quantization in integer multiples
of 2¢2 /h, as well as a fractional conductance plateau at
~0.6 x 2¢?/ h, in a graphene nanoconstriction (GNC) at zero
magnetic field. To minimize the effects of disorder on transport
in their device, Tombros et al.'® studied a short suspended
GNC whose width was similar to its length and estimated to
be ~300 nm. Their sample was annealed by Joule heating,
which resulted in the constriction being formed with curved
boundaries that were smooth on the mesoscopic length scale
of ~100 nm. The atomic-scale structure of the boundaries
was not determined experimentally, however, the curvature
of the constriction’s boundaries implies the presence of large
numbers of atomic-scale steps (and possibly also other defects)
along the boundaries. In this respect the GNC of Tombros
et al.'® differs from the well-known semiconductor quantum
point contacts (SQPCs),!? where the transverse electron con-
finement is achieved electrostatically and thus the constriction
boundaries are effectively smooth on the atomic scale as well
as on the much larger (submicrometer) length scale of the
overall dimensions of the constriction. In the limit of extremely
slow spatial variation of the confining potential, electrons are
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adiabatically transmitted through the SQPC or adiabatically
reflected. As was pointed out by Glazman et al.’' such
adiabatic transport results in quantized conductances; each
electronic subband that is adiabatically transmitted through the
narrowest part of the SQPC at the Fermi energy contributes a
quantum 2%/ h to the measured conductance. If the confining
potential of the SQPC varies smoothly but not adiabatically,
conductance quantization may still occur, each electronic
subband transmitted through the narrowest part of the SQPC
at the Fermi energy again contributing a quantum 2/ h to the
total conductance.?2 However, to the best of our knowledge,
to date there have been no theoretical studies of conductance
quantization in constrictions with boundaries exhibiting large-
scale smoothness but atomic-scale steps, as in the GNC of
Tombros et al.'® For this reason a definitive understanding of
the conductance quantization in integer multiples of 2¢%/h
observed by Tombros et al.'® has been lacking. Furthermore,
it has also been unclear whether the conductance plateau
observed by Tombros et al.'® at ~0.6 x 2¢*/h was the result
of electron-electron interactions (as is widely believed of the
0.7 x 2¢%/h plateau in SQPCs?*?*) or whether it can be
accounted for instead by strong single-electron scattering at
steps in the constriction’s boundaries.

In this Rapid Communication we report the results of
quantum transport calculations that address these issues. We
consider a noninteracting electron tight-binding model of
graphene constrictions having similar dimensions to the GNC
of Tombros et al.'® and having boundaries that are smooth on
the length scale of the constriction but with large numbers of
steps on the atomic scale.”> We show that this model exhibits
integer and fractional conductance plateaus similar to those
that were observed experimentally.'® Our results depend quali-
tatively on both the width of the constriction and its orientation.
For the armchair orientation, the calculated integer quantized
conductances of the constrictions have smaller integer values
than those of uniform armchair graphene ribbons with the
same width as the narrowest part of the constriction. This
differs qualitatively from the well-known behavior of SQPCs
where the adiabatic and nonadiabatic quantized conductance
values are equal to those of a uniform quantum wire whose
width equals that of the narrowest part of the constriction.?!">?
We find plateaus with conductance values ~0.5 x 2¢2/h as
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well as the integer plateaus. For the zigzag orientation the
calculated integer quantized conductances of the constrictions
are either the same as or lower than those of uniform ribbons
of the same width as the constriction. We also find integer
and fractional quantized conductances for constrictions whose
narrowest parts are neither zigzag nor armchair.

We describe GNCs by the standard tight-binding Hamilto-
nian on a honeycomb lattice,

H = ZE,‘(I}LCIZ‘ — Ztij(a;aj + H.c.), (1)
i (i)

where ¢; is the on-site energy and #;; =t = 2.7 eV is the matrix
element between nearest-neighbor atoms. This Hamiltonian is
known to describe the m-band dispersion of graphene well
at low energies.”® Spin and electron interaction effects are
outside of the scope of our study. The nanoconstriction and
any random edge disorder and bulk vacancies that are present
are introduced by removing carbon atoms from a uniform
ribbon and setting appropriate hopping elements ¢#;; to zero. It
is assumed that atoms at the edges are always attached to two
other carbon atoms and all dangling bonds are passivated by a
neutral chemical ligand, such as hydrogen, so that the bonding
between the carbon atoms at the edge and around vacancies
is similar to that in bulk graphene. Random bulk and edge
disorders (when present) are characterized by the probability
of the carbon atoms being removed, p® and p¢, respectively.
p? is normalized relative to the whole sample, while p¢ is
defined relative to an edge only. The long-range potential due
to charged impurities is approximated by a Gaussian form®!!
of range d: ¢; = Zro Vo exp(—|r; — rol?/d?), where both the
amplitude V) and coordinate r are generated randomly.

