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Molecular-dynamics study of the viscous to inertial crossover in nanodroplet coalescence
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We have studied the coalescence of three-dimensional (3D), quasi-two-dimensional (quasi-2D), and 2D liquid,
equal-size Cu and Si nanodroplets in the viscous and inertial regimes using classical molecular-dynamics
simulations. At the onset of coalescence, a bridge (of radius r) between the droplets forms and develops until
the merge is complete. For the 3D and quasi-2D systems, our results show a transition from a viscous-dominated
regime at very short time, where r ∝ τ 1, to a regime dominated by inertial forces at longer time, with r ∝ τ 0.5,
in agreement with theoretical models; the viscous regime is not observed in two dimensions, where only inertial
forces seem to be operating. A detailed analysis of the 3D data suggests that the viscous-to-inertial crossover
length lc(R0,T ) (with R0 being the initial radius of the droplets and T being the temperature) behaves differently
in the two systems. While lc ∝ R

1/2
0 and depends only weakly on temperature in l-Cu, as theory predicts,

lc ∝ R0.96
0 T 0.41 in l-Si. We conclude from these observations and corresponding experimental data that the

prefactor for the dependence of r on time in the inertial regime is not “universal” and actually depends on system
properties, including initial radius, viscosity, and surface tension.
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I. INTRODUCTION

The process of droplet coalescence is of paramount impor-
tance in many industrial applications, such as ink-jet printing,
coating technologies, mixing and transportation of liquids in
microfluidic devices, etc.1–6 It can be observed in nature, in
raindrop splashing and cloud drop coarsening, for instance.
Because coalescence is normally triggered by the rupture
of two neighboring droplets and the subsequent formation
of a bridge,7 the deformation process offers interesting
opportunities for studying the droplet rupture mechanism. In
the case of low-viscosity and/or nanoscale droplets, the tools
presently available, however, do not permit a direct observation
of the sequence of events starting with the initial rupture of
the droplets to full coalescence, so that most of our current
understanding in this case is based on indirect measurements or
theory.8–12

There is ample room for further investigations therefore,
and computer models, in particular, classical molecular-
dynamics (MD) simulations, provide an interesting and pow-
erful avenue for this purpose. That being said, there have been
only very few studies of liquid coalescence using classical
MD,13–16 which possesses the immense advantage of being
able to deal with realistic models at a reasonable computational
cost (as opposed to, e.g., ab initio approaches). Classical
MD simulations are based on, and entirely determined by,
empirical or semiempirical potentials, which can be as realistic
as desired (at some cost, however). In contrast, simulations
based on continuous or hydrodynamic approaches require
several system properties as input (viscosity, density, surface
tension, etc.), and while capable of dealing with large-
scale systems, these approaches provide no information on
processes at the atomic scale, which is needed for study-
ing the very early moments of coalescence of nanoscale
droplets.

In the present work, using MD simulations with empirical,
but realistic, interatomic potentials, we examine the coa-
lescence (in particular its early moments) of low-viscosity

liquid nanodroplets in different geometries and verify, which
is our principal objective, whether or not these yield the
expected transition17 between viscous-driven and inertial-
driven regimes. Our work also provides insights on how
droplets evolve immediately after the rupture which signals
the onset of coalescence, a stage not accessible to experiment.
Indeed, nanoscale droplets are becoming increasingly relevant
to various applications in nanoelectronics, and precise control
of the size and structure of the droplets is required;18 it has been
shown that the morphology and size of nanoscale aggregates
can be controlled by modifying either the characteristic
coalescence time or the characteristic collision time, that is,
the time between collision events,19 and more importantly
whether coalescence is complete before another collision takes
place. Hence, a detailed understanding of the early coalescence
regime is of utmost importance.

We are concerned here with two systems of interest for
applications and which have different “chemistries,” viz.,
Cu and Si: sub-10-nm Si nanoparticles are interesting for
their luminescence properties,20,21 while Cu nanoclusters
are used, e.g., in self-assembled systems or in iron-based
alloys to alter their properties.22,23 That being said, our
study focuses on fundamental processes so that these systems
may be viewed as prototypical. A “generic” model such
as Lennard-Jones could also be relevant and was in fact
considered but lacks the cohesion and stability of more realistic
models (mainly due to the absence of many-body contribu-
tions), a significant drawback for the study of finite-liquid
clusters.

