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Electron-hole pair condensation at the semimetal-semiconductor transition:
A BCS-BEC crossover scenario
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We act on the suggestion that an excitonic insulator state might separate—at very low temperatures—a
semimetal from a semiconductor and ask for the nature of these transitions. Based on the analysis of electron-hole
pairing in the extended Falicov-Kimball model, we show that tuning the Coulomb attraction between both species,
a continuous crossover between a BCS-like transition of Cooper-type pairs and a Bose-Einstein condensation
of preformed tightly bound excitons might be achieved in a solid-state system. The precursor of this crossover
in the normal state might cause the transport anomalies observed in several strongly correlated mixed-valence
compounds.
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The challenging suggestion of electron-hole pair conden-
sation in thermal equilibrium into the excitonic insulator
(EI) phase at the semimetal (SM) to semiconductor (SC)
transition,1 where the SM-EI transition may be described
in analogy with BCS theory of superconductivity and the
SC-EI transition is discussed in terms of a Bose-Einstein
condensation (BEC) of preformed excitons,2–4 is of topical
interest. This is due to the growing amount of experimental
data on materials which are candidates for the realization of
the EI, where different situations with respect to the SM/SC-EI
transition are given. For example, in the rare-earth chalco-
genide TmSe0.45Te0.55, that is, an intermediate-valent SC,
the pressure-induced resistivity anomaly at low temperatures
was ascribed to exciton formation and a subsequent SC-EI
transition.5–8 An EI state in semiconducting Ta2NiSe5 was
recently probed by photoemission.9 On the other hand, in the
layered transition-metal dichalcogenide 1T -TiSe2, which is a
SM, a BCS-like electron-hole pairing was considered as the
driving force for the periodic lattice distortion.10 Here evidence
suggests electron-hole “Cooper-pair” fluctuations above the
SM-EI transition temperature. A BCS-like electron-hole pair
condensation was also studied for graphene bilayers.11 In
this system a BCS-BEC crossover might be realized by a
magnetic field that creates a gap and magnetoexcitons which
may condense. From a theoretical point of view, one of the
main issues in this field is the better understanding and a
detailed description of the normal phase above the SM/SC-EI
transition, especially of the electron-hole pair fluctuations and
of the BCS-BEC crossover scenario12 that characterizes the
EI instability and, to the best of our knowledge, has not been
observed in a solid so far.

In this Rapid Communication we address this topic and the
mechanisms behind in terms of a minimal two-band model,
the so-called extended Falicov-Kimball model (EFKM),3,13,14

which covers direct c- and f -band hopping and admits the
pairing of c electrons with f holes via a strongly screened
Coulomb interaction. Thereby we focus on the normal phase
that surrounds the EI and look for precursor effects in the
electron-hole pair susceptibility. In particular, we analyze the
nature of the electron-hole bound states and determine their
number and spectral weight. We are able to show how the

normal state to EI transition changes from BCS to BEC when
the SM gives way to the SC.

Representing the orbital flavor of the f ,c electrons by the
pseudospin σ =↑ , ↓, the EFKM takes the form

H =
∑
k,σ

εkσ nkσ + U
∑

i

ni↑ni↓. (1)

Equation (1) constitutes a generalized Hubbard model with on-
site Coulomb interaction U and spin-dependent band energies
εkσ = Eσ − tσ γk − μ, where Eσ defines the band center of the
σ band, tσ denotes the nearest-neighbor hopping amplitude on
a D-dimensional hypercubic lattice, γk = 2

∑D
d=1 cos kd , and

μ is the chemical potential. For E↑ < E↓ and t↑t↓ < 0 (t↑t↓ >

0) a direct (indirect) band gap might appear. The σ -electron
density is given by nσ = 1