In the linear response regime the conductance of the GNC
is given by the Landauer formula’

2¢%
G = - Z Tji. )

T}; is the transmission coefficient from subband i in the left
lead to the subband j in the right lead, at the Fermi energy. T;
is calculated by the recursive Green’s function method—see
Ref. 27 for details. The average conductance (G) for samples
with random disorder was calculated by averaging over an
ensemble of samples with different realizations of the disorder.
For the results presented below, averaging was carried out over
ten realizations for each disorder type.

To investigate the transport properties of GNCs we chose
geometries similar to those studied experimentally.'® The
shape of the constriction was modeled by a cosine function
so that its edges were smooth apart from atomic-scale steps.
The width of the narrowest part of the GNC was varied in the
range W = 150...250 nm. The GNC was attached at its two
ends to semi-infinite leads represented by ideal nanoribbons
of width W' = 300 nm. This guarantees that for any W
the leads supply more states for propagation than can pass
through the narrowest part of the constriction. The region of
the constriction itself in our tight-binding quantum transport
calculations included up to ~1500 000 carbon atoms. In our
modeling of the effects of random disorder we assumed it to
be present only in a finite region of width 300 nm and length
L = 300 nm; the semi-infinite leads were free from disorder.
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The calculated conductances of GNCs with different
constriction widths W are shown in Fig. 1(a) for the armchair
orientation of the graphene host and edges of the ideal leads.
Note, however, that the edge orientation along most of the
constriction itself is neither armchair nor zigzag; see the
inset in Fig. 1. The conductance shows faint quantization
steps in integer multiples of 2¢?/ h, similar to those observed
experimentally by Tombros et al.'® For better visualization
we plot the energy derivative of the conductance dG/dE
in Fig. 1(b). Here a dip in dG/dE indicates a plateau in
the conductance. The prominent dips in dG/dE in Fig. 1(b)
cluster around conductance values that are integer multiples
of 2¢?/ h, including both odd and even integer multiples. The
conductance of the GNC decreases as constriction becomes
narrower, a feature expected theoretically and observed-? in
conventional semiconductor quantum point contacts: As the
constriction width shrinks, the number of propagating states
for a given Fermi energy decreases. Interestingly, although the
conductance plateaus occur near integer multiples of 2e2/ h,
in each case the integer has a smaller value than that for the
ideal infinite ribbon of uniform width whose width equals the
width W of the narrowest part of the constriction, for the same
electron Fermi energy, calculated with the same tight-binding
approach. This can be seen by comparing the conductances of
the GNC’s in Fig. 1(a) with those of the corresponding uniform
ideal ribbons?®?° that are shown as the dotted lines of the
same color in Fig. 1(a). We also found no correlation between
the calculated GNC conductances and the semiconductor or
metallic property of uniform ideal armchair ribbons. These
findings show that the conductance quantization that we find
for the armchair-oriented host and leads is not due to adiabatic
transmission of individual eigenmodes of the ideal leads
through the constriction, but that additional scattering along
the constriction edges plays an important role.

For W = 200 nm, we find an additional conductance step
at ~0.5 x 2¢2/ h [see Fig. 1(b) and the inset of Fig. 1(a)]. This
agrees with the experimental findings in Ref. 18. Whether or
not this feature is present in the results of our quantum transport
calculations depends on the width W of the constriction; note
that experiments have been reported for only a single sample.'®
However, as can be seen in Fig. 1, this fractional plateau
coexists with integer conductance plateaus at higher electron
Fermi energies for the same GNC and occurs for both electron
and hole transport (not shown), as in the experimental data.'®

Our results for GNCs with the zigzag orientation’>*! of
the graphene host and edges of the leads are shown in Fig. 2.
A comparison of Figs. 1 and 2 reveals significant differences
between quantized conductance plateaus in GNCs with the
host and leads in the zigzag and armchair orientations: For
the zigzag orientation the quantized conductance plateaus
are more pronounced than for the armchair case. Also
for the zigzag case the calculated values of the quantized
conductances of the GNCs in many (but not all) cases are
close to the values of the quantized conductances of ideal
uniform zigzag ribbons having the same width as the narrowest
part of the GNC and the same electron Fermi energy. By
contrast, as we have already mentioned, all of the integer
quantized GNC conductances for the armchair case are smaller
than those of the corresponding uniform ideal ribbons by
integer multiples of 2¢?/ h. Thus in many cases nonadiabatic
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FIG. 1. (Color online) (a) Conductance vs Fermi energy for GNCs
with constriction widths W = 150, 200, and 250 nm. The constriction
shape follows the cosine function and is smooth apart from steps
on the atomic scale. Host and edge orientation of the semi-infinite
leads is armchair. The dotted lines show conductances of uniform
armchair ribbons of the same widths as the narrowest parts of the
GNCs whose conductances are plotted in the same colors. The
black solid line shows the conductance of a 300-nm-wide ribbon,
whose width equals that of the leads W'**. (b) Conductance G vs its
energy derivative dG/d E. The dips in d G /d E indicate conductance
plateaus. In the dashed rectangle dG/d E is shown for W = 200 nm
only. Temperature 7 = 0. ¢t = 2.7 eV. The subband spacing is an
order of magnitude larger than kz T even at 4.2 K as in Ref. 18.