A widely accepted model for liquid coalescence has been
proposed by Eggers et al.24 and Duchemin et al.17 According
to this model, the evolution of the coalescence bridge proceeds
in two steps, driven respectively by viscous and inertial forces.
In the inertial regime, the radius of the bridge evolves as
r ∝ τ 1/2, where τ is the time measured from the moment
at which the rupture of the droplets takes place;17 this is
valid when r is larger than the viscous length lv of the liquid
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FIG. 1. (Color online) (a) Normal coalescence, with d = r2/R0,
where d is the distance between the two droplets at distance r

(neck radius) from the horizontal symmetry axis; (b) topological
deformation in the initial linear bridge formation with d = d0, with
d0 being the initial distance between the droplets.

droplets, which, for low-viscosity liquids, is always true for
late stages of coalescence since r increases with time. The
inertia-driven behavior has been unambiguously established
both experimentally and computationally.12,25,26

At very early times, now, when the droplets are essentially
still, the onset of coalescence results from overcoming the
surface tension, and therefore, viscous forces are expected to
be the main driving factor. Hopper has developed an exact
solution for two-dimensional (2D) systems27 that has been
shown to apply to three-dimensional (3D) systems as well24

provided that the distance between the droplets d � r . Here,
the scaling law is of the form r ∝ τ a , where a is close to
unity. This model should hold irrespective of liquid viscosity
as long as r < lv . Since lv is very small for low-viscosity
fluids (e.g., ∼10 nm for water), the viscous behavior is
practically unobservable by direct means; recent experiments
using electrical currents to monitor coalescence are consistent
with the Hopper formula, but the hypothesis underlying the
interpretation of the experimental data, in particular with
regard to the initial deformation of the droplets, remains to
be verified.10,12,28

Indeed, it is not clear at present how the rupture that opens
the way to coalescence proceeds, in particular whether it obeys
the “normal” behavior, which follows from the assumption
that the tips of the droplets remain quadratic as they evolve,
as illustrated in Fig. 1(a), i.e., d ∝ r2, or if, rather, they are
slightly flattened with the distance between them remaining
roughly constant, d = d0, as illustrated in Fig. 1(b).10–12,24 In
any case, at long enough times (typically microseconds for
millimeter-size drops), the square-root behavior is recovered;
the point at which the transition takes place between the two
regimes is usually described in terms of the characteristic
lengths lv and the Ohnesorge number Oh, which we will
discuss in Sec. II.

We thus aim in the present study to assess the nature of the
different regimes operating in various conditions, in particular
dimensionality, droplet size, and temperature. As noted above,
we have considered two different materials, copper and silicon,
in three different geometries: full 3D, quasi-2D (thin disks),
and real 2D. The quasi-2D systems are relevant because they
correspond to a geometry often used in experiment,12,29 viz.,
thin, liquid, lens-shaped droplets with aspect ratio �10−3. The
2D systems, for their part, are expected to be equivalent to 3D
systems according to Eggers et al.;24 this makes them evidently
interesting because they are easily amenable to very large-scale

simulations (as also are quasi-2D models), a non-negligible
advantage.

Anticipating our results, we find both the 3D and quasi-
2D systems to exhibit a transition from an r ∝ τ behavior
(viscous) to an r ∝ τ 0.5 behavior (inertial), in agreement with
theory. In contrast, the exact 2D system exhibits only the
r ∝ τ 0.5 behavior, i.e., the initial viscous regime appears to
be absent; we propose an explanation for this observation
in terms of coordination and cohesion. We have analyzed
the simulation data to understand more precisely the role of
initial droplet radius, temperature, and material properties.
The viscous-to-inertial transition can be characterized by
a crossover length lc(Ro,T ), the radius of the coalescence
neck, which theory predicts to be universal. We find however
that lc(R0,T ) behaves differently in the two systems: while
lc ∝ R

1/2
0 and depends only weakly on temperature in l-Cu,

as theory predicts, lc ∝ R0.96
0 T 0.41 in l-Si. These observations

suggest that the prefactor for the dependence of r on time is in
fact not “universal” but actually depends on system properties,
in particular initial radius, viscosity, and surface tension.

II. THEORETICAL CONSIDERATIONS

The onset of coalescence is signaled by the rupture of
the surfaces of the droplets and the formation of a bridge,
of radius r , that rapidly fills the distance d between the
drops as they merge (Fig. 1). For low-viscosity fluids, the
coalescence process is largely driven by inertial forces; a
scaling law follows from equating the capillary forces to the
inertial forces:24

R0σ

r2
∝ ρ

(
dr

dt

)2

, (1)

where σ is the surface tension, ρ is the density of the liquid,
and R0 is the initial radius of the drops (assumed to be of equal
size). Solving Eq. (1) we obtain the dependence on time of the
radius of the bridge:

r = c

(
σR0

ρ0

)1/4

(t − t0)1/2 = c

(
σR0

ρ0

)1/4

τ 1/2, (2)

with t0 being the time at which rupture takes place (and t −
t0 ≡ τ ) and c being a constant of the order of unity.9,10,17,24

This scaling law assumes that the bridge radius is larger than
the viscous length of the liquid, r > lv = η2/(ρσ ); we return
to this point later in this section.