N

∑
k〈nkσ 〉 = 1

N

∑
k〈c†kσ ckσ 〉, and

we require n↑ + n↓ = 1 for the half-filled band case.
The EI low-temperature phase of the EFKM is characterized

by a nonvanishing order parameter � = U
N

∑
k〈c†k↓ck↑〉 (in

case of a direct band gap).3,14,15 Describing a condensate
of electron-hole pairs (excitons), � obeys a gap equation
with anomalous Green’s functions involved.2,4,10 From this
the transition temperature TEI(U ) can be determined. In what
follows we scrutinize the existence of excitonic bound states
above TEI where � = 0. To this end we analyze the sus-
ceptibility χ

↑,↓
q (ω) = 〈〈bq;b†q〉〉ω, with b

†
q = 1√

N

∑
k c

†
k+q↓ck↑

creating an electron-hole excitation with momentum q in the
SM and SC high-temperature phases. The pole of χ−σ,σ

q (ω),

ωX(q) = ω
↑,↓
X (q) = −ω

↓,↑
X (q), calculated in ladder approx-

imation, describes an exciton, provided that 0 < ωX(q) <

ωC(q). Here ωC(q) = mink(ε̃k+q↓ − ε̃k↑) is the lower bound of
the electron-hole excitations and ε̃kσ denotes the renormalized
band structure. The binding energy of the exciton is EX

B (q) =
ωC(q) − ωX(q). Outside the electron-hole continuum the
imaginary part of χ−σ,σ

q is

Imχ−σ,σ
q (ω) = −π Z(ωX,q) δ

(
ω − ω

−σ,σ
X

)
, (2)

where

Z(ωX,q) =
[
U 2

N

∑
k

f (ε̃k↑) − f (ε̃k+q↓)

(ωX + ε̃k↑ − ε̃k+q↓)2

]−1

(3)

gives the spectral weight of the excitonic quasiparticle.
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To determine the chemical potential including self-energy
effects, we expand the imaginary part of Gkσ (ω) = [ω −
ε̄kσ − 
kσ (ω)]−1, where ε̄kσ = εkσ + Un−σ , for small damp-
ing. The self-energy is obtained by the Green’s function
projection technique16


kσ (ω) = − U 2

Nπ2

∑
k′

∫
dω̄

∫
dω′ [f (ω′) + p(ω′ − ω̄)]

ω − ω̄

× Imχ
−σ,σ
k−k′ (ω̄ − ω′)ImGk′−σ (ω′), (4)

with f (ω) = [eβω + 1]−1, p(ω) = [eβω − 1]−1. Considering
the parameter region near the SM/SC-EI transition, where
the dominant weight of the electron-hole spectral function is
suggested to arise from the bound state as compared with the
electron-hole continuum, in the self-energy calculation we take
into account only the excitonic quasiparticle contribution given
by Eq. (2). Then the σ -electron density can be decomposed into
a part of nearly-free electrons (with renormalized dispersion)
and a term ∝Im
kσ (ω) that comprises the electron-bound
states as well as the reaction of the σ electrons to the existence
of excitons. Denoting the latter contribution as the correlation
part, we have nσ = nnf

σ + ncorr
σ , and find nnf

σ = 1
N

∑
k f (ε̃kσ ),

where ε̃kσ = ε̄kσ + Re
kσ (ω)|ω=ε̃kσ
. It turns out that ncorr

↑ =
−ncorr

↓ . Hence, the chemical potential can be obtained by
using solely the nearly-free part of the particle densities, i.e.,
n↑ + n↓ = nnf

↑ + nnf
↓ = 1 (cf. also Ref. 2).

The number of excitons with center-of-mass momentum q
results in

NX(q) = 〈b†q bq〉|ωX
= Z(ωX,q)p(ωX), (5)

leading to the total exciton density nX = 1
N

∑
q NX(q). To

characterize the composition of the normal phase, we in-
troduce the bound-state fractions � = nX/(nX + nnf

↓ ) and
�0 = NX(0)/N (nX + nnf

↓ ).
To simplify the numerical analysis, we discard the band

renormalization of the σ electrons by the excitons, i.e., we
neglect the term ∝Re 
 in ε̃kσ . Then nnf

σ contains the Hartree
shift Un−σ only and, inserting the nearly-free part of Gkσ into

kσχ−σ,σ

q becomes the random phase approximation (RPA)
result. Since the ground-state phase diagram of the EFKM is
similar in two dimensions (2D) and three dimensions (3D),13,14

and we are primary interested in the normal-state properties
for T > TEI, we consider the 2D case hereafter. To model an
intermediate-valence situation we choose E↑ = −2.4, E↓ =
0, t↑ = −0.8 without loss of generality, and take t↓ = 1 as
energy unit.

