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Magnetic instability on the surface of topological insulators
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Gapless surface states that are protected by time-reversal symmetry and charge conservation are among
the manifestations of three-dimensional topological insulators. In this work we study how electron-electron
interaction may lead to spontaneous breaking of time-reversal symmetry on surfaces of such insulators. We find
that a critical interaction strength exists above which the surface is unstable with respect to the spontaneous
formation of magnetization, and we study the dependence of this critical interaction strength on temperature and
chemical potential.
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Topological states of matter are one of the main themes
of modern condensed-matter physics. A recent important
discovery in this field are topological insulators.1–3 In three
dimensions topological insulators are electronic materials that
have a bulk gap like an ordinary insulator, but have conducting
states on their surface.1,4 The gapless spectrum on the surface
arises from the topologically nontrivial band structure.5,6 It is
composed of an odd number of Dirac cones in the Brillouin
zone of the two-dimensional surface. These Dirac cones cannot
be gapped as long as time-reversal symmetry and charge
conservation are maintained.

In this work we explore the conditions under which the
surface of a strong topological insulator may lower its energy
by a spontaneous breaking of time-reversal symmetry through
the formation of a uniform spin polarization. The way energy
may be saved by spin polarization is most easily understood
for the case where there is one Dirac cone on each surface, and
the chemical potential lies at the Dirac point. For such a case,
two sources for energy gain may be identified. First, if the spin
polarization introduces a mass term to the Dirac Hamiltonian,
the filled electronic states are lowered in energy, while the
energy of the unfilled states is raised. Second, as is usual for
electrons, if all spins are polarized, two electrons cannot reside
at the same point, and the short-distance energy cost is reduced.
This is not the case in the absence of magnetization. Even
though the half-filled Dirac cone includes just one electron for
every momentum state, the variation of the spin’s direction
with that of the momentum leads to a nonzero probability of
two electrons being at the same point and thus to a gain of
interaction exchange energy by spin polarization.

In our analysis, carried out within the Hartree-Fock ap-
proximation, we find that there is a critical interaction strength
above which the spin-polarized ground state is favorable in
energy compared to the noninteracting ground state. We find
this to be the case for every value of the chemical potential,
for all temperatures much smaller than the bulk energy gap,
and for both contact interaction and Coulomb interaction. Of
the possible spin polarizations we find that the lowest energy
corresponds to an out-of-plane polarization, which introduces
an energy gap to the Dirac cone at the Dirac point. For contact
interaction, we find the phase transition from the unpolarized to
the polarized phase to be of second order both as a function of
interaction strength and as a function of temperature. Finally,
we find the energy gap to rise sharply as temperature is lowered

below the temperature Tc of the phase transition, and it reaches
values comparable to Tc at about T ≈ 0.9Tc. We note that a
gapped Dirac cone was recently observed by angle-resolved
photo emission (ARPES) in the topological insulator phase,7

but the information available is not sufficient to judge whether
this observation is related to the mechanism we study.

We start with the noninteracting Hamiltonian. ARPES
measurements carried out on two topological insulators,
Bi2Te3 and Bi2Se3, have found that while near the Dirac
point the spectrum is Dirac-like, a hexagonal warping of the
Fermi surface occurs away from the Dirac point.8–10 This
phenomenon was modeled by Fu,11 who suggested an effective
Bloch Hamiltonian of the surface including a cubic term:

H(k) = v0(kxσy − kyσx) + λk3 cos(3θ )σz, (1)

where v0 is the electron velocity near the Dirac point, λ is the
warping parameter, and σ are the Pauli matrices. The above
spectrum contains two branches that meet at the Dirac point.
This Hamiltonian is time-reversal symmetric. At the time-
reversal invariant point k = 0, the spectrum is degenerate and
the degeneracy is protected by the time-reversal symmetry.

The interaction part of the Hamiltonian is

HI =
∫

d r d r ′ψ†
σ (r)ψσ (r)V (r−r ′)ψ

†
σ ′ (r ′)ψσ ′ (r ′). (2)

Here ψ†
σ (r) is the creation operator of an electron at point r

and spin σ . We will assume that the following operator has a
nonvanishing expectation value:

〈ψ†
σ (r)ψσ ′ (r ′)〉 ≡ Mσ,σ ′ (r−r ′). (3)

Strictly speaking, we can interpret M as the magnetization only
when r = r ′. However, the expectation value (3) breaks time-
reversal symmetry even when r �= r ′. We confine ourselves to
uniform states, in which M will depend only on R ≡ r − r ′.
This case is most relevant when the Fermi energy is located
at the vicinity of the Dirac point, otherwise spin-density-wave
formation is an interesting possibility.