As noted earlier, irrespective of liquid viscosity, a linear
dependence of r on τ is expected if r < lv and d � r as
viscous forces dominate the flow of liquid matter at very
early moments of coalescence.24,27 For drops immersed in
an inviscid environment (i.e., where viscous forces from the
environment are negligible), we have24,27

r = c′′ σ
η

τ, (3)

where η is the viscosity of the liquid droplets and (asymp-
totically) c′′ = − 1

π
ln( στ

R0η
). Experiment suggests that the

logarithmic dependence on time is weak9,12,28 at best, i.e., r

depends linearly on τ , with c′′ being a constant of order unity;
evidently, the actual state of affairs would depend on the range
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of values of τ covered by the experiment as well as the initial
radius R0.

Solving Eqs. (2) and (3) for τ yields the characteristic bridge
radius (crossover length) between the two regimes (viscous and
inertial):

lc = η

(
c2

c′′

) √
R0/(σρ0), (4)

where c′′ would be calculated at the crossover time τ = τc.
For low-viscosity liquids, viscous forces operate on very short
time scales, and coalescence rapidly crosses over to a state
which is dominated by inertial forces, as described by Eq. (2).

A linear regime may also be shown to derive from
considering that the local deformations of the droplets near the
coalescence bridge are nonquadratic. Indeed, Case and Nagel
have shown that a linear behavior emerges if one assumes
that the droplets are slightly flat when coalescence begins,
as illustrated in Fig. 1(b), so that d is essentially constant
(=d0).10,11 With this new geometry and given the relation
between the length of the bridge and its radius, d = r2/R0

(see Ref. 24), Eq. (1) becomes10,11

σ

d0
∝ ρ

(
dr

dt

)2

, (5)

yielding

r = c′
(

σ

ρd0

)1/2

τ. (6)

Solving Eqs. (2) and (6) for τ yields the characteristic bridge
radius (crossover length) between the two regimes:

lc = c2

c′
√

R0d0. (7)

In this model, the transition between the two regimes is related
to topological features of the deformation. Thus, Eq. (6)
dominates the flow until the flattening disappears and the
normal inertial behavior, Eq. (2), takes over.

The above formalism assumes that the fluids have low
viscosity, e.g., water, for which η ∼ 1 mPa s.24 The systems
we investigate here, l-Si and l-Cu, have viscosities in the range
0.37–0.6 mPa s (Refs. 30–33) and 1.5–2.4 mPa s (Refs. 34
and 35), respectively, depending on temperature, which can
also be considered as “low.” This can in fact be assessed
more precisely by considering the Ohnesorge numbers and
the viscous lengths of the fluids.

The Ohnesorge number, given by Oh = η/
√

ρσR0, relates
the viscous forces to the surface tension and inertial forces. A
low value of Oh indicates a lesser influence of viscosity.36,37

When Oh > 1, viscous forces dominate and retard the process;
in contrast, when Oh < 1, inertial forces dominate.36 For l-Cu,
Oh ∼ 0.1–0.3 (vs ∼0.001 for millimeter-size water droplets),
while Oh ∼ 0.07–0.15 for l-Si; note that the surface tension σ

varies with temperature.31,38 Thus, both our systems should
be inertia dominated, and Eq. (2) should apply. However,
because the Oh values of our systems are relatively close
to the “critical” value (1), we expect a significant influence
of viscous forces, especially early in the coalescence process
when the drops are completely still.

Also, in order to determine the relative importance of
viscous forces, the viscous length lv = η2/(ρσ ) may be
compared to the bridge radius r: when r > lv , the inviscid
theory would apply. Here we have lv ∼ 0.7–1.7 Å and lv ∼
3.2–6.5 Å for l-Si and l-Cu, respectively. Thus, again, both
our systems are close to the viscous-inertial crossover point:
lv ∼ r early in the coalescence process, but as time proceeds,
r will surpass lv , so that the scaling law predictions of Eq. (2)
apply.

III. COMPUTATIONAL DETAILS

As mentioned above, we considered two different materials
in order to assess the universal character of the coalescence
process and the relevant models, viz., l-Cu and l-Si. For l-
Cu, we studied the problem in three different geometries: 3D,
quasi-2D, and 2D; in all cases, the embedded-atom method
(EAM) potential has been used,

Ei = Fα

[ ∑
j �=i

ρα(rij )

]
+ 1

2

∑
j �=i

φαβ(rij ), (8)

with parameters appropriate to each configuration (2D,
Refs. 39 and 40; quasi-2D and 3D, Ref. 41); the cutoff was
set to 5 Å. The radius of the 2D nanodroplets ranged between
30 and 100 nm, and temperature was varied between 1700
and 2000 K; the latter are high enough for coalescence to
proceed swiftly, but low enough that evaporation is not a
significant problem. In quasi-2D and 3D geometries, the radius
of the droplets was in the range 5–35 nm, and temperatures
were in the range 1700–2500 K; note that Tmelt ∼ 1320 K
in 2D and ∼1380 K in 3D (both EAM) and Tboil = 2835 K
(experiment; cf. Refs. 40,42 and 43). The systems we study
here are nanometer size but nevertheless satisfy the d � r

condition (except at very early moments of coalescence), at
least early enough in the coalescence process, so that viscous
forces should be meaningful.