electron backscattering is much weaker for GNCs in the zigzag
orientation than for those in the armchair orientation. This
difference may be attributed to the current densities being
much lower near zigzag graphene edges than near armchair
edges, so that the conductances are less affected by edge
imperfections for zigzag ribbons.*

The open red squares in Fig. 3 show the calculated con-
ductance of an asymmetric GNC with the armchair orientation
of the host and leads. As shown in the inset, the geometry
in this case is similar to the W = 200 nm armchair-oriented
constriction in Fig. 1 except that the upper and lower regions
where the carbon atoms have been removed are now offset
from each other laterally by 80 nm. Thus the edges of the
narrowest part of the constriction have neither the armchair nor
the zigzag orientation. We find that the electron backscattering
is somewhat stronger (the conductance lower) in this case than
for the symmetric W = 200 nm armchair-oriented constriction
in Fig. 1; the calculated conductance for the latter is replotted as
the solid black squares in Fig. 3 for comparison. However the
first few quantized conductance plateaus (as well as the plateau
at ~0.5 x 22/ h) are still clearly visible for the asymmetric
GNC.

The effects of disorder of different types are shown in Fig. 4.
As a test system we chose a GNC of width W = 200 nm
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FIG. 2. (Color online) The same as Fig. 1 but for the zigzag
configuration of host and edges in the leads.

having the armchair orientation. The effect of disorder on
the conductance of the GNC is similar to that for graphene
nanoribbons.'” However, the conductance quantization is
strongly degraded for every disorder type, including bulk
vacancies. This may be attributed to the varying width of the
GNC along the transport direction that precludes the existence
of well-defined subband edges for the whole structure. We find
each type of disorder to suppress the conductance and to result
in universal conductance fluctuations.'%-33

In conclusion, we have carried out million-atom electronic
quantum transport calculations for graphene nanoconstrictions
with boundaries that are smooth except for steps on the
atomic scale and have dimensions similar to those of the
graphene nanoconstrictions that have been found to exhibit
conductances quantized in integer multiples of 2¢?/h in
recent experiments.'® Our results demonstrate quantized con-
ductances similar to those observed experimentally'® in a
tight-binding model with noninteracting electrons. We find
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FIG. 3. (Color online) Conductance vs Fermi energy for GNC of
width W = 200 nm. The red open squares show the conductance for a
constriction whose top and bottom parts are shifted by 80 nm relative
to each other. The black filled squares show for comparison the
conductance for the corresponding symmetric constriction of width
W = 200 nm, as in Fig. 1(a).
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FIG. 4. (Color online) (a) Effect of different disorder types on the
conductance of armchair-oriented GNCs. (b) Conductance averaged
over ten realizations of disorder. Constriction width W = 200 nm.
The red line with filled circles is for edge disorder with p¢ = 0.2. The
blue line with filled squares is for bulk vacancy disorder with p® =
1075, The green line with rthombuses is for long-ranged potentials
due to charged impurities with effective parameters |V| < 0.2¢, p =
5 x 10" m~2, d = 10a. The black solid line shows the conductance
for an ideal, uniform ribbon 300 nm wide, and is given as a reference.

conductances quantized in integer multiples of 2¢%/ h to occur
in graphene nanoconstrictions, even in the presence of strong
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electron backscattering, at the stepped constriction edges that
depresses the quantized conductance values by one or more
2¢%/ h conductance quanta below the quantized conductance
values of uniform graphene ribbons with the same width
and electron Fermi energy as those of the narrowest part of
the constriction. This infeger conductance quantization in the
presence of such strong backscattering has no known analog
in either adiabatic or nonadiabatic semiconductor quantum
point contacts. It may explain why, based on their transport
measurements, Tombros ez al.'® estimated the width of their
GNC to be smaller (200-275 vs 300 nm) at zero magnetic field
than at higher magnetic fields where electron backscattering
at the edges of the constriction is reduced.’* We also find
that conductance plateaus at ~0.5 x 2¢?/h need not be the
result of electron-electron interactions in these systems, but can
result instead from nonadiabatic backscattering of electrons
at atomically stepped constriction boundaries. However, the
plateau observed experimentally at ~0.6 x 2¢*/h by Tombros
et al.'® resembles the plateau that is seen at ~0.7 x 2¢?/h in
SQPCs and is attributed to electron-electron interactions,>32*
in part because in SQPCs the potentials are smooth and there
is no analog of the atomic steps present at the edges of
GNCs. Therefore, further experimental studies are required
to clarify whether electron-electron interactions or boundary
scattering are primarily responsible for the fractional plateau
observed by Tombros et al.'® in the GNC. Our results
(see Fig. 1) suggest that systematic experimental studies of
GNCs having differing widths may answer this question. Our
quantum transport calculations also show random defects to
strongly degrade the conductance quantization in graphene
nanoconstrictions.
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