The expectation value (3) may be written in a matrix form
as Mσ,σ ′ (r−r ′) = M0(R)I + �M (R) · �σ , but since we are interested
only in the spin part of the interaction and in particular the out-
of-plane spin (z direction), we will assume that only Mz �= 0;
hence, Mσ,σ ′ (r−r ′) ≡ M (R)σz. In-plane magnetization will be
discussed in a later part of the paper.
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By denoting Fk = ∫
d R V (R) M (R) exp (−ik · R), we can

write the mean-field Hamiltonian as

H MF ≡
∫

d R V (R) M2
(R) +

∫
dk

(2π )2
c
†
kĥ(k)ck, (4)

where

ĥ = v0(kxσy − kyσx) + (λk3 cos 3θ − 2Fk)σz.

For a self-consistent determination of the out-of-plane mag-
netization, we denote the eigenvalues and the corresponding
eigenstates of ĥ as ε±(k) and (χ↑,χ↓)±, respectively. The ±
signs refer to the positive and negative energy states. Hence,
the magnetization per unit volume is

m = 1

	

∑
k

(〈σz−〉fε− + 〈σz+〉fε+ ), (5)

where

〈σz±〉 = |χ↑|2± − |χ↓|2±,

and fε is the Fermi-Dirac function at energy ε. The trivial
solution (m = 0) always exists, but we are interested in
nontrivial solutions of this equation. The total energy per unit
volume is

Em =
∫

d R V (R) M2
(R) + 1

	

∑
k

(ε−fε− + ε+fε+ ). (6)

We will define the energy cost to have finite magnetization
as 
E = Em − E0. If we find a nontrivial solution to Eq. (5)
that minimizes Em (gives 
E < 0), we will conclude that the
system forms spontaneous surface magnetization.

It is hard to determine the exact validity conditions for this
variational procedure and to estimate its accuracy. Considering
the effect of quantum fluctuations is beyond the scope of this
paper. However, since Eq. (1) has no spin-rotational symmetry,
the only symmetry that the magnetic ground state breaks is a
discrete one (time reversal), hence the influence of fluctuations
is suppressed. Moreover, since the procedure above relies on
the existence of a bulk gap, it is clear that it requires the
interaction energy to be smaller than the bulk gap. We will
consider the condition Uc < 
bulk as necessary for the above
procedure (where Uc is the critical interaction energy and 
bulk

is the bulk energy gap).
It is simplest to analyze a contact interaction, V (R) = g

2 δ(R).
At zero temperature Eq. (5) for the magnetization M (0) ≡ m

becomes

m =
∫

kF

dk
(2π )2

gm − λk3 cos 3θ√
v2

0k
2 + (gm − λk3 cos 3θ )2

, (7)

where dk = kd kd θ and kF is the Fermi momentum, which
is the solution to (v0kF)2 + (λk3

F cos 3θ )2 = μ2, with μ the
chemical potential. For |μ| < (v3

0/λ)1/2, kF ≈ |μ|/v0 is a good
approximation. In general the integration has an upper cutoff in
momentum, k�, which corresponds to the momentum at which
the surface states merge with the three-dimensional bands.
For λ = 0 all results depend linearly on this cutoff, but for
λ �= 0 we can identify a momentum scale q0 ≡ ( v0

λ
)1/2 above

which the integrand decays as k−3. The cutoff dependence then
disappears for k� � q0.

We find that there is a critical interaction strength gc at
which a second-order phase transition occurs, such that for
g > gc there is an m �= 0 solution to Eq. (7) with 
E < 0.
The critical interaction strength is

gc =
√

λv0

Y (p�) − Y (pF )
= gc(μ = 0)

1 − Y (pF )
Y (p�)

, (8)

where p�,F = k�,F

√
λ
v0

is a dimensionless parameter and the

function Y is defined by

Y (p) =
∫ p

0

p′dp′

(2π )2

∫ 2π

0
dθ

p′2

[p′2 + (p′3 cos 3θ )2]3/2
. (9)

The function Y (p�) is a continuous, positive, and monotoni-
cally increasing function of p� with the following asymptotic
behavior:

Y (p�) ∼
{

p�

2π
, p� � 1

0.247, p� � 1.
(10)

For μ = 0 and λ → 0, Eq. (8) becomes gc = 2π v0
k�

;

while for k� � ( v0
λ

)1/2, Eq. (8) becomes gc ≈ 4.1
√

v0λ. The
resulting phase diagram (μ = 0) in the large cutoff limit is
presented in Fig. 1. Clearly, in order to get closer to a magnetic
instability we need a large k� (a large bulk energy gap) and a
small Fermi velocity.