For l-Si, the Stillinger-Weber (SW) potential,44,45 cutoff at
4 Å, was employed:

E =
∑

i

∑
j �=i

φ2(rij ) +
∑

i

∑
j �=i

∑
k>j

φ3(rij ,rik,
ijk), (9)

where φ2 and φ3 represent two-body and three-body in-
teractions, respectively. Here the droplets varied in radius
between 7 and 12 nm, and temperature varied between 1800
and 2500 K vs Tmelt = 1691 K (SW) and Tboil = 3538K

(experiment).46

Prior to simulating the coalescence process, the nan-
odroplets were prepared individually by melting, thermalizing,
and stabilizing spheres (3D), thin disks (quasi-2D), or disks
(2D) of material. We verified that the densities, radial dis-
tribution functions, and diffusion coefficients were consistent
with values from the literature.47–52 The droplets were then
placed in near contact to one another, i.e., at a distance
∼3–4 Å, slightly shorter than the interaction range of the
potentials. No initial velocities were given to the droplets so
that coalescence is purely energy driven. The center-of-mass
motion was subtracted when necessary, which was seldom
the case. Thermalization was interrupted during coalescence
(and temperatures remained constant to within a few tens of
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FIG. 2. (Color online) Coalescence of two l-Si nanodroplets as
a function of time: (a) early in the coalescence process, (b) when
r = R0, and (c) at complete coalescence. The initial radius of the
droplets is 77 Å, and the temperature is ∼1800 K. The atoms are
colored according to the nanodroplet to which they belong.

degrees at the highest temperatures). For the particular case of
quasi-2D droplets, which consist of disks of finite thickness
(8.5–13.5 Å), periodic boundary conditions in the z direction
(perpendicular to the plane of the droplets) are imposed during
the relaxation stage; these are removed during coalescence, and
the geometry is maintained by forcing the z component of all
velocities and forces to zero, so that the system cannot deform
to a sphere, as it would tend to do.

All calculations were carried out using our own computer
programs as well as the package LAMMPS, an excellent open-
source multiprocessor classical MD code.53 The coalescence
simulations were performed in the microcanonical ensemble
using time steps in the range 0.3–0.7 fs, depending on
temperature. Following each simulation, the average bridge
radius was determined using a surface-finding algorithm,
as discussed in the Appendix. Also, most simulations were
repeated several times in order to improve statistics; overall,
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FIG. 3. (Color online) Bridge radius as a function of time for
77-Å l-Si droplets at 2000 K.

we examined 25 systems in 2D, 4 systems in quasi-2D, and
27 systems in 3D. By way of illustration, we present in Fig. 2
three snapshots of the coalescence of l-Si nanodroplets with
initial radius R0 = 77 Å and temperature ∼1800 K.

IV. RESULTS

A. Power-law regimes

1. 3D models

We discuss first the dependence of the bridge radius on
time in order to assess the existence of the two power-law
regimes and the crossover between them. An example of
this is presented in Fig. 3 for the coalescence of two l-Si
droplets of initial size 77 Å at temperature T ∼ 2000 K. The
two regimes, viscous and inertial, are clearly visible; they are
fitted to power laws [log(r) = α ∗ log(τ ) + e, where r is the
radius of the coalescence neck, τ is the time of coalescence,
α is the exponent of the power law, and e is an adjustment
constant] within the limits indicated (a to b for the viscous
regime and c to d for the inertial regime); also indicated is the
crossover length lc. Likewise, we show in Fig. 4 corresponding
results for l-Cu nanodroplets of different sizes and at different
temperatures.

The 3D systems we examined all display the two-regime
behavior. The various parameters characterizing the two
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FIG. 4. (Color online) Bridge radius as a function of time for
different l-Cu droplets, as indicated; the 90- and 70-Å curves have
been shifted down for clarity.
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TABLE I. Parameters characterizing coalescence, exponents of
the power laws in the viscous (αViscous) and inertial (αInertial) regimes
as well as crossover lengths lc, for the l-Cu droplets at the initial radii
and temperatures indicated. The number in parentheses is the error
bar on the last digit.