The RPA EFKM phase diagram shown in Fig. 1 describes
the general scenario at the SM-SC transition, which persists,
apart from a reduction of the critical temperature, also when
the electronic correlations are treated by the more elaborate
slave boson approach.15 The SM (SC) has a gapless (gapful)
band structure with a small band overlap (band gap). The
metal-insulator transition is triggered by enlarging the Hartree
shift upon increasing U . The phase boundary to the EI can be
obtained from a BCS-like gap equation, which holds on both
SM and SC sides, but gives no detailed insight into the nature
of this transition.

Now, let us take a closer look as to how the excitonic
instability develops in the SM and SC regimes (cf. Figs. 1–3).

0 1 2 3 4 5 6 7
0

0.5

1

1.5

0 1 2 3 4 5 6 7
Coulomb attraction U

0

0.5

1

1.5

te
m

pe
ra

tu
re

 T~

semimetal semi-
conductor

excitonic
insulator

0 1 2 3 4 5 6 7
0

10

r co
h

BCS BEC

1

2 3

4

Δ ≠ 0

rcoh

rcoh≅1

FIG. 1. (Color online) EI formation at the SM-SC transition in
the 2D EFKM. The phase diagram is calculated for a band splitting
E↑ − E↓ = −2.4, and band asymmetry t↑/t↓ = −0.8, where the
temperature T is scaled to the maximum critical temperature T̃ =
T/T max

EI with T max
EI = 0.361 (RPA, solid line) and T max

EI = 0.256
(slave boson, thin dashed line). The coherence length of the EI
condensate at T̃ = 0, rcoh (as defined in Ref. 4), is indicated by the
dotted-dotted-dashed line.

We start with the SM (point 1 in Fig. 1). Here the valence
and conduction bands slightly overlap; as a result a distinct
Fermi surface exists (see Fig. 2, blue frame). Approaching
TEI, the electron-hole pair fluctuations contained in χ−σ,σ

q
become critical and will drive a phase transition, which is
accompanied by a spontaneous hybridization of the ↑ and ↓
bands.10 The resulting energy spectrum exhibits a gap at the
Fermi level, where the density of states is largely enhanced at
the top (bottom) of the lower (upper) quasiparticle band.3,15

The pivotal question is whether excitons are involved in this
BCS-like transition. While excitonic bound states might exist
above TEI (in the region given by the red line), we definitely
have no excitons with q = 0. In either case, Z(ωX,q) is zero
except near the corners of the Brillouin zone [see Fig. 3(b)],
and the number of these excitons, having a large center-of-mass
momentum, is very small [see NX(q) in Fig. 2]. Hence, the
formation of the EI state in the SM region is barely influenced
by excitons.

A larger Coulomb interaction U will affect the system
in two ways: It (i) increases the bare band splitting and (ii)
amplifies the attraction between electrons and holes. At the
SM-SC transition (point 2 in Fig. 1, purple frame in Fig. 2), the
↑ and ↓ bands only touch each other (at k = 0). Accordingly
the Fermi surface shrinks in size to a point. In this case a larger
number of excitons form (also with small momenta), but again
the zero-momentum excitons play no significant role because
of the conelike structure of Z(ωX,q); see Fig. 3(c).