As opposed to the standard parabolic Hamiltonians with
contact interaction, here the critical interaction strength gc in-
creases as |μ| increases. While the standard Stoner instability12

is a Fermi-surface process where the spin-degenerate Fermi
surface splits into two, in the Dirac-cone case there is no
spin degeneracy and the Fermi surface remains unchanged
when uniform magnetization occurs. This transition involves
the entire Fermi sea.

In the limit λ → 0, Eq. (8) gets a simple form:

gc(μ) = gc(μ = 0)
1

1 − kF

k�

. (11)

As expected for kF → k� (full band) magnetization formation
is not possible. We note, however, that as long as the chemical
potential is far from the bulk bands its effect on gc is rather
weak.

For g ∼ gc we can estimate the interaction energy per
particle by noticing that 〈HI〉per-particle = gne

8 , where ne is the

FIG. 1. (Color online) Phase diagram (p� = 2) for contact inter-
action at zero (dashed line) and finite temperatures, where τ ≡ T

E∗ .
A critical interaction exists, beyond which magnetization formation
occurs. The critical interaction increases as the temperature increases.
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TABLE I. Bulk gap vs Uc = gcne

8 for ne = 5 × 1013 cm−2.

v0 (eV nm) λ (eV nm3) 
bulk(eV) Uc (eV)

Bi2Te3 0.255 0.25 0.16 0.35
Bi2Se3 0.355 0.128 0.078 0.066

electron density on the surface. We will use ARPES data
of Bi2Te3 and Bi2Se3 surfaces9,13 to compare the critical
interaction energy with the bulk energy gap for a typical surface
density (Table I). In both materials Uc < 
bulk, which puts
the mean-field results within the necessary condition for the
validity of the approximation.

At nonzero temperatures the transition happens when the
free energy of the magnetized surface is lower than that of the
nonmagnetized one.

It is useful to note that 〈σz−〉 = −〈σz+〉 ≡ 〈σz〉. For μ = 0,
the equation for m becomes

m =
∫

dk
(2π )2

x(m,k) tanh
√

v2
0k2+x2

m

2T√
v2

0k
2 + x2

m

, (12)

where T is the temperature and x(m,k) = gm − λk3 cos 3θ .
The free energy difference (
f ) per unit volume is

T

∫
dk

(2π )2
log

⎛
⎝ 1 + cosh

(√
v2

0k
2 + x2

m

/
T

)
1 + cosh

[√
v2

0k
2 + (λk3 cos 3θ )2/T

]
⎞
⎠ .

(13)

It is natural to define the dimensionless temperature scale

τ ≡ T
E∗ where E∗ = ( v3

0
λ

)1/2 is the characteristic energy scale
introduced by hexagonal warping. The resulting phase diagram
is presented in Fig. 1.

As expected, the critical interaction strength gc increases
with increasing temperature. We note, however, that the effect
on gc is rather mild. Again, the phase transition is of second
order, both for a fixed temperature as a function of g and for a
fixed g as a function of temperature.

A similar analysis may be carried out to examine the
conditions for in-plane magnetization to be formed. To that
end, we assume a magnetization in the x-y plane, solve the
self-consistent equation that determines its magnitude and find
the conditions under which it leads to an energy gain. As
we now show, for typical parameters (v0,λ,k�), the critical
interaction strength to have in-plane magnetization gc,x−y is
smaller than gc,z, the critical interaction strength to have a
magnetization perpendicular to the plane. However, as we
also show, these parameters correspond to an extremely large
warping parameter. Hence, the interesting quantity is the
out-of-plane magnetization. We carry out the calculation at
zero temperature. We note that an in-plane magnetization does
not create a gap in the spectrum. It does, however, break
time-reversal symmetry and hence removes the topological
protection of the Dirac point.

The Bloch Hamiltonian is

H(k) = v0(kxσy − kyσx) + λk3 cos 3θσz − g �m · �σ . (14)

We denote (mx,my) ≡ m‖. In the symmetry-broken phase, the
system will choose a specific direction. Although the system
is not rotationally invariant we find that the angle dependence
is very small, and we choose m‖ = mx . The self-consistent
equation for mx is then given by

mx =
∫ k�

kF

dk
(2π )2

〈σx(k)〉, (15)

where

〈σx〉 = mxg + v0k sin θ√
v2

0k
2 + (gmx)2 + 2gv0mxk sin θ + (λk3 cos 3θ )2

.

All that is left now is to solve Eq. (15), minimize the
energy, and deduce the critical interaction gc,x−y . The resulting
gc,x−y has the same form as Eq. (8), with Y (p�) being
replaced by �(p�), where �(p�) is a continuous, positive, and
monotonically increasing function of p� with the following
asymptotic behavior:

�(p�) ∼
{ p�

4π
, p� � 1

0.352, p� � 1,
(16)

The ratio gc,x−y

gc,z
= Y (p�)

�(p�) is presented in Fig. 2 for μ = 0.