R0 (Å) T (K) αViscous αInertial lc (A)

52 2024 0.92(4) 0.508(2) 30
54 2523 0.95(2) 0.510(2) 34
67 1815 0.64(2) 0.526(1) 35
67 2015 0.95(2) 0.534(1) 46
68 1726 0.93(2) 0.526(1) 33
70 1766 1.36(9) 0.530(1) 41
70 1864 0.83(3) 0.537(1) 37
70 1964 1.05(3) 0.534(1) 38
70 2118 1.14(7) 0.548(1) 38
70 2219 1.02(2) 0.553(1) 42
70 2311 0.77(8) 0.526(1) 24
70 2496 0.67(2) 0.526(2) 38
80 2514 1.03(5) 0.506(3) 51
90 2515 0.96(4) 0.497(7) 48
111 2504 0.77(5) 0.462(4) 54

regimes (viscous and inertial exponents and crossover length)
are presented in Tables I and II. To summarize these results,
the power-law exponents for the viscous and inertial regimes
average to 0.9 ± 0.2 and 0.52 ± 0.02 for l-Cu droplets and
1.00 ± 0.08 and 0.53 ± 0.03 for l-Si droplets, in agreement
with both the linear and square-root behaviors discussed earlier
(modulo the statistical error). Note that it has been proposed
that the flattening effect may result from the presence of
a fluid (e.g., air or surfactant) in which the droplets are
lying in real experiments;11 our simulations seem to rule out
this possibility since the droplets are in vacuum. Hence, the
existence of two regimes would be inherent to the coalescence
process. As for the crossover length, it will be discussed in
Sec. IV C.

2. 2D models

We proceed now with a corresponding study for the 2D l-Cu
models. Typical results for the variation in time of the bridge
radius are presented in Fig. 5 and summarized in Table III.
While we do consistently observe the inertial regime, with an

TABLE II. Same as Table I for the l-Si droplets.

R0 (Å) T (K) αViscous αInertial lc (Å)

77 1796 1.06(4) 0.574(1) 48
77 1926 0.95(3) 0.552(1) 51
77 2023 1.03(3) 0.549(1) 46
77 2125 1.07(3) 0.526(1) 46
77 2215 0.97(3) 0.5201(6) 43
77 2327 0.92(4) 0.548(1) 50
77 2423 1.05(3) 0.556(1) 44
77 2525 0.93(5) 0.501(1) 58
80 2530 1.13(4) 0.545(5) 52
90 2518 0.83(7) 0.496(2) 71
121 2510 1.02(9) 0.483(3) 78
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FIG. 5. (Color online) Bridge radius as a function of time for l-Cu
2D droplets. For clarity the results have been shifted up and down
(except those for 300-Å, 1900 K droplets).

average exponent of 0.55 ± 0.04, i.e., close to the predicted
value of 0.5, the linear viscous regime is, at best, ill defined.
As can be seen in Table III and Fig. 5, the viscous-inertial
transition is seldom observed, and the viscous power-law is
certainly not linear. In addition, the crossover lengths that
we can reasonably extract from the data are in complete
disagreement with the values predicted on the basis of Eqs.
(4) and (7); the latter were deduced from quasi-2D and 3D
simulations to serve as reference, recalling that, according to
Ref. 24, lc is independent of dimensionality. The crossover
length is discussed in more detail in Sec. IV C.

The above results can be explained, to some degree, by
considering the differences in the coordination numbers and
binding energies between 2D and 3D systems. The viscous
regime is, by definition, dominated by viscous forces as these
oppose resistance to the deformation of the droplets. If the
binding energy and average coordination are “small,” the
overall resistance to deformation is reduced, thus promoting
an inertia-driven mechanism. This is the situation for 2D
systems; as indicated in Table IV, the average coordination

TABLE III. Power-law exponents for the two regimes as well as
measured and calculated crossover lengths for the coalescence of 2D
l-Cu droplets. For lc, the measured value is obtained by fitting to the
data, while the calculated value is obtained by fitting to Eqs. (4) and
(7).

lc (Å)
R0 (Å) T (K) αViscous αInertial Meas. Calc.

300 1710 0.487(4) 44
300 1903 1.2(2) 0.598(1) 20 44
300 2001 1.1(1) 0.536(1) 35 44
375 1994 0.9(2) 0.500(1) 19 50
430 1994 0.511(2) 54
491 1884 0.92(8) 0.575(2) 67 58
492 1799 0.8(1) 0.498(1) 48 58
493 1720 0.61(6) 0.556(2) 77 58
496 1992 0.90(5) 0.611(4) 30 58
952 2013 0.26(1) 0.554(2) 145 84
960 1724 0.42(2) 0.599(1) 51 84
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TABLE IV. Coordination and binding energy for 2D and 3D l-Cu
at T ∼ 2000 K.

Dimension Average coordination Binding energy (eV)

2D 5.8 2.3
3D 12 3.0

and binding energy of the 2D systems are much smaller
than for the 3D systems. It appears, in fact, that 2D sys-
tems are relatively unstable in the period during which the
bridge starts to form (because viscous forces are too weak)
and rapidly move to inertia-dominated dynamics after the
bridge forms.

To ascertain this explanation, we undertook to examine
quasi-2D systems, for which the topological limitations on
coordination and binding energy should be largely removed
and which, it so happens, correspond more closely to the real
“lens geometry” used in experiment. We discuss this next.