In the SC region (point 3 in Fig. 1, green frame in Fig. 2) the
(Hartree) band structure exhibits a direct gap, within which the
chemical potential μ and the exciton level ωX are located. Now
zero-momentum excitons may occur. Although having the
lowest binding energy, they represent the largest contribution
to the total number of excitons. Here Z(ωX,q) is finite for all
momenta. Actually the system now realizes a three-component
plasma consisting of electrons, holes, and excitons. Lowering
the temperature, the excitonic level moves toward the valence
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FIG. 2. (Color online) Mean-field band
scheme (left-hand panels) and q-resolved
exciton numbers (right-hand panels) for the
points marked in Fig. 1 (1: at the SM-EI
transition; 2: at the SM-SC transition; 3: in
the SC regime; 4: at the SC-EI transition).
The electron dispersion (ε̄kσ ) is given by the
blue/dark gray solid lines, and the chemical
potential (μ) by the orange/gray dashed line.
Note that the excitonic level [ωX(q), red/gray
solid line] and the continuum level [ωC(q),
black dashed line] are shifted by the ↑-band
maximum, ω̄X/C = ωX/C + maxk(ε̄k↑). The
blue/dark gray dotted line marks the ↑-band
top.

band and finally touches its top at k = 0 (point 4 in Fig. 1, red
frame in Fig. 2). Thereby the excitonic instability appears, and
the SC-EI transition takes place. Most notably, we observe a
divergence of NX(0), i.e., the zero-momentum excitonic state
is macroscopically occupied. This demonstrates the BEC of
preformed excitons, contrary to the BCS-like transition on the
SM side.

The spectral weight Z(ωX,q) apparently accounts for the
character and composite nature of the electron-hole bound
states. This becomes especially evident in the weak and strong
interaction limits. For very small U , the Coulomb attraction
between electrons and holes can neither form excitonic bound
states nor establish the c-f electron coherence in the EI
state. Here Z(ωX,q) = 0, independent of q [see Fig. 3(a)]. By

contrast, as U → ∞, Z(ωX,q) = 1 ∀ q [Fig. 3(g)]. Hence, in
this limit, excitons behave as ideal bosons; cf. Eq. (5). For U →
∞, ωX(q) scales as ln U while the continuum level grows
∝U [recall that ωC(0) = −E↑ − 4(1 + |t↑|) + U (n↑ − n↓)];
EX

B becomes infinite. Despite this, an EI phase cannot be
established, this time because the large band splitting prevents
c-f electron coherence. This explains why the EI phase arises
below an upper critical coupling Uc only.

Having identified the nature and the condensation mech-
anism of electron-hole pairs we now discuss how they
might influence the normal-state properties of the EFKM. In
particular, we examine the so-called halo phase around the
EI, where excitons and excitonic resonances dominate the
electron-hole excitation spectrum.2,17 Figure 4 gives results
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FIG. 3. (Color online) Exciton quasiparticle weight Z(ωX,q).

for the SC region with U > Uc(T ) and T > TEI(U ). Already
for U/Uc(T ) � 1.5 almost all electron-hole pair excitations
constitute excitons, i.e., � → 1. The small number of nearly-
free ↓ electrons can be attributed to the relatively large
band gap. Remarkably, the portion of excitons with q = 0
is less than one per thousand. Approaching Uc from above,
by reducing U at fixed temperature, the fraction of the zero-
momentum excitons increases by two orders of magnitude,
thereby overcompensating the initial depletion of � caused
by the reduction of U . Thus, on the SC side the formation
of the EI is driven by the condensation of zero-momentum
excitons. Keeping U constant and coming up to the EI by
lowering the temperature, we observe an uninflected increase
of both � and �0 which again is triggered by the occupation
of excitonic bound states with q = 0. Here the initial decrease
of nX results from the narrowing of the Bose distribution. For
temperatures of about T/TEI(U ) � 2.5, we find a significant
number of unbound ↓ electrons. Their contribution increases,
if T is further raised, because excitons dissociate.