For k� < 3.7
√

v0
λ

, the instability to mz appears before the
instability to in-plane magnetization. Since this value of k�

corresponds to a warping parameter that is about a hundred
times larger than that observed in Bi2Te3, we conclude that the
interesting quantity to examine is the magnetization in the z

direction. This conclusion does not change when the chemical
potential is away from the Dirac point. We also considered
the possibility of a tilted magnetic order. Expansion of the
self-consistent equations reveals that near the phase transition
line the magnetization is solely out-of-plane or in-plane.

Our analysis has so far been focused on the contact
interaction between electrons, and has uncovered an instability
of the surface to the formation of magnetization, with the
instability being strongest for the formation of out-of-plane
magnetization at zero temperature and zero chemical poten-
tial. The dependence of the critical interaction strength on
temperature and chemical potential is however rather weak.

Motivated by these observations we turn to the long-range
Coulomb interaction, V (R) = e2/R, and study the instabil-
ity to the formation of out-of-plane magnetization at zero
temperature and zero chemical potential.14 We assume that

FIG. 2. Ratio between the critical interactions to have in-
plane/out-of-plane magnetization as a function of the ratio of k�

to the warping wave vector scale (v0/λ)1/2. For typical values the
instability to mz occurs before the one to mx .
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FIG. 3. (Color online) Phase diagram for Coulomb interaction
at zero temperature. A critical interaction exists, beyond which
magnetization formation occurs.

〈ψ†
σ (r)ψσ ′ (r ′)〉 ≡ M (R)σz is an exponentially decaying function

of R with a decaying length α−1. This assumption yields two
self-consistent equations for the magnetization and for α:

m =
∫

dk
(2π )2

4πme2√
k2+α2 − λk3 cos 3θ√

v2
0k

2 + (
4πme2√
k2+α2 − λk3 cos 3θ

)2
, (17)

m

α
=

∫
dk

(2π )2

2πme2

k
√

k2+α2 − λk2 cos 3θ√
v2

0k
2 + (

2πme2√
k2+α2 − λk3 cos 3θ

)2
. (18)

The trivial solution, in which m = 0 and α is arbitrary, is
always an exact solution to the equations above. After solving
numerically for m and α and minimizing the energy, we
identify the regions of parameter space in which a nontrivial
solution exists, as shown in Fig. 3. The values we obtain for
α−1 range between 1 and 4 lattice constants, hence justifying
the interpretation of m as the magnetization.

For the Coulomb interaction the mean interaction energy
per particle is of the order of e2r−1

0 , where r0 is the mean
distance between electrons on the surface. We can estimate
r0 ∼ n

−1/2
e .

For a given density we can parametrize the critical in-
teraction strength by defining a critical interaction energy
Uc = e2

c r
−1
0 ∼ e2

cn
1/2
e . Again, for our approximation to be valid

we must have Uc < 
bulk.

We find this condition to be satisfied for both Bi2Te3

and Bi2Se3: Using Fig. 3 and extracting the density from
ARPES data we evaluated the critical interaction strength,
e2
c ∼ 0.057e2

0 (0.072e2
0) for Bi2Te3 (Bi2Se3), where e0 is the

electron charge in vacuum. We find the actual Coulomb
interaction on the surfaces of these two materials to be too
weak for an instability. The dielectric constant on the two
surfaces is close to 40, as compared to a value of about 15 for
which our approximation leads to an instability.

To summarize, we examined here the possibility that
time-reversal symmetry is spontaneously broken on the surface
of a three-dimensional strong topological insulator due to
interactions between surface electrons. We assumed that the
surface can be described by a two-dimensional effective
Dirac Hamiltonian, and we treated interactions within the
Hartree-Fock approximation. We found that for a strong
enough interaction, both of the contact and the Coulomb
types, the surface is unstable with respect to the formation
of spontaneous magnetization, with the strongest instabil-
ity being the formation of magnetization in the direction
perpendicular to the surface. For the contact interaction,
we found the transition from the nonmagnetized to the
magnetized surface to be of second order, both at zero
temperature as a function of interaction strength and for a
fixed interaction strength as a function of temperature. The
dependence of the critical interaction strength on temperature
and chemical potential, at least for the contact interaction,
is rather mild. We found the interaction strength in the two
most studied strong topological insulators to be too weak
for an instability, but not by a large factor, making the
instability an issue that may be relevant for other topological
insulators. In particular, in order to see the phase transition
one should seek a material with a large bulk energy gap,
small velocity of the surface mode, and low dielectric
constant.
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