3. Quasi-2D models

We present in Table V and Fig. 6 the results for the
quasi-2D systems. As could be expected from the discussion
above, we observe in all cases a well-defined transition from
viscous-dominated to inertial-dominated coalescence, with
corresponding exponents of 1.0 ± 0.1 and 0.54 ± 0.04, in
close agreement with the predictions of the linear and quadratic
models, respectively. Thus, true 2D systems appear not to
exhibit the viscous-force-dominated regime, and in effect, a
thin, but finite, extra dimension seems to be required for it
to emerge; this is certainly the case for nanoscale droplets,
where the definition of viscosity or viscous forces becomes
problematic.

B. Dependence on temperature and initial radius

We examine in more detail here the effect of temperature
and initial radius on the coalescence process. In the inertial
regime, Eq. (2) can be rewritten by introducing the character-

istic inertial time,26 τi =
√

ρR3
0/σ , as follows:

r/R0 = c(τ/τi)
0.5; (10)

τi must be calculated for each system since it depends on
droplet size and temperature. For the l-Cu droplets, τi varies
between 35 ps for 52-Å droplets and 558 ps for 360-Å droplets.
For l-Si droplets τi is consistently smaller at equivalent radius,
e.g., τ Si

i = 40 ps for an 80-Å droplet at 2500 K, while τCu
i =

59 ps.

TABLE V. Same as Table I for the quasi-2D l-Cu droplets.

R0 (Å) T (K) αViscous αInertial lc (A)

335 2201 0.88(5) 0.539(4) 87
350 2518 1.16(3) 0.485(5) 107
354 2406 0.93(3) 0.550(3) 109
360 2323 1.03(3) 0.588(2) 93
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FIG. 6. (Color online) Bridge radius as a function of time for
the quasi-2D droplets. The 350- and 360-Å curves have been shifted
down for clarity.

We present in Fig. 7(a) our results for the radius of the
coalescence bridge as a function of time for the l-Cu droplet
simulations reported in Table I; Fig. 7(b) shows the same data
after rescaling the time by τi and the radius by R0. The different
curves now collapse onto a single one whose slope is ∼0.84 ±
0.09, corresponding to the value of c in Eq. (10). The exact
value of this constant is not known: as indicated in Table VI,
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FIG. 7. (Color online) (a) Bridge radius vs time for the l-Cu
simulations. (b) Same data collapsed, i.e., time rescaled by τi and
radius rescaled by R0.
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TABLE VI. Numerical and experimental values of constant c in Eq. (2). Also indicated are the surface tension σ and the viscosity η, as
well as the maximum size ratio r/R0 investigated. The asterisks (*) indicate experimental measurements.

Liquid type r/R0 (max) σ (mN/m) η (mPas) c

Numerical17 0.035 1.62
Methanol*26 0.5 22 0.59 1.29(5)
Silicon oil*9 0.5 20 5 1.24
Water*9 0.5 72 1 1.14
Silicon oil*9 0.5 20 20 1.11
Water*26 0.5 72 1 1.09(8)
Water/glycerin*26 0.5 67.4 14.1 1.03(7)
l-Cu (this work) 1.1 ∼1000 ∼2 0.84(9)
l-Si (this work) 1.1 ∼800 ∼0.5 0.91(5)

some experiments indicate that it lies in the range 1.03–1.29
(Refs. 9 and 26), while the numerical calculations of Duchemin
et al. (using a boundary integral method) suggest c = 1.62
irrespective of liquid.17 The latter appears to be inconsistent
with the values from both experiment and the present work.
One obvious difference is the size regime investigated, given
in Table I, much smaller in Duchemin et al. In any case, c ∼ 1
and the exact value evidently depends on the type of material,
as can be inferred from Table VI. This is indeed what we find:
cfit = 0.84 ± 0.09 for l-Cu and c = 0.91 ± 0.05 for l-Si; we
note in passing that larger values of σ seem to be correlated
with smaller c, as observed here.

The situation is far less clear for l-Si, as can be appreciated
from Fig. 8. The rescaling, shown in Fig. 8(b), is not
at all perfect; we note in particular that the deviations are
more pronounced for droplets with larger initial radius and
temperature, which evolve supralinearly, i.e., faster than for
smaller and colder droplets. In order to improve, or rather
assess, the universal character of the data, we introduced a
different characteristic inertial “variable” τi2 = τiC, where
C = √

Ra
0T b, and varied a and b so as to minimize the

deviation in the r/R0 axis. The best solution was found
when a = −1.24 and b = −0.77. The results are displayed
in Fig. 8(c). [In order to check our procedure, we have
performed a corresponding calculation for Cu and found a = 0
and b ∼ −0.2, which yields a temperature dependence T 0.05,
clearly negligible (and within error) for the temperature range
considered here; this result is consistent with the almost-
perfect fit of Fig. 7(b).]