Figure 5 illustrates what happens if we cross the border
to the SM phase at fixed T̃ > 1 by reducing the bare band
splitting |E↑| (middle panel) or downsizing U (right-hand
panels). On the SC side, nX increases because the band gap
decreases and concomitantly the exciton level deepen. In the
SM, zero-momentum excitons cannot exist, and �0 drops
to zero. Although small, � is finite nevertheless, because
electron-hole bound states carrying a finite momentum remain.
These excitonic resonances will affect the transport properties
on the SM side as well. Thus, basically the whole EI phase is

surrounded by an exciton-rich region (halo); there the number
of charge carriers is substantially reduced, and excitons
provide abundant scattering centers for the residual electrons
and holes. We expect that an inclusion of the continuum
electron-hole scattering states will round off the sharp kinks
appearing in Fig. 5 at the SC-SM transition.18

Now we relate our results to experiments on the SC-SM
transition in TmSe0.45Te0.55.5–8 The anomaly in the lattice
expansion as a function of temperature at high constant
pressure occurring near 250 K was ascribed to a SM-EI
transition, and the ratio of the exciton density nex and the
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FIG. 4. (Color online) Bound-state fractions � and �0 as func-
tions of Coulomb attraction U at fixed T̃ = 0.679 (solid lines, lower
scales), and as functions of temperature at fixed U = 5.5 [dashed
lines, upper scales; here T is given in units of TEI(U = 5.5)]. The
right-hand panel shows the corresponding exciton densities nX .
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FIG. 5. (Color online) Bound-state fractions � (solid line) and
�0 (dashed line) as functions of the Coulomb attraction U (left-hand
panel), and exciton density nX vs bare band splitting |E↑| (middle
panel), both at T̃ = 1.108. The right-hand panels compare the U

dependence of nX for the 2D and 3D cases (at the same reduced
temperature T̃ ).

atomic density nTm was estimated as nex/nTm = 0.22 in Ref. 7.
Assuming Mott-Wannier-type excitons, they are suggested
to overlap due to their large concentration. However, the
binding energy was found to be too large,6 which questions the
Mott-Wannier-type model. In our EFKM model, the coherence
length rcoh of the excitons at T = 0 and for U ∼ 3.6 equals the
lattice constant (see Fig. 1 and Ref. 4). At the SC-EI transition
at TEI(U = 5.5) we obtain nX ∼ 0.18 (see Fig. 4, right-hand
panel), and a BEC of nonoverlapping Frenkel-type excitons
with a high density takes place. The numerical value of nX at
the SC side of the phase diagram approximately agrees with
the experimental value [note that the agreement improves for
the (real) 3D situation—see Fig. 5, upper-right-hand panel].
Taking the f bandwidth W↑ = 8|t↑| � 30 meV (Ref. 7) and

our parameter choice, we get T max
EI � 0.3t↓ � 20 K. That

means, the experimental phase boundary at the SC side
between 20 and 250 K obtained by electrical resisitivity
data5–8 describes the appearance of an exciton-rich halo
phase above the SC-EI transition, as was also concluded in
Ref. 2. On the other hand, the observed linear increase of
the heat conductivity and thermal diffusivity with decreasing
temperature below 20 K (Ref. 8) may be ascribed to the EI
phase. As revealed by measurements of the Hall constant at
4.2 K as function of pressure,5 the position of the maximum
in the resistivity coincides with that of the minimum in the
current-carrier density. We suggest that this close relation,
indicating the formation of excitons from free current carriers,
also holds in the halo phase. Then the maximum in nX at the
SC-SM transition (see Fig. 5) should correspond to a minimum
in the current-carrier density, so that the resistivity maximum at
the pressure-induced SC-SM transition in TmSe0.45Te0.55 may
be qualitatively understood within our halo-phase concept.

In summary, we have analyzed the formation of the EI state
at the SM-SC transition in the 2D EFKM and provided strong
evidence for a BCS-BEC crossover scenario. While Cooper-
type pairing fluctuations become critical on the SM side, Bose
condensation of preformed zero-momentum excitons takes
place on the SC side. Accordingly, the surroundings of the
EI are dominated by electron-hole fluctuations or excitonic
bound states with strong impact on the transport and optical
properties.
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