There could be several explanations for the fact that the l-Si
data do not follow the expected behavior. One possibility is
that the coalescence process, especially on such short length
scales, is more sensitive to the physical properties and the
initial topology of the droplets than assumed in the theoretical
models. With this in mind, we can substitute τi2 in Eq. (10)
and expand to yield the following expression for the scaling
law:

rSi ∼ c

(
R0σ

ρ

)1/4

τ 1/2
(
R0.3

0 T 0.2
)
. (11)

While this operation is somewhat ad hoc, it does demonstrate
that materials are not all born equal; i.e., the scaling law does
depend on the specifics of the material. In particular, here,

we see (and this is coherent with our observations pertaining
to Table VI) that l-Si droplets are more sensitive to initial
physical parameters, notably R0, as well as temperature. Thus,
the constant c, far from being universal, is material and
temperature dependent, viz., c = c(R,T ,σ,η). To pursue this,
we have found that the values of the constants in Table VI could
be well described by the ad hoc formula c = 2/(σ 0.13η0.06),
as demonstrated in Table VII, showing that this parameter is
indeed not constant. Evidently, the fit is empirical but does
demonstrate the sensitivity of c to material properties, and the
same logic applies to both simulations and experiments, so
that these conclusions are not an artifact of the model.

C. Crossover length

The crossover length lc is a clear expression of the passage
from the viscous regime to the inertial regime. This can
be extracted from the coalescence data presented above or
calculated using Eqs. (4) or (7), which both state that lc ∝√

R0, with R0 being the initial radius of the droplets. We
present in Fig. 9 a plot of the simulated lc as a function of R0

for both l-Cu and l-Si droplets. For l-Cu, a fit to the MD data
yields an exponent of 0.57 ± 0.04, which is consistent with the
models presented above. The value of the slope, the constant in
lc = constR0.57

0 , is 8.25 × 10−5. This can be used to establish
the connection with the models summarized in Eqs. (4) and
(7), namely, const = η( c2

c′′ )
√

1/(σρ0) for the normal behavior

and const = c2

c′
√

d0 for the flattening model; recall that
c = 0.84.

TABLE VII. Numerical and experimental values of c (cf.
Table VI) compared to fitted values cfit = 2/(σ 0.13η0.06) (see text).

Liquid type c cfit

Methanol26 1.29(5) 1.38
Silicon oil9 1.24 1.23
Water9 1.14 1.15
Silicon oil9 1.11 1.13
Water26 1.09(8) 1.15
Water/glycerin26 1.03(7) 0.98
l-Cu (this work) 0.84(9) 0.78
l-Si (this work) 0.91(5) 0.88

115447-7



JEAN-CHRISTOPHE POTHIER AND LAURENT J. LEWIS PHYSICAL REVIEW B 85, 115447 (2012)

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120  140  160

B
rid

ge
 r

ad
iu

s 
(Å

)

Time (ps)

Raw SW simulations

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2

r/
R

o

(τ/τi)
1/2

Rescaled SW simulations

77Å 2423K
80Å 2530K
90Å 2518K

121Å 2510K

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.005  0.01  0.015  0.02  0.025

r/
R

o

(τ/τi2)1/2

Max rescaled SW simulations

(c)

FIG. 8. (Color online) (a) Bridge radius vs time for the l-Si
simulations. (b) Same data collapsed, i.e., time rescaled by τi and
radius rescaled by R0; the slope of the black line is 0.91. (c) Same
data maximally collapsed; see text for details.

For the flattening model we find c′
Cu = 0.17, somewhat

smaller than the value given by Case and Nagel, c′ ≈ 1
(Ref. 10). For the normal behavior, now we have c′′

Cu =
0.15–0.22 [averaged to 0.18(2)]. This can be compared to
the corresponding value of c′′ = − 1

π
ln( στ

R0η
) from Eq. (3) at

the simulated crossover time, τ = τc, viz., c′′ = 0.12–0.45
(average at 0.22 ± 0.12), remarkably close to the values from
our simulations. We conclude from this that l-Cu follows the
normal behavior of early coalescence rather than the flattening

 15
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l c
 (
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) 
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0.57
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1.00EAM
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FIG. 9. (Color online) Crossover length as a function of initial
droplet radius for the 3D l-Cu and l-Si models.

behavior. Also, our results indicate that the logarithmic term in
c′′ is significant [cf. Eq. (3)], and neglecting it (so that c′′ ≈ 1)
is probably not warranted,9,12,28 at least at τc, noting, however,
that the argument evidently depends on the ratio τ/R0.

A corresponding calculation for l-Si yields lc ∝ Ra
0 , with

a = 1.0 ± 0.3, larger than the value of 0.5 provided by the
models discussed earlier [Eqs. (4) and (7)], but expected
in view of the “unusual” dependence of rSi found above,
Eq. (11). Using the latter equation together with Eqs. (3) and
(6) for the viscous regime, we obtain a crossover length of the
form (the same for normal and flattening models)

lc = constR1.1
0 T 0.4. (12)

This prediction can be assessed by fitting the numerical lc data
for l-Si to constRa

0T b, which yields a = 0.96 and b = 0.41,
in remarkable agreement with the values of Eq. (12), thus
providing evidence for its validity; i.e., l-Si does not obey
the usual R0.5

0 T 0 = R0.5
0 dependence. However, the agreement

of the numerical data with the predictions of Eqs. (4) and
(7) indicates that the viscous regime is normal, provided
that rSi is described by Eq. (11). Whether the deformation
is quadratic [Eq. (4)] or flattened [Eq. (7)], however, remains
to be determined. We have tried to resolve this issue on the
basis of the constants (c′ and c′′) that we could extract from
the MD data, and the results are inconclusive. This may result
from a limitation of the theory or a peculiarity of the potential
model (SW); further investigations are necessary to resolve
this point.

V. CONCLUSION

Using MD simulations, we have studied the coalescence
of nanoscale liquid-silicon and liquid-copper droplets in 2D,
quasi-2D, and 3D geometries. We find that the 3D and
quasi-2D systems undergo a transition from a viscous regime,
where the radius of the bridge rviscous ∝ τ , to an inertial regime,
where rinertial ∝ τ 1/2, irrespective of initial droplet size and
temperature. In 2D, only the inertial regime is observed; the
lower coordination number and binding energies cause the
droplets to be more prone to deformations, thus favoring
the inertia-driven behavior.

Our results for l-Cu, viz., the time dependence of the
bridge radius r and the crossover length lc between viscous
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and inertial regimes, are consistent with experiment9,10,12,26 as
well as the theory of Eggers et al.24 and Duchemin et al.,17

more precisely lCu
c ∝ √

R0. However, the prefactor affecting
the time dependence of the radius in the inertial regime,
r/R0 = c(τ/τi)0.5, is smaller than predicted by theory and
in fact sensitive to specific properties of the material, i.e.,
not universal. Our results further suggest that the viscous
regime is normal, i.e., quadratic deformations as opposed
to flattened. The situation is more complex in l-Si, where
the dependence on initial parameters is stronger; indeed, we
have here r ∝ R0.55

0 T 0.2 and lc ∝ R0.96
0 T 0.41, while theory

predicts r ∝ R0.25
0 and lc ∝ R0.5

0 . Thus, again, these results
indicate that the inertial regime constant for the evolution of
the bridge radius c is material and temperature dependent,
c = c(R,T ,σ,η).

The systems we considered, l-Cu and l-Si, may not be ideal
representations of experimental situations but were chosen
because they are prototypical and easily amenable to the
large-scale simulations needed to investigate the problem.
Irrespective of the specifics of the two materials, our results
demonstrate clearly the transition from a viscous-dominated
to an inertial-dominated regime. The transition is, however,
not universal in the sense that the parameters describing the
two regimes and the crossover between them depend to some
degree on the properties and the chemistry of the materials
involved.
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APPENDIX

We present here the method we employed to calculate
the bridge radius of a given configuration. As an illustration,

FIG. 10. (Color online) Surface of two l-Cu nanodroplets at 1 and
60 ps in the coalescence process.

FIG. 11. (Color online) Calculation of the bridge diameter 2r

when r < R0; see text for details.

Fig. 10 shows the coalescence status of 2D l-Cu nanodroplets
at two different times, viz., 1 and 60 ps after the onset of
coalescence. For 2D systems, at each time step in the simula-
tions, we determine the maximum width of the nanodroplets
(along the coalescence axis), as indicated by points a and
b in Fig. 11; initially, the width is maximum at the center
of the droplets. We can “draw” the surface by moving a
rectangular window along the coalescence axis between the
two maxima and identifying the atoms that lie at minimum
and maximum y positions; the width of the window, which is
small (a few interatomic distances), is varied so as to provide
better statistical accuracy as well as smooth out (or average
out) the surface. The minimum distance along the y axis is
the diameter of the coalescence neck, 2r . Evidently, there will
come a time at which r exceeds the initial radius; in this case,
the neck radius corresponds to the maximum rather than the
minimum.

For 3D nanodroplets, we use essentially the same approach,
but with an additional window of width p to identify the
position of the extremum of the neck, as illustrated in
Fig. 12(a). Because there is no preferred direction a priori, the
calculation is repeated for several angular directions [sweeping
the full 360◦; cf. Fig. 12(b)], and the radius is taken as the
average of these measurements.

FIG. 12. (Color online) Construction for the coalescence of 3D
droplets: (a) lateral view of the slab of thickness p and (b) rotation of
the slab for averaging out; see text for details